

THE STATE OF SALDANHA BAY AND LANGEBAAN LAGOON 2021

October 2021

THE STATE OF SALDANHA BAY AND LANGEBAAN LAGOON 2021

Technical Report October 2021

Barry Clark, Ken Hutchings, Aiden Biccard, Jane Turpie, Jess Dawson, Kirti Gihwala, Cheruscha Swart, Safiyya Sedick, Amy Wright, Kevin Schmidt, Joshua Weiss, Anelisa Makhosonke, Bruce Mostert, Megan Laird, Erika Brown, Julian Conrad, Aqeela Parker, Michael Holloway and Immo Blecher

Report Prepared by:

Anchor Environmental Consultants (Pty) Ltd.

8 Steenberg House, Silverwood Close, Tokai 7945, South Africa www.anchorenvironmental.co.za

Cover Photo: Steve Benjamin 2021

© Saldanha Bay Water Quality Forum Trust 2021
Use of material contained in this document by prior written permission of the Saldanha Bay Water Quality Forum Trust only

Citation: Clark BM, Hutchings K, Biccard A, Turpie J, Dawson J, Gihwala K, Swart C, Sedick S, Wright A, Schmidt K, Weiss J, Makhosonke A, Mostert B, Brown E, Laird M, Conrad J, Parker A, Holloway M and Blecher I. 2021. The State of Saldanha Bay and Langebaan Lagoon 2021, Technical Report. Report No. AEC 1936/1 prepared by Anchor Environmental Consultants (Pty) Ltd for the Saldanha Bay Water Quality Forum Trust, October 2021.

FOREWORD

The residents living in and around Saldanha Bay and Langebaan Lagoon are truly blessed to have such a unique ecological wonder on their doorstep. Visitors to our region continually confirm this view. It has taken millennia of natural processes to provide this phenomenon. The advent of man and his need to develop, almost at all costs, has the potential to destroy this gift within a short space of time. The question is - how do we balance the need to conserve our natural heritage with the requirement to develop and prosper economically? There is no simple answer to this very basic question.

The conservationists have shouted their 'green' messages from the treetops whilst the industrialists have simply argued the need to 'provide jobs and grow'. "Never the twain shall meet". We will all have to change our attitudes and work together to find the balance. This is a team effort. The government has taken the first steps in providing legal guidance with the proclamation of the National Environmental Management Act and the Integrated Coastal Management Act. These Acts still have a way to go before they have the required impact to provide the answer to our question.

Saldanha Bay has been identified as an economic development node by national government and the establishment of an Industrial Development Zone is well under way. The Bay hosts a major natural harbour and is actively exporting iron ore, lead, copper, and manganese. To date, most environmental impact studies have been localized and the entire Saldanha Bay and Langebaan Lagoon ecological system has not been considered holistically. The Saldanha Bay Water Quality Forum Trust has been instrumental in the establishment of the Integrated Governmental Task Team (IGTT) that has been given the mandate to address this problem and provide environmental guidance for all future development in and around our region and Saldanha Bay. The above-mentioned legislation plus the IGTT Environmental Guidelines will form the cornerstone to a balanced approach in terms of environmental sustainability, social wellbeing, and economic growth in the future. The advent of "Climate Change" brings forth sea level rise and storm events. For this reason, beach erosion and sediment movement are going to pose major challenges in the years ahead.

None of the above can take place without scientifically based studies information on the 'State of the Bay'. The Saldanha Bay Water Quality Forum Trust has been the pioneer in this regard and has conducted a series of all-encompassing scientific tests with minimal resources over the last 22 years. The report is once again a perfect example of the wonderful work that they perform. The report further comes at a critical time in answering our question of balancing conservation and development.

