

water & sanitation

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Determining Water Resources Classes and Associated Resource Quality Objectives in the Berg Catchment (WP10987)

Study Overview Presentation

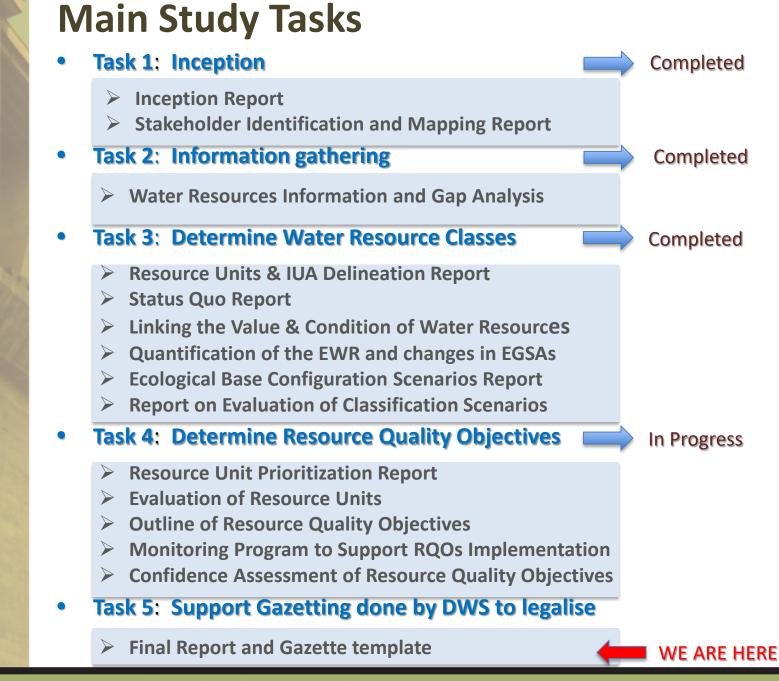
26 October 2018 Saldanha Water Quality Forum Trust meeting

Overview of study objectives & tasks

WATER IS LIFE - SANITATION IS DIGNITY

Study Objectives

Co-ordinate implementation of the Water Resources Classification System (WRCS):

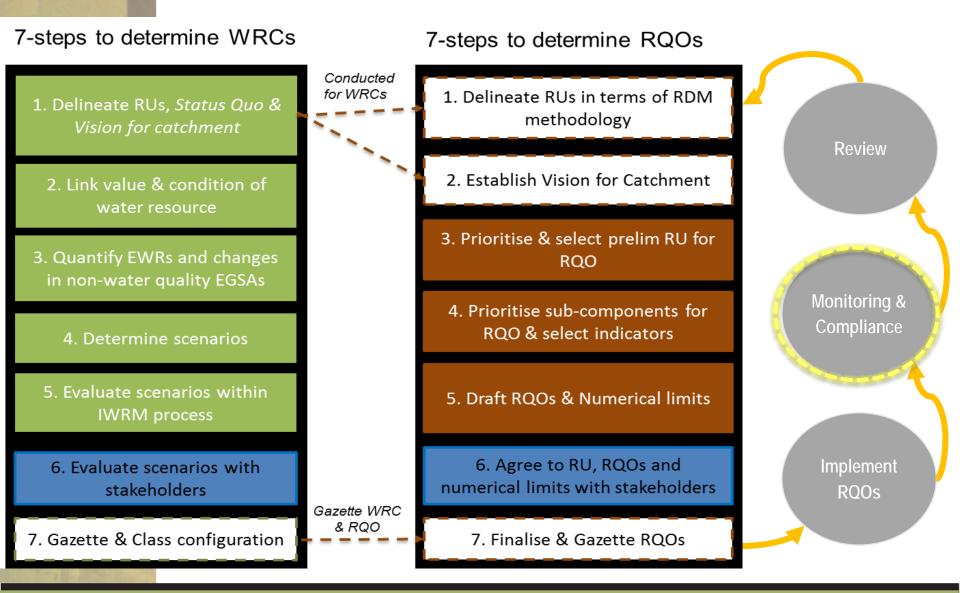

- Determine Water Resources Classes (WRCs)
- Determine Resource Quality Objectives (RQOs)
- Support Gazetting of Recommended Water Resources Classes and RQOs

for the water resources in the Berg Catchment:

- Rivers - Estuaries - Groundwater

- Dams - Wetlands

Project Duration: April 2016 to March 2019


Legal Mandate for Classification and RQOs

- Chapter 3 of the National Water Act, (No. 36 of 1998) deals with the protection of water resources
- > The measures for protection of water resources are:
 - Classification (S13)
 - Reserve (S16)
 - Resource Quality Objectives (S13)

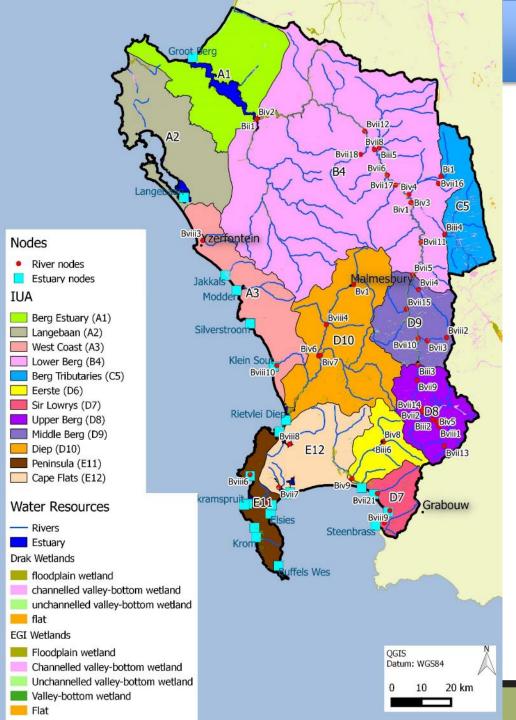
- S12 requires the Minister to establish the Water Resource Classification System, (WRCS)
- WRCS was published as Regulation 810 in Government Gazette No. 33541 dated 17 September 2010
- > The WRCS defines:
 - water resource classes and
 - the procedure to determine Class, RQOs and Reserve
- According to the NWA, once the WRCS has been gazetted all significant water resources must be classified and Resource Quality Objectives determined.

Water Resource Classes & RQOs

WATER IS LIFE - SANITATION IS DIGNITY

Delineation of IUAs

WATER IS LIFE - SANITATION IS DIGNITY


Integrated Units of Analysis (IUAs)

- Identified significant resources:
 - Based on Physical, Biological & Socio-economic factors
- Each IUA represents a similar area requiring a Water Resources Class (WRC)
- Why do we need these?
 - Broad-scale units to assess socio-economic implications of scenarios (possible future situations)
 - Report on ecological conditions at a sub-catchment scale
 - Set WR Classes for different parts of a catchment
- 12 IUAs delineated for the Berg Catchment.

Defined Resource Units (RUs) and Nodes

- Resource units (RUs) are grouped areas e.g. river basins, deemed similar in terms of various characteristics
- Are used to transfer information between catchments
- Groundwater RUs.

- Nodes are locations of interest (points) in a water resource (rivers, dams, wetlands, estuaries)
- Are sited using:
 - Water infrastructure
 - Aquatic ecosystem attributes
- Are used to allocate water for environment and development

Delineation of Resource Units and Integrated Units of Analysis

- 12 Integrated Units of Analysis (IUAs) identified In Study Area.
- Catchments G1, G2 and G40A.
- 45 river nodes identified.
- 8 existing Reserve Sites with EWRs already determined.
- 3 additional River EWR sites determined at Rapid Level III.
- 22 estuaries nodes identified.
- RDM studies undertaken to determined EWRs for 8 key estuaries in G2 catchments.
 - 10 Groundwater Resource Units.

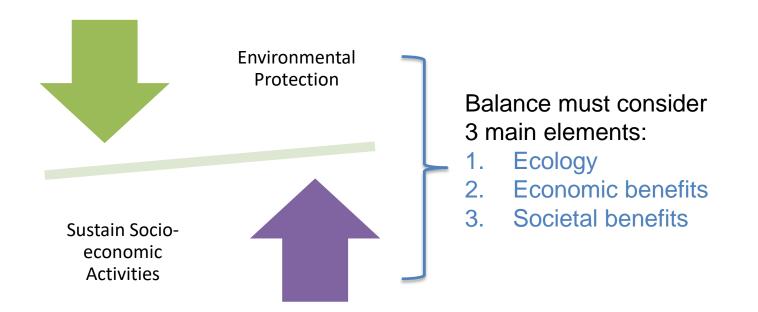
Scenarios Considered

Scenarios to be Considered

- Consider G1 and G2 catchments separately
 - G1 focused on the EWR impacts on the WCWSS.
 - G2 focused on impacts on estuaries and wetlands.
 - Groundwater scenarios considered separately.
- Scenarios to be considered:
 - Ecologically Sustainable Base Configuration (ESBC)
 - Present Ecological status (PES)
 - Recommended Ecological Category (REC)
 - Current and Future Developments
 - Possible Impacts of Climate Change
 - Individual specific estuary development scenarios
 - Catchment development scenarios for Wetlands

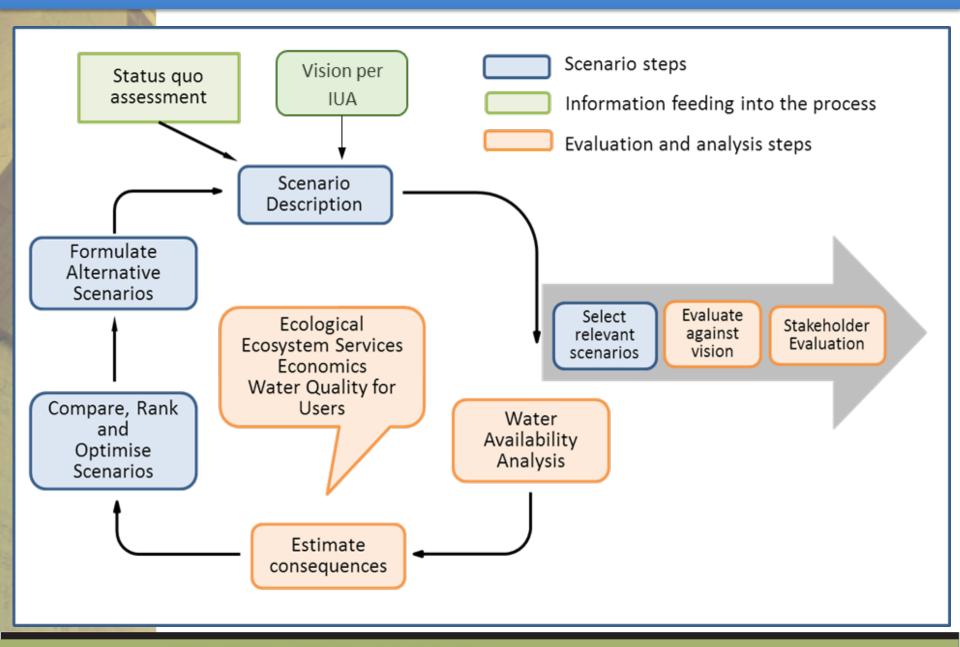
For estuaries with significant WWTW contributions.

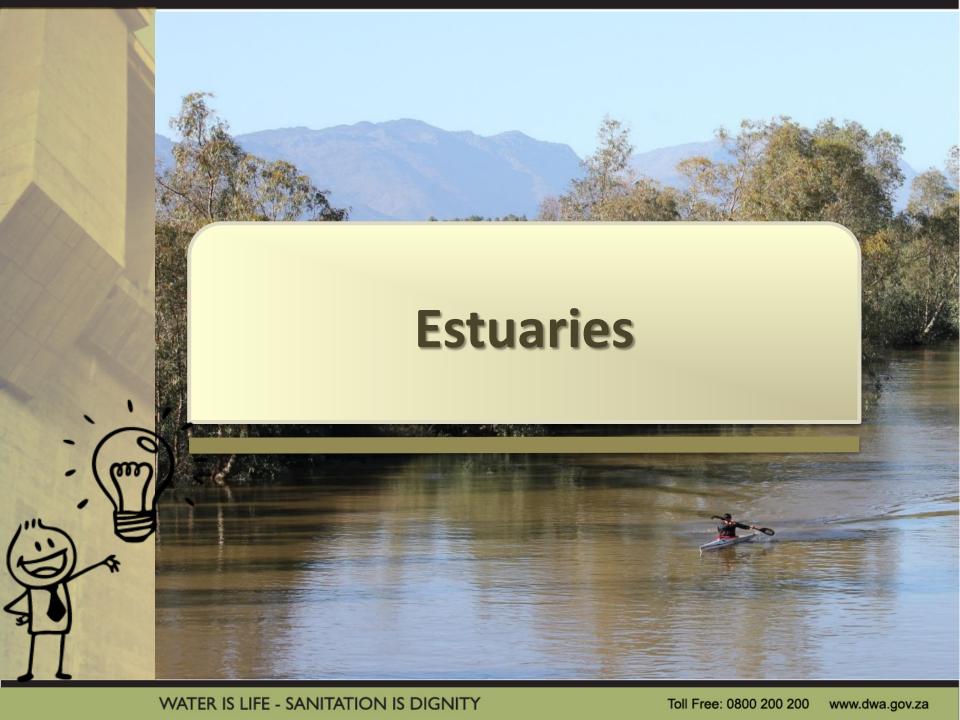
	#	Scenario	Description				
	1	Natural	Reference condition				
	2	Present	Present day flows and conditions				
	3	Scenario 1	Present day flows but all effluent from WWTW to be treated to DWS Special Standards				
	4	Scenario 2	Reduce inputs from the WWTW by 50% and treat the remainder to DWS Special Standards				
	5	Scenario 3	Reduce inputs from the WWTW by 75% and treat the remainder to DWS Special Standards				
	6	Scenario 4	Divert/recycle 100% of effluent from WWTW				
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	184 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	Alternative future development scenarios for other estuaries (i.e. Langebaan, Sandvlei, Lourens).					