The Trust, like the rest of the World, has had to deal with the COVID-19 Pandemic in the past fifteen months. Notwithstanding the challenges we were able to perform our monitoring function as an essential service during the "Lockdown" in 2020 and 21. This has led to the innovation of Virtual Meetings and, for the first time, presenting the "State of the Bay" report as a webinar in October 2020 and in so doing expanding our reach to the various sectors of the community. This year we have followed a hybrid approach. We will present both in person and record the activity to be viewed on other platforms thereafter.

The Trust has also played an active role in the alignment of our monitoring programs within the Aquaculture Development Zone (ADZ) this past year. The Trust as a member of the ADZ Community

Forum, has direct impact on the development of the ADZ where we attempt to ensure minimal impact on the Bay or the Lagoon.

The Trust is financially sound notwithstanding the closure of Arcellor Mittal Steel and PPC Cement factories. We have, however, identified and are busy negotiating with potential new contributors such as the Industrial Development Zone and 4 Special Forces Regiment. We are also in the process of building a financial reserve to carry the Trust through the difficult economic times that lie ahead.

In conclusion let us all, National, Provincial and Local Government with the Private Sector and Non-Governmental Organisations, as partners, take hands and make a difference in conserving Saldanha Bay and Langebaan Lagoon for future generations whilst ensuring responsible development.

Alderman André Kruger

Portfolio Chairperson: Community and Operational Services

Saldanha Bay Municipality

Chairperson Saldanha Bay Water Quality Forum Trust

22 October 2021

Acknowledgement and thanks go to SANP for assisting with data and services as well as a special thanks to all the contributing institutions that assist the SBWQFT throughout the year.

EXECUTIVE SUMMARY

Regular, long-term environmental monitoring is essential to identify and to enable adaptive management and mitigation of negative human impacts on the environment (e.g., pollution), and in so doing, maintain the beneficial value of an area for all users. This is particularly pertinent for an area such as Saldanha Bay and Langebaan Lagoon, which serves as a major industrial node and port while at the same time supporting important biodiversity, tourism and fishing industries. The development of the Saldanha Bay port has significantly altered the physical structure and hydrodynamics of the Bay, whilst all developments within the area (industrial, residential, tourism, etc.) have the potential to negatively impact on ecosystem health.

Saldanha Bay and Langebaan Lagoon have long been the focus of scientific study and interest, owing to its conservation importance as well as its many unique features. The establishment of the Saldanha Bay Water Quality Forum Trust (SBWQFT) in 1996, a voluntary organisation representing various organs of State, local industry and other relevant stakeholders and interest groups, gave much impetus to the monitoring and understanding of changes in the health and ecosystem functioning of this unique bay-lagoon ecosystem. Direct monitoring of a number of important ecosystem indicators was initiated by the SBWQFT in 1999, including water quality (faecal coliform, temperature, oxygen, pH and trace metals), sediment quality (trace metals, hydrocarbons, total organic carbon (TOC) and nitrogen) and benthic macrofauna. The range of parameters monitored has expanded since then to include surf zone fish and rocky intertidal macrofauna (both initiated in 2005) and led to the commissioning of a "State of the Bay" technical report series in 2006. This report has been produced annually since 2008, presenting data on parameters monitored directly by the SBWQFT as well as those monitored by others (government, private industry, academic establishments, and NGOs).

In this 2021 State of the Bay report, available data on a variety of physical and biological topics are reviewed, including activities and discharges affecting the health of the Bay (e.g., residential and industrial development, dredging, coastal erosion, shipping, mariculture, fishing and fish processing, sewage and other wastewaters), groundwater inflows, water quality in the Bay itself (temperature, oxygen, salinity, nutrients, pH and trace metals), sediment quality (particle size, trace metal and hydrocarbon contaminants, total organic carbon and nitrogen), ecological indicators (aquatic macrophytes, benthic macrofauna, fish, birds and seals) and alien and invasive species present in the Bay. Where possible, trends and areas of concern have been identified and recommendations for future monitoring are presented, with a view to further improving the environmental management and monitoring in the area. Key findings for each of the major components of the State of the Bay monitoring programme are summarised below.

Activities and discharges affecting the Saldanha Bay and Langebaan Lagoon

Major developments in the Bay itself over the last 50 years include the development of the Port of Saldanha (Marcus Island causeway and the Iron Ore Terminal and associated infrastructure), the establishment of the small craft harbour, several marinas, mariculture farms and several fish processing factories. Extensive industrial and residential development has also become established

on the periphery of the Bay. Anthropogenic pollutants and wastes find their way into the Bay from a range of activities and developments. These include port operations, shipping, ballast water discharges and oil spills, export of metal ores, municipal (sewage) and industrial discharges, biological waste associated with mariculture and storm water runoff. Urban and industrial developments encroaching into coastal areas have resulted in the loss of coastal habitats and have affected natural coastal processes, such as sand movement. Development of the port is expected to increase dramatically with the roll out of the Saldanha Bay Industrial Development Zone (IDZ), a process that was initiated in 2013.

Human settlements surrounding Saldanha Bay and Langebaan Lagoon have expanded tremendously in recent years. This is brought home very strongly by population growth rates of 2.7% per annum in Saldanha and 9.24% in Langebaan over the period 2001 to 2011. Tourists visiting the Saldanha Bay and Langebaan Lagoon are display strong seasonal trends in numbers of people entering the West Coast National Park, peaking in the summer months and December holiday period, and during the flower season in August and September. The limitations implemented due to COVID 19 restrictions have resulted in a significant drop in international and overnight visitors to the park, as well as lower visitor numbers for the end of the 2019/20 rolling year, during the hard lockdown when parks were all closed, and during the second wave that occurred in December 2020. However, overall numbers were still similar to those seen between 2009 – 2014 and will hopefully increase with the reopening of national tourism and the removal of SA from the UK red listed countries. This rapid population and tourism growth translates to corresponding increases in the amount of infrastructure required to house and accommodate these people, and in the amount of waste and wastewater that is produced which must be treated and disposed of.

Metal ores exported from the Port of Saldanha Bay include iron, lead, copper, zinc, and manganese. The Port of Saldanha currently has the capacity to export up to 60 million tonnes of iron ore per year but is in the process of upgrading the infrastructure to support an annual export of 80 million tonnes. However, the Transnet Port Terminals (TPT) have thus far been unsuccessful in obtaining a variation to their existing Air Emission License (AEL) applicable to the Iron Ore Terminal for the storage and handling of the ore. The latest application was for the increase of handling and storage of coal and ore to 67 million tonnes per annum and was accompanied by an impact assessment and public participation process. The competent authority denied TPT the amendment concluding that environmental impacts at the current production level are already too high. In addition, the Provisional Air Emission License (PAEL) granted for the storage and handling Manganese at the Multi-Purpose Terminal (MPT) has been appealed and set aside. The competent authority decided that the activities required for the storage of Manganese in the port, specifically the need for the expansion of current storage facilities, should have triggered an EIA prior to the issuing of the PAEL, therefore the appeal was upheld and the PAEL set aside. Manganese volumes being stored at the MPT have subsequently been significantly reduced.

Disposal of wastewater is a major problem in the region, and much of it finds its way into the Bay as partially treated sewage, stormwater, industrial effluent (brine, cooling water discharges and fish factory effluent) and ballast water. Until recently, sewage discharge was arguably the most significant waste product that is discharged into Saldanha Bay in terms of its continuous environmental impact. Sewage is harmful to biota due to its high concentrations of nutrients which stimulate primary production that in turn lead s to changes in species composition, decreased biodiversity, increased