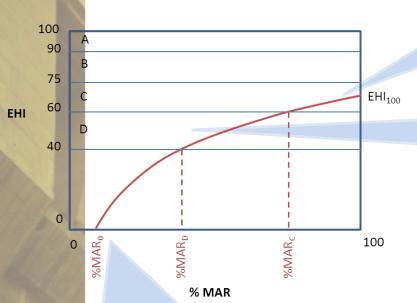

Methodology for Scenario Analysis

WATER IS LIFE - SANITATION IS DIGNITY

Scenario Evaluation Process


Aim of the scenario evaluation process:


 An appropriate balance between the level of environmental protection and the use of the water to sustain socio-economic activities


Scenario evaluation process estimates consequences of the scenarios on the three main elements

Evaluation of Scenarios Methodology

Estuaries

2. The ability of an estuary to support biodiversity drops to zero before MAR drop to zero

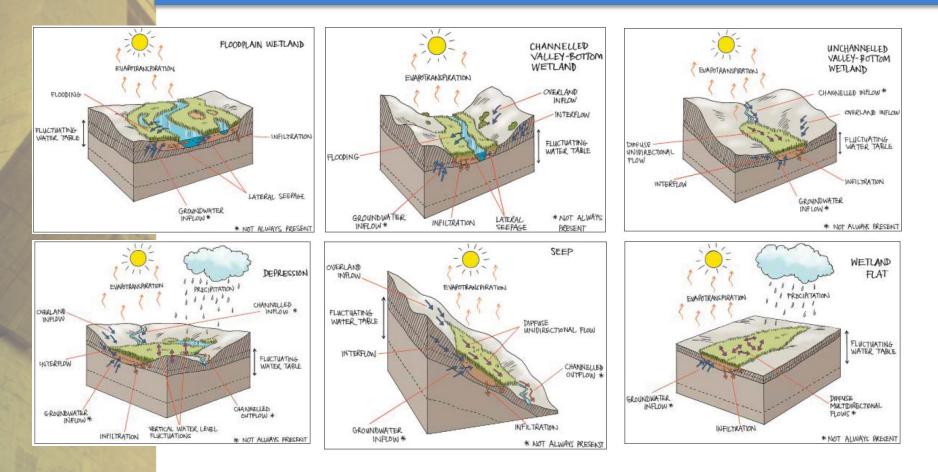
B. Proportional changes in the size of macrophyte, invertebrate, fish and bird populations were also estimated using matrices developed using data from Reserve determination studies for individual estuaries

WATER IS LIFE - SANITATION IS DIGNITY

3. It is often not possible to restore health to 100% of natural through restoration of flow alone due to other non-flow related impacts

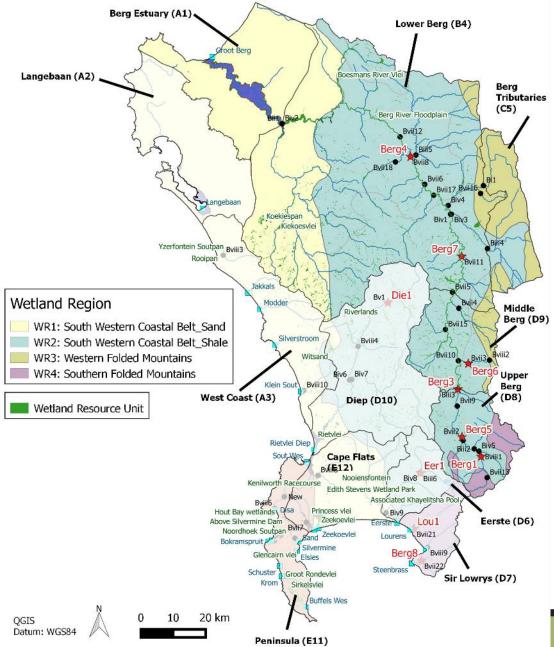
1. Relationship between health and flow is logarithmic – health declines increasingly rapidly as %MAR declines

A. Models were developed which allowed us to project likely changes in estuary health from A to E category as flows decline based on data from Reserve determination studies for individual estuaries


		Assigned Ecological Category							
		А	В	С	D	E	F		
	А	1.0	0.9	0.7	0.5	0.3	0.1		
	В	1.2	1.0	0.8	0.6	0.4	0.1		
DEC	С	1.4	1.2	1.0	0.7	0.4	0.1		
PES	D	1.9	1.7	1.4	1.0	0.6	0.2		
	E	3.2	2.8	2.3	1.7	1.0	0.3		
	F	10.4	9.0	7.3	5.4	3.2	1.0		

Target Ecological Condition (TEC) for Estuaries

Estuary Node	IUA	Quat	Name	PES	REC	EIS	Minimum %MAR with Current WQ	Minimum %MAR with Improved WQ
Bxi1	A1	G10M	Berg River Estuary	D	С	Н	46	33
Bxi3	A2	G10M	Langebaan Estuary	В	А	VH	94	94
Bxi12	A3	G21A	Modder Estuary	С	С	Μ	n/a	33
Bxi7	D10	G21F	Rietvlei/Diep Estuary	D	С	Н	n/a	33
Bxi9	E12	G22K	Zandvlei Estuary	D	С	Н	n/a	56
Bxi20	E12	G22D	Zeekoe Estuary	E	D	U	110	60
Bxi10	E11	G22B	Hout Bay Estuary	Е	D	U	35	26
Bxi11	E11	G22A	Silvermine Estuary	D	D	U	35	26
Bxi19	E11	G22A	Elsies Estuary	Е	D	U	35	26
Bxi18	E11	G22A	Buffels Wes Estuary	F	D	U	66	67
Bxi17	E11	G22A	Krom Estuary	А	А	U	95	95
Bxi16	E11	G22A	Schuster Estuary	А	А	U	95	95
Bxi15	E11	G22A	Bokramspruit Estuary	С	С	U	65	42
Bxi14	E11	G22A	Wildvoelvlei Estuary	D	С	Μ	79	62
Bxi3	D6	G22H	Eerste Estuary	Е	D	Μ	61	26
Bxi4	D7	G22J	Lourens Estuary	D	D	U	69	56
Bxi6	D7	G22K	Sir Lowry's Pass Estuary	Е	D	U	35	26
Bxi6	D7	G40A	Steenbras estuary	В	В	U	97	35



Wetland Regions, Wetland RUs, and Wetland Types

Wetland Regions are defined by Eco-region and Individual Wetland RUs defined by Wetland Type.