dominance, and toxicity effects. The Saldanha Bay Municipality (SBM) has, however, made a number of improvements both to existing wastewater treatment facilities and in the management of the effluent discharged from the plants. The majority of the wastewater is now being used for irrigation, and current water users receiving treated effluent include: the Weskus School, Saldanha Sports Ground (Stadium and practise field), Blue Bay Lodge (all three from Saldanha WWTW) and the Langebaan Country Estate (Water received from Langebaan WWTW). For a period of time, most of the effluent from the Saldanha WWTW was taken up by ArcelorMittal Steel Works but since the closure of this plant last year, most of the water from the Saldanha WWTW is once again being discharged into the Bok river and ultimately ends up in the ocean (Small Bay). The SMB has, however, identified other potential uses for the treated effluent, and an allocation has been made available to them which will hopefully be taken up soon. Additionally, SBM in collaboration with Sea Harvest, have initiated a project to install litter traps on stormwater drains to minimize pollution entering the Bay via these waterways.

Ballast water discharge volumes are increasing over time as shipping traffic and the overall size of ships visiting Saldanha Bay increases. The total number of ships entering the Port of Saldanha has increased substantially over the years from 262 ships in 1994/5 to peak at 616 in 2018/19 rolling year, before dropping slightly in the past two year to 571 and 570 (a decrease that is likely related to the COVID 19 Pandemic). The volume of ballast water discharged more than tripled between 1994 and its peak volume recorded in 2017/18, from 8.2 to 25.1 million tonnes. Vessels docking at the Iron Ore Terminal have a higher average volume of ballast water discharge than other vessel types, with volumes increasing from 54.4 thousand tonnes per vessel in 2003/4, peaking at 78.6 thousand tonnes in 2015/16 and dropping to 71.2 thousand tonnes in 2018/19. Only total ballast water volumes for the entire port were available from 2019/20, however, when comparing the average discharge for all vessels combined in 2019/20 to similar data for the period 1994/5 to 2001/2, we see that volumes have increased by more than one third over historic volumes. There is a concern that the 2020/21 ballast water discharge volume data is inaccurate, despite assertions that protocols have not changed, as although the number of ships did not drop, the reported ballast volume dropped to 40% of the previous year. Ballast water can, and often does include, high levels of contaminants such as trace metals and hydrocarbons, and, along with the vessels that carry the ballast water, serves to transport alien species from other parts of the world into Saldanha Bay. Ballast water discharges can, however, be effectively managed and the remit of the International Maritime Organisation (IMO) is to reduce the risks posed by ballast water to a minimum through the direct treatment of the water while on board the ship, as well as by regulating the way in which ballast water is managed while the ship is at sea. Although no domestic legislation is currently in place to regulate ballast water discharge (the Ballast Water Management Bill remains in draft format), the Transnet National Port Authority in Saldanha Bay have a well-recognised management plan in place and have implemented several mechanisms to track and control the release of ballast water into the harbour.

Dredging in Saldanha Bay has had tremendous immediate impact on benthic micro and macrofauna, as extensive dredging has been conducted in the Bay in the past, and particles suspended in the water column during dredging can kill suspension feeding taxa including zooplankton, benthic macrofauna, and in severe cases fish. It also limits the penetration of sunlight in the water column and can cause die offs of seaweeds and phytoplankton. Furthermore, fine sediment can drift into the Langebaan Lagoon, changing the sediment composition, which in turn can directly and indirectly affect birds in the lagoon. The damage caused by dredging is generally reversible in the long term, and although the

particle size composition of the settled material is likely to be different, ecological functioning as well as major species groups generally return in time. The most recent dredging occurred in September and October 2019 and February 2020, whereby 20 668 m³ of sediment was dredged for the upkeep and maintenance of the OSSB quay and channel, and the Mossgas channel. No dredging was undertaken in the 2020/21 rolling year.