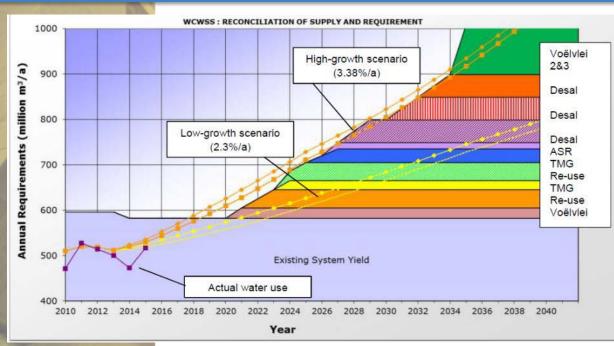
Wetland Scenarios (G1)

Surface water usage impacts:

- Berg River Floodplain wetlands threatened by water abstraction due to reduction of flow in the future scenarios
- Climate change increases this impact

Groundwater usage impacts:

- Increased abstraction of Langebaan Road Wellfield impacts Berg River Floodplain
- Uncertain extent of impact to Geelbek wetlands due to Elandsfontein


Indirect impacts:

- Future scenarios with no catchment management results in transformation of wetland habitats, increased stormwater flow etc.
- Future scenarios with catchment management results in less transformation

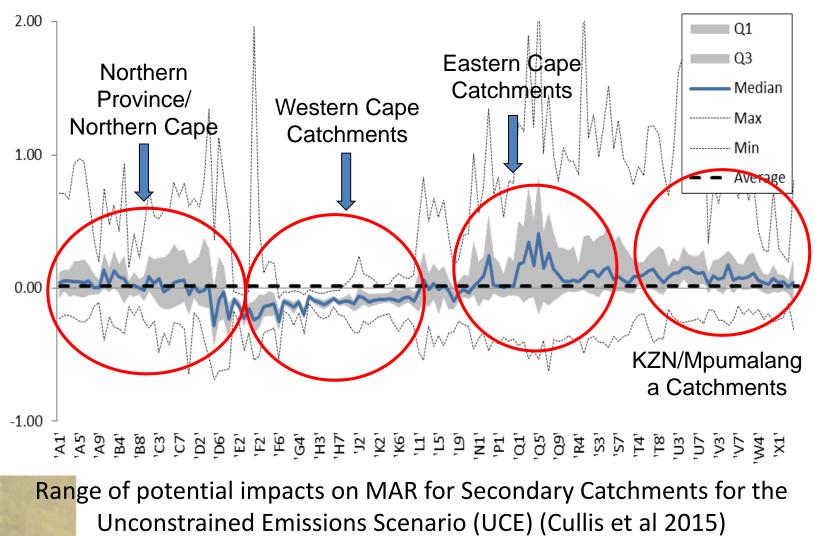
Impact on Water Availability and Yield

WATER IS LIFE - SANITATION IS DIGNITY

Current and Future Demands from the WCWSS

Water Requirement Sector (million m³/a)	2017/18	2018/19	2019/20	2020/21	2039/40 Medium-Growth Urban (2.8%/a)
CoCT + Other Municipalities	193	210	275	330	560
Agriculture	93	110	135	190	210
Losses	11	12	14	20	20
Total	297	332	424	520	790

"Planning Scenario" of the WCWSS Reconciliation Strategy


Bulk Water Supply Intervention	Yield (million m³/a)
Berg River-Voëlvlei Dam Diversion	23
Wastewater Re-Use - 1	40
TMG Aquifer - 1	20
Wastewater Re-Use - 2	40
TMG Aquifer - 2	30
West Coast Aquifer Recharge	14
Seawater Desalination - 1	50

New Bulk water supply interventions for WCWSS needed by 2039/40

Progression of projected annual water requirements from 2017/17 to 2039/40

WATER IS LIFE - SANITATION IS DIGNITY

Climate Change Impacts (Cullis et al.2015)

Change in Annual Runoff (Average 2040-2050): UCE

WATER IS LIFE - SANITATION IS DIGNITY

Ecosystem Goods, Services and Attributes

WATER IS LIFE - SANITATION IS DIGNITY

Main ecosystem services used in analysis

Category of service	Types of values	Description of EGSA	Independent variables related to estuary condition
Goods (Provisioning services)	Subsistence fishing	Invertebrates and fish collected on a subsistence basis for consumption or bait	Invertebrate abundance Freshwater fish abundance Estuary line- and net fish abundance
Services (Regulating services)	Nursery value	Contribution to marine fish catches due to the nursery habitat provided by estuaries	Abundance of estuary- dependent marine fish
Attributes (Cultural services)	Tourism value & property value	A river, wetland or estuary's contribution to recreation/tourism appeal of a location	Overall health Line fish abundance Water quality

Impact on EGSAs: G2 Catchments (REC scenario)

ESTUARY	Property Value (R million/a)	Tourism Value (R million/a)	Total Value (R million/a)	PES	REC	Change in Value	Change in Total EGSA Value (R million/a)	NPV of Change in EGSAs (R million)
Langebaan	26.99	136.6	163.59	А	А	1	0.0	0.0
Rietvlei/ Diep	32.71	62.4	95.11	D	D	1	0.0	0.0
Wildevoël- vlei	0.19	29.6	29.79	D	D	1	0.0	0.0
Sand	4.74	98.5	103.24	D	С	1.4	41.3	731.2
Zeekoe	1.62	8.2	9.82	Е	D	1.8	7.9	139.1
Eerste	1.76	8.9	10.66	Е	D	1.8	8.5	151.0
Lourens	0.50	33	33.50	D	D	1	0.0	0.0
TOTAL	39.81	377.2	445.71				57.7	1 021.3

Net present value (NPV) of the change in the EGSAs value for the REC (from PES) (NPV: 30 years @ 6% discount rate)

WATER IS LIFE - SANITATION IS DIGNITY

Estuary Scenario Results - Example

Langebaan Lagoon

Scenario	WCDM wellfield abstraction (million m³/a)	Dispersed abstraction (million m³/a)	Total abstraction (million m ³ /a)
Base case	0	4.94	4.94
Scenario 1	1.35	6.53	7.88
Scenario 2	3.5	6.53	9.83
Scenario 3	5.5	6.53	12.03
Scenario 4	7	6.53	13.53
Scenario 5	12	6.53	18.53

	Drawdown at Langebaan	Lagoon (m)	Aquifer Flu m3/a)	ix to Lago	on (million	% change from Base case
	LAU	UAU	LAU	UAU	LAU+UAU	Case
Base case	n/a	n/a	-0.6	-5.1	-5.7	-
Scenario 1	<0.1	<0.1	-0.6	-5.1	-5.7	-1
Scenario 2	<0.1	<0.1	-0.6	-5	-5.6	-3
Scenario 3	<0.1, increasing to 0.1-0.5 ~680m from water	<0.1	-0.6	-5	-5.6	-4
Scenario 4	<0.1, increasing to 0.1-0.5 ~500m from water	<0.1	-0.6	-5	-5.6	-4
Scenario 5	<0.1, increasing to 0.1-0.5 500m from water	<0.1	-0.6	-5	-5.6	-6%

WATER IS LIFE - SANITATION IS DIGNITY

Estuary Scenario Results - Example

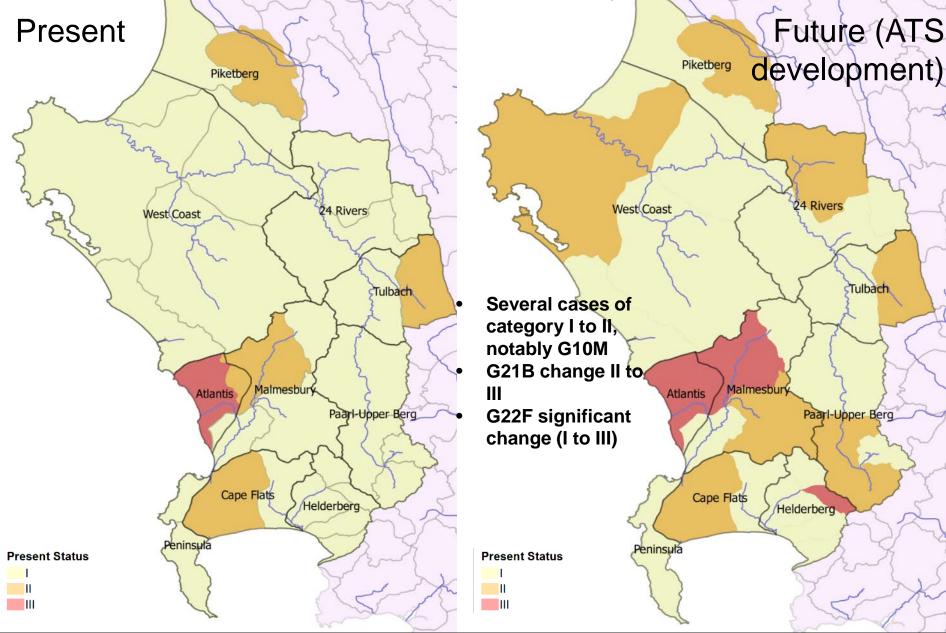
Langebaan Lagoon

Component	Present	Sc1	Sc2	Sc3	Sc4	Sc 5
Hydology	99	99	99	99	99	99
Hydrodynamics and mouth condition	95	95	95	95	95	91
Water quality	95	95	95	95	95	95
Physical habitat alteration	92	92	92	92	92	92
Habitat health score	95	95	95	95	95	94
Microalgae	90	90	90	90	90	90
Macrophytes	90	90	88	88	85	85
Invertebrates	90	90	90	90	90	90
Fish	50	50	50	50	50	50
Birds	50	50	50	50	50	50
Biotic health score	74	74	74	74	73	73
Estuary Health Score	85	85	84	84	84	84
Ecological Category	В	В	В	В	В	В

WATER IS LIFE - SANITATION IS DIGNITY

Groundwater

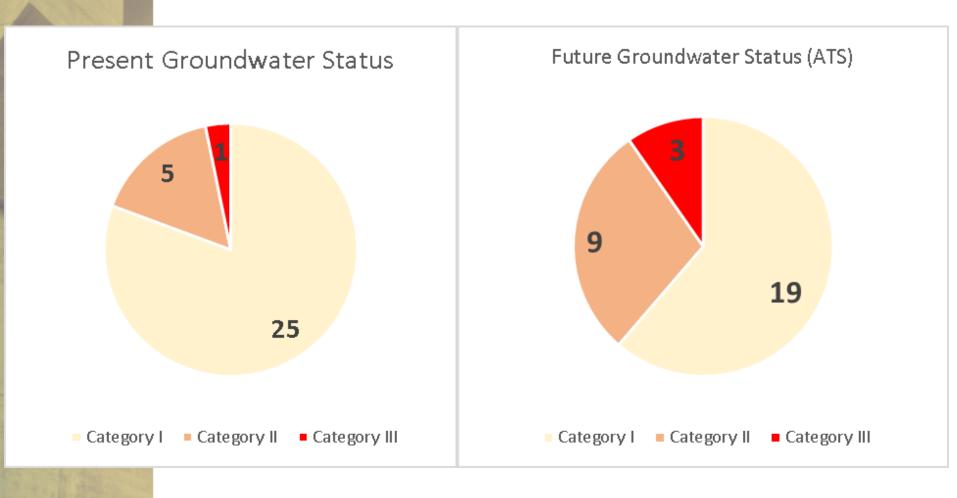
Groundwater Balance, Use/recharge (stress) and Present Status for Groundwater Resources Units in the Berg.


GRU Name	Recharge	Use	GWBF	Balance	Use/Recharge	Presen
GRUNAIIIe	(Mm³/a)	(Mm³/a)	(Mm³/a)	(Mm³/a)	(%)	Status
GRU-1: Malmesbury	47.19	10.48	10.37	26.34	22%	II
GRU-10: Atlantis	10.43	7.51	1.31	1.61	72%	
GRU-2: Cape Flats	38.34	11.78	7.57	19.00	31%	II
GRU-3: Peninsula	11.25	0.10	3.93	7.22	1%	I
GRU-4: Paarl-Upper Berg	86.92	10.77	19.79	56.36	12%	I
GRU-5: Helderberg	45.21	3.31	8.25	33.65	7%	I
GRU-6: 24 Rivers	49.85	2.00	8.41	39.45	4%	I
GRU-7: Tulbagh	30.86	5.63	6.51	18.71	18%	I
GRU-8: West Coast	153.50	8.92	5.47	139.11	6%	I
GRU-9: Piketberg	44.19	17.52	1.71	24.95	40%	II

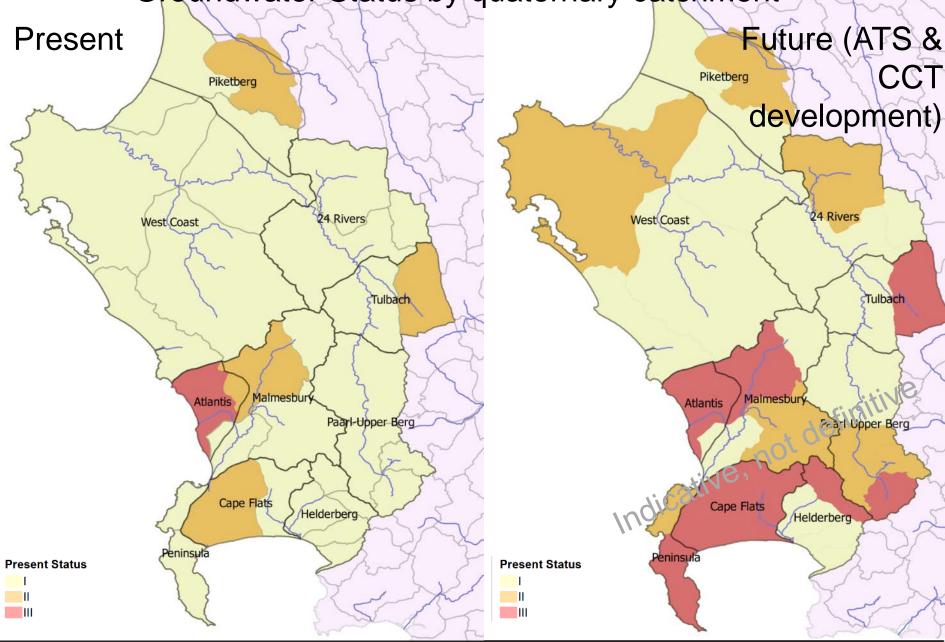
Scenario consequences on groundwater condition