Saldanha Bay is a highly productive marine environment and constitutes the only natural sheltered embayment in South Africa. These favourable conditions have facilitated the establishment of an aquaculture industry in the Bay. In January 2018 the then Department of Agriculture, Forestry and Fisheries (DAFF now DFFE) was granted Environmental Authorisation to establish a sea-based Aquaculture Development Zone (ADZ) in Saldanha Bay and expand the total area available for aquaculture in the Bay to 884 ha, which is located within four precincts (Small Bay, Big Bay North, Outer Bay North and South). In 2018, it was reported that of the new established area, 151 ha was being actively farmed. In March 2020, 28 companies within the Saldanha Bay ADZ were registered on the Marine Aquaculture Right Register, of which only 15 companies were actively operational. More recently, as of September 2021, 27 companies were registered on the Marine Aquaculture Right Register, of which only three were not yet actively operational. The area of the ADZ actively being utilised is constantly changing as new leases are being granted, new farms start, current lease holders expand their areas, or alternatively shrink in size, based on economic factors.

Historic studies as well as the State of the Bay surveys have shown that these culture operations can lead to organic enrichment and anoxia in sediments under the culture rafts, and ropes. DFFE were required to appoint an Environmental Control Officer and to set up two committees - a Consultative Forum (CF) that includes representatives of public and industry and an Aquaculture Management Committee (AMC) (government representatives only) - to ensure that the implementation of the ADZ is in line with the requirements specified in the Environmental Authorisations and Environmental Management Programme. Additionally, the 2021 Benthic Monitoring Report and the repeat Annual Redox Survey Report for the Saldanha Bay ADZ have recently been made public, summaries of which are included in this report. DFFE are also continuing with in-house environmental monitoring which includes a rapid synoptic survey of oxygen and nutrient levels in the Bay.

Results from the Benthic monitoring survey and the chemical survey suggest that at current production rates the ADZ is having a negligible effect of the Bay. However, the identification of a moderately disturbed site in Outer Bay North and data from ABC curves indicating that all communities within Big Bay are already experiencing low levels of disturbance - regardless of the presence or absences of aquaculture activities — suggests the need to maintain the interval between monitoring surveys at least every 3 years (and not allow gaps of up to 5 years between surveys). Therefore, ensuring that any impacts associated with the ADZ operations are detected timeously and do not compound the natural/existing disturbance within the Bay and that the cumulative impacts within the Bay do not push these sites towards detrimental levels of disturbance.

Management and policy development

Continuously accelerating urban and industrial development is a major cause of fragmentation and loss of ecological integrity of remaining marine and coastal habitats in Saldanha Bay and Langebaan. The challenge of addressing cumulative impacts in an area such as Saldanha is immense. The current

and future desired state of the greater Saldanha Bay area is polarised, where industrial development (Saldanha Bay IDZ) and associated industrial development) and conservation areas (Ramsar Site, Marine Protected Areas (MPAs) and National Parks) are immediately adjacent to one another. Furthermore, the Saldanha Bay environment supports conflicting uses including industry, fisheries, mariculture, recreation, and the natural environment itself. This situation necessitates sustainable development that is steered towards environmentally more resilient locations and away from sensitive areas.

Concerns have been raised that cumulative impacts on the marine environment in Saldanha Bay have not been adequately addressed for many recent development proposals. This applies especially to the cumulative impacts that are anticipated from future development within the Saldanha Bay IDZ and Aquaculture Development Zone (ADZ). Furthermore, the impact on the Saldanha Bay marine environment from projects that are primarily land-based, such as storage facilities for crude oil and liquid petroleum gas, has often been underestimated or even ignored. It has been proposed that a more holistic management strategy is needed to deal with these piece-meal Environmental Impact Assessments (EIAs). Various environmental management instruments have been proposed for the Greater Saldanha Bay Area, including (1) a generic Environmental Management Programme (EMPr), (2) an Environmental Management Framework (EMF), (3) a Strategic Environmental Assessment (SEA), and (4) declaration of Saldanha Bay as a Special Management Area. An Intergovernmental Task Team (IGTT) has been established to consider these and other proposals. If these management instruments are indeed implemented, we are confident that measures for the conservation alongside rapid development of the Saldanha Bay area will be addressed more effectively.