- Definition for groundwater status relates to alteration from pre-development state: informed by use/recharge ('stress') ratio
- Level of 'stress' used to determine the resulting groundwater status per water resources classification scenario, resulting from increases in groundwater use for future development, or meeting surface water deficits

Groundwater Status Category		Generic Description	Use/ Recharge (Stress)	
I	Minimally used	The water resource is minimits pre-development condition	≤20%	
II	Moderately used	Localised low level impacts effects apparent	s, but no negative	20-65%
	Heavily used	The water resource is signification from its pre-development of the second seco	>65%	
	WATER IS L	IFE - SANITATION IS DIGNITY	(modified from Den	nis <i>et al</i> , 2013)

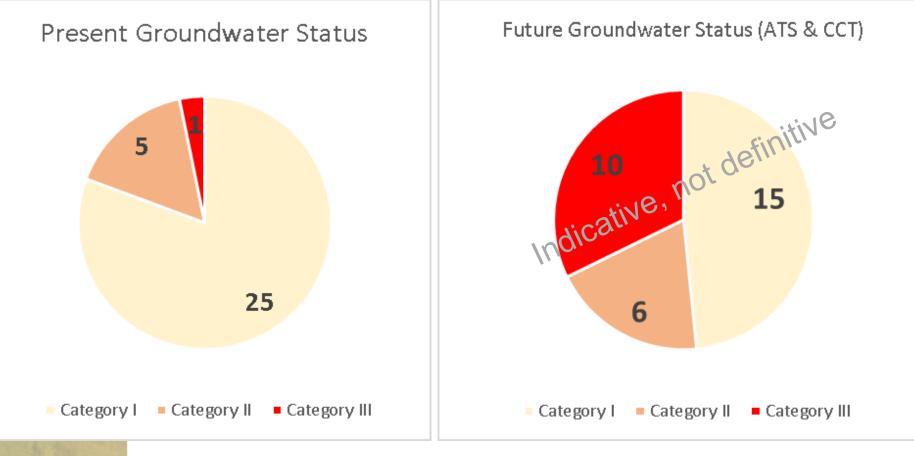

Groundwater Status by quaternary catchment

WATER IS LIFE - SANITATION IS DIGNITY


Scenario consequences on groundwater condition

- Results: maximum impact of planned development according to All Towns water demand projections
- Groundwater use from 370 to 445 million m³/a

WATER IS LIFE - SANITATION IS DIGNITY


Groundwater Status by quaternary catchment

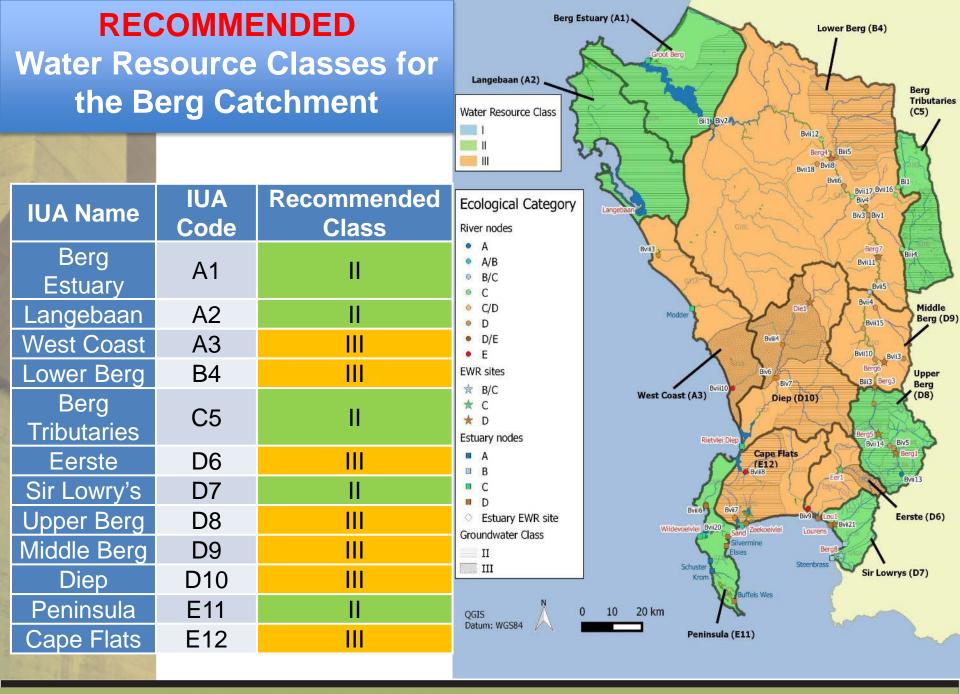
WATER IS LIFE - SANITATION IS DIGNITY

Scenario consequences on groundwater condition

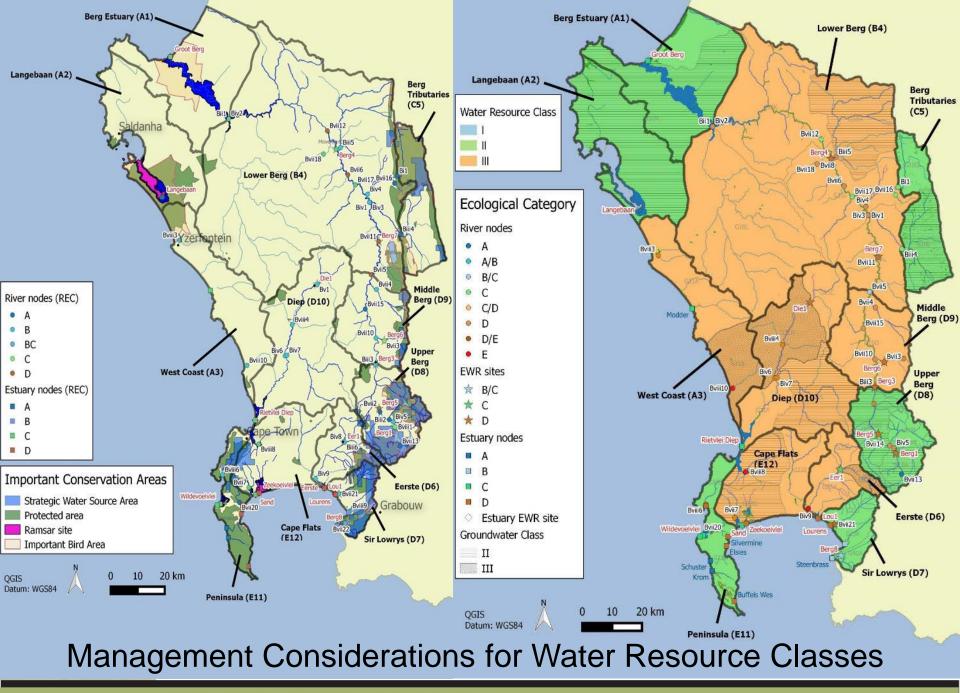
- Results: maximum impact of planned development according to All Towns water demand projections and CCT developments
- Groundwater use from 370 to 542 million m³/a