Groundwater

Within the Greater Saldanha Bay (GSB) area on the Cape West Coast, groundwater is a key component of the natural capital within the area. It plays a crucial role in sustaining critical and unique ecosystems and is also a backup resource (and possible future primary resource in times of drought) of water supply to the municipality as well as providing support to the agricultural sector. The geological setting is complex and highly variable within the GSB area and for this reason, the groundwater is also highly variable across the study area in terms of flow rates, volumes and quality. A lot of geohydrological work has been completed in the area, dating back to the late 1970s. There has also been quite a lot of recent and ongoing geohydrological work with the establishment of the Elandsfontein Phosphate Mine; the extension of the Langebaan Road Aquifer wellfield and the establishment of the new Hopefield wellfield. In places, the aquifers are very high yielding with good groundwater quality yet in other areas, there is essentially no groundwater and, if present, it is very saline. The potential for groundwater use within the GSB has been recognised for a long time and for this reason the Department of Water Affairs (as it was known at the time) declared a Subterranean Government Water Control Area within the Greater Saldanha Bay area in the 1970s, essentially reserving groundwater for municipal use.

The Langebaan Lagoon in the Geelbek area is one of the main groundwater discharge zones in the area. The groundwater inflow provides freshwater flow into the southern end of the Lagoon, which play a key role in causing and maintaining the biodiversity of that area. The area is a declared Ramsar site. These freshwater inflows are groundwater driven and have to be maintained. For the entire study area this is where groundwater's role is the most crucial. Ten kilometres up-gradient of this

area is the Elandsfontein phosphate mine. The mine is dewatering the groundwater (in order to access the ore), however, the abstracted groundwater is recharged 2 km down-gradient of the open pit with essentially no nett abstraction of groundwater occurring. A comprehensive groundwater monitoring network is in place to track the mine's activities.

There are also monitoring boreholes at the municipal Langebaan Road Aquifer and Hopefield wellfields and the monitoring thereof is being managed by the Saldanha Bay Municipality. There are also many boreholes across the area that the Department of Water and Sanitation monitor on a regular basis. The use of groundwater for agricultural use is quite limited within the study area Currently, all monitored groundwater in the area (water levels, abstraction volumes and groundwater quality) remain within a stable range and no significant nett abstraction is occurring within the region.

Comprehensive groundwater monitoring and an associated database within the entire region is essential for the long-term management and preservation of the aquifers and freshwater inflows into the Langebaan Lagoon. A regional database using Aquabase is currently being set up by GEOSS that integrates all the groundwater information (from DWS and private authorised users) to provide a regional overview of the groundwater status within the area.

Water quality

Aspects of water quality (temperature, salinity, dissolved oxygen, nutrients and chlorophyll concentrations) are currently, or have in the past been studied in Saldanha Bay, to better understand changes in the health of the environment. Regional oceanographic processes appear to be driving much of the variation in water temperature, salinity, dissolved oxygen, nutrients and chlorophyll concentrations observed in Saldanha Bay. However, there is clear evidence of altered current strengths, circulation patterns and wave energy within the Bay, which are ascribed to the construction of the ore terminal and causeway. These changes have also contributed to the deterioration in water quality in Small Bay in particular.

The water entering Small Bay appears to remain within the confines of the Bay for longer periods than was historically the case. There is also an enhanced clockwise circulation and increased current strength flowing alongside unnatural obstacles (i.e., enhanced boundary flow, for example alongside the ore terminal). The wave exposure patterns in Small Bay and Big Bay have also been altered as a result of harbour developments in Saldanha Bay. The extent of sheltered and semi-sheltered areas has increased in Small Bay, while wave exposure has increased in some areas of Big Bay leading to coastal erosion.