Recommended Water Resource Classes

WATER IS LIFE - SANITATION IS DIGNITY

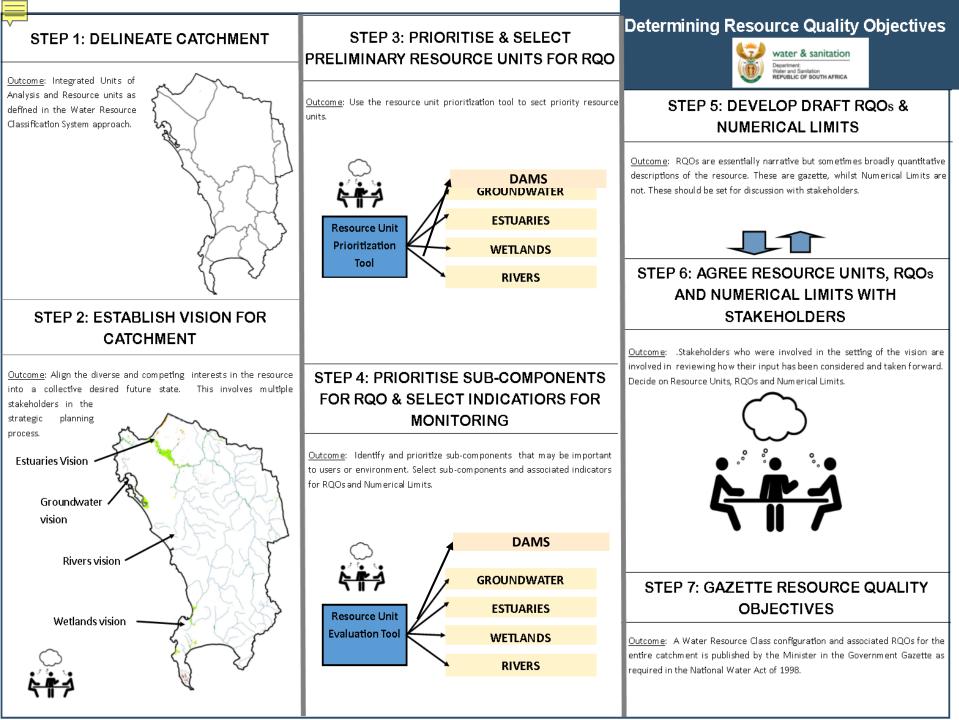

Determining the Water Resource Class

Description of the meaning for each Water Resource Class


Water Resource Class	Description
Class I	Minimally used
Class II	Moderately used
Class III	Heavily used

Guidelines for determining the IUA class based on ecological condition

	Percentage (%) of nodes in the IUA falling into the indicated groups										
	A or A/B	B or B/C	C or C/D	D	< D						
Class I	60	40	20	1	-						
Class II		60	30	5	-						
Class III			70	20	-						
Either:											


WATER IS LIFE - SANITATION IS DIGNITY

WATER IS LIFE - SANITATION IS DIGNITY

Determination of Resource Quality Objectives (RQOs)

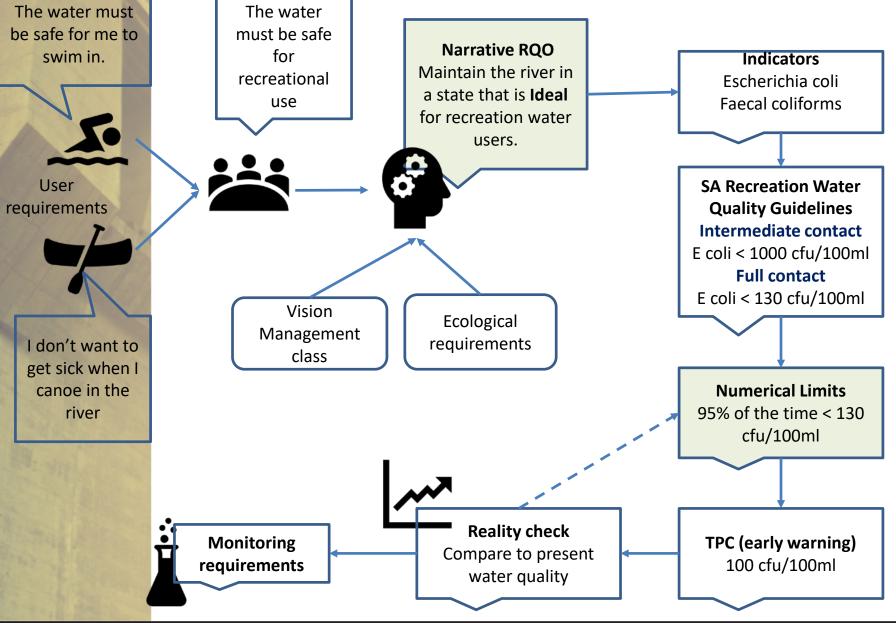
WATER IS LIFE - SANITATION IS DIGNITY

Resource Quality Objectives (RQOs) **Resource Quality Objective** Source Directed Control DOMESTIC User Objectives (i.e. fishing) AGRICULTURE Ecological Objectives (i.e. endangered fish species) **INDUSTRY River resource**

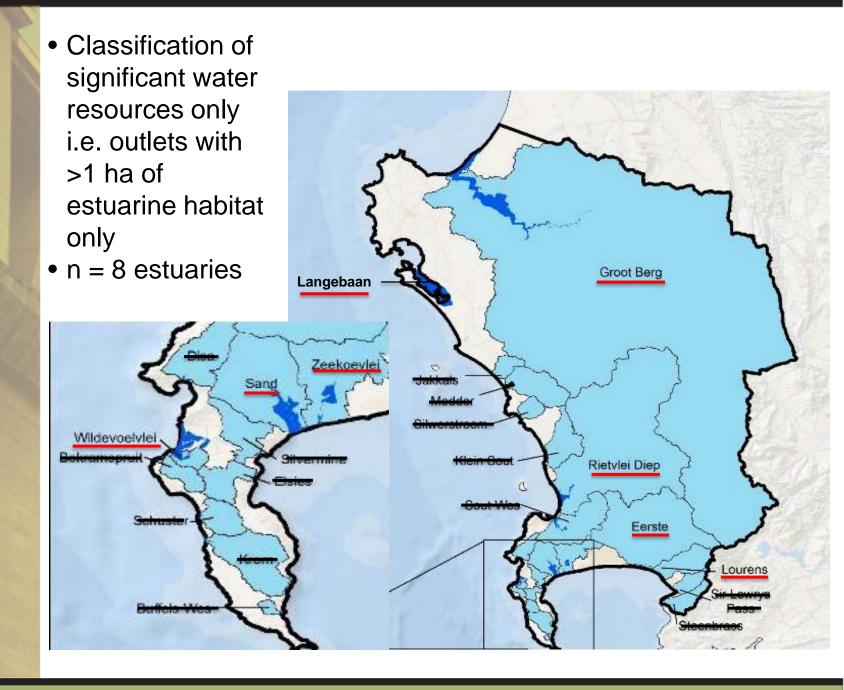
Components of Resource Quality Objectives

Prioritised Resource Unit per IUA

- i.e. grouped areas e.g. river basins, deemed similar in terms of various characteristics
- Target Ecological Category (TEC)
 - Ecological Category taken forward from the proposed scenario
- Component/Sub-component
 - E.g. Quantity/Flow
- Indicator
 - Representation of trend tracking the measurable change in a system over time. Focuses on a small manageable set of information to get a sense of the "bigger picture"
- Resource Quality Objective (RQO)
 - Descriptive broad statements describing overall objectives for the Resource Unit
- Numerical limit
 - Quantitative descriptors of different components of the Resource Unit



Summary of Priority RUs


LEGEND

WQ RQOs to Limits and TPC

WATER IS LIFE - SANITATION IS DIGNITY

WATER IS LIFE - SANITATION IS DIGNITY

RU Evaluation for Estuaries

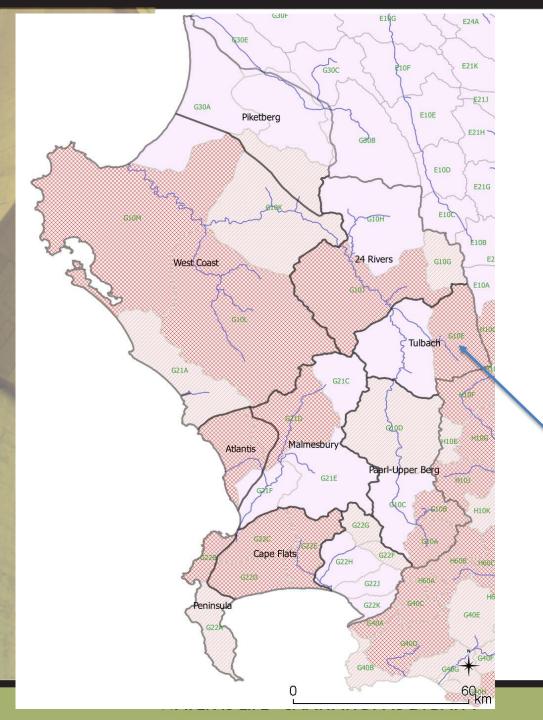
Component	Sub-component	Reason for selection	Example of indicator				
	Low flows	Component selected as part of original Reserve	Flow RQOs given are a monthly average volumes (MCM) that include maintenance low and high flows combined i.e. they include the inter- annual floods with a return period greater than 1:2 years				
QUANTITY	High flows	Inscaling information and standard for					
QUALITY	Nutrients System variables (temperature, salinity, oxygen, pH, turbidity) Toxic substances Pathogens	WQ influences habitat quality for organisms and also fitness for use for users	Specifications for maximum and minimum level for key properties of and contaminants in water				
HABITAT	Sedimentary processes		Narrative account of the flow and/or tidal regime required to maintain sedimentary processes and habitat integrity at a specified level				
	Mouth state	Provides a score for the water quality condition.	Specifications for the state of the mouth				
	Fish	Estuaries are important as nursery areas for marine fish.	Community composition and abundance of fish				
BIOTA	Invertebrates	aquatic biodiversity and also are indicators of	Community composition and abundance of benthic invertebrates and/or zooplankton				
	Micro-algae	Benthic microalgae and phytoplankton provide a useful indicator of water quality and are also an important source of food for other estuarine biota	Chlorophylla				
	Macrophytes		% cover of indigenous aquatic macrophytes				

Resource Unit Evaluation Tool (RUEV)

	Qua	ntity	Hyc dyna		Quality F					Physi	cal ha	ıbitat	Biota						
	Low Flows	High Flows (Floods)	Mouth Condition	Abiotic states	Salinity	Dissolved inorganic nitrogen	Dissolved inorganic phosphate	Water clarity	Dissolved oxygen	Toxic substances	Pathogens	Intertidal	Subtidal	Substrate type	Microalgae	Macrophytes	Invertebrates	Fish	Birds
Berg (Groot)	Y	Y	Y		Y	Y		Y	Y		Y				Y	Y	Y	Y	Y
Langebaan	Y	Y	Y		Y	Y		Y	Y		Y				Y	Y			Y
Rietvlei/ Diep	Y	Y	Y		Y	Y		Y	Y								Y	Y	Y
Wildevöelvlei	Y	Y	Y		Y	Y			Y						Y	Y	Y	Y	Y
Sand	Y	Y	Y		Y	Y		Y	Y		Y				Y	Y	Y	Y	Y
Zeekoe	Y	Y	Y		Y	Y		Y	Y		Y				Y	Y	Y	Y	Y
Eerste	Y	Y	Y		Y	Y		Y	Y		Y				Y	Y			Y
Lourens	Y	Y	Y		Y	Y		Y	Y		Y						Y	Y	Y

RQO Template for Estuaries

			REC		C	urrent	Та	rget
IUA	Node	Quat	EC	%nMAR	PES	%nMAR	EC	%nMAR
A1-Berg estuary	Bxi1	G10M	В	57.0	С	50.0	С	57.0
TEC SPECIFICATIONS								
Flow	•							
Mouth condition and								
sedimentary processes	•					-120		
Water quality	•			C. Sr	B	BID		
Microalgae	•			0				
Macrophytes (plants)	•			GuD				
Invertebrates	•							
Fish	•							
Birds	•							
Additional (non-flow rel	ated) i	nterve	ntions	to achieve	the T	EC:		
Source of	DWAF (2003) Intermediate Determination of Resource							
information	Directed Measures for the Breede River Estuary							


GW Prioritisation Criterion

- A set of criteria and sub-criteria were selected based on:
 - The framework for RU prioritisation (DWA, 2011)
 - Previous studies
 - Applied to quaternary catchment scale, grouped together and handled per GRU in RQOs

Cr	iterion	Points (out of 100)				
Importa	nce for users	25				
Level of s	urface water –	30				
groundwa	groundwater interaction 30					
Threat p	osed to users	30				
Practical (Considerations	15				

Prioritisation result for GW

High priority resource unit (rated 3) for which RQOs are developed

Evaluation of Groundwater RUs

Component	Sub-	Indicator	
	Component		
Quantity /	Abstraction	Water level recovers from abstraction impact during wet season, under consideration of climate change and drought cycles	2. Develop an RQO
	Groundwater level	Water level	(objective- descriptive),
	Discharge	Relative water levels between groundwater and surface water	and numerical
7	Low flow in river	Compliance with the lowflow requirements in the river	limit per indicator (if
Quality	Nutrients	NO ₃	possible)
	Salts	EC	
	Pathogens	E-coli	
	Pathogens	Total Coliform	

1. Consider the relevant components / subcomponents / Indicators in each prioritised RU 3. Per major aquifer, per prioritised quaternary(grouped per GRU)

WATER IS LIFE - SANITATION IS DIGNITY