The increase in the frequency of Small Bay hypoxic events (periods of low dissolved oxygen <2 ml/l) occurred after the major harbour development in the 1970s, and the situation does not appear to have changed much since then with similar data collected by continuous dissolved oxygen measurements around the turn of the century to those collected during the autumn-winter period in 2020/21. New data show that hypoxic and near anoxic conditions in the lower part of the water column are frequent occurrences during the summer-autumn season in Big and Small Bay (pointing to an external upwelled source of low oxygen water); whilst in Small Bay, anthropogenic organic loading appears to exacerbate the situation with decreased dissolved oxygen measured at sites under mariculture farms compared to control sites.

Regular monitoring of microbiological indicators at 20 stations in the Bay (ten in Small Bay, five in Big Bay and five in Langebaan Lagoon) was initiated by the Saldanha Bay Water Quality Forum Trust (SBWQFT) in 1999 and has continued with the assistance of the West Coast District Municipality. These data indicate that chronic faecal coliform pollution was present in the early parts of the record but that conditions have improved considerably over time since then. Based on the 2021 *E. coli* data, 14 of the 20 sampled stations were categorized as having excellent water quality and only two stations had poor water quality. The Bok River beach site that frequently had poor water quality for most of the monitoring record has shown consistent improvement over the last 3 years, ranked "Fair" in 2018 and 2019, "good" in 2020 but is now ranked as having "poor" water quality again in 2021. Water quality at the Hoedjiesbaai site, however, has deteriorated and has been ranked as "Poor" for the last four years. Water quality at Pepper Bay deteriorated considerably in 2020 and was ranked as "poor" for the first time since 2006, however, water quality has improved and is ranked as "good" for 2021. Three sites within Langebaan lagoon were rated as "Fair" water quality (Paradise beach, Leentjiesklip and Kraalbaai South) in 2020, but has since improved and been rated as "excellent" in 2021.

It is encouraging that "Fair" to "Excellent" water quality is being maintained at the popular swimming and water sport sites close to Langebaan (i.e., Mykonos Beach and Langebaan Main Beach, and that there have been improvements in water quality at beaches along the northern shore of Small Bay that are also popular swimming sites. It appears that the reuse of the majority of treated wastewater from the Saldanha Wastewater Treatment Works (WWTW) for other uses (including industrial, construction and irrigation) that was historically discharged via the Bok River Mouth is having a positive effect. Infrastructure upgrades on the treatment plant that were completed recently also appear to have had the desired effect of improved effluent quality. The fact that water quality has improved at sites near the Bok River mouth but have deteriorated at Hoedjiesbaai suggests that the contamination may be from other sources (e.g., storm water, sewage leaks etc.). Similarly, the cause of the decline in water quality at the Pepper Bay-Big Quay site is not known, but potential sources should be investigated.

Guideline limits for mariculture are much more stringent than recreational guideline limits and levels of compliance for mariculture are much lower than for recreational use. At the start of the monitoring in 1999, nine out of the 10 sites in Small Bay (Sites 1 – 9) were non-compliant in respect of the 80th percentile mariculture guideline limits for faecal coliforms. There has been considerable improvement over time, particularly at sites near the entrance to Small Bay (the beach at the Mussel Rafts, the Small Craft Harbour and the Saldanha Bay Yacht Club) that have met standards every year since 2000. More recent improvement is seen at the small quay at Pepper Bay across the years 2017 - 2020 but faecal coliforms were above the limit for 2021. The big quay at Pepper Bay was again non-compliant in 2021 for the second consecutive year. In 2019, the General Cargo Quay didn't meet the mariculture standard for the first time in the 20-year sampling history, but was again compliant in 2020 and continues to be compliant in 2021. The remaining three sites within Small Bay, however, continue to exceed the mariculture guidelines (i.e., Hoedjiesbaai, the beach at Caravan park and the Bok River Mouth), although the counts of faecal coliforms for the beach at Caravan Park has declined and is closer to the guideline mariculture limit than in previous years. The areas of particular concern are Hoedjiesbaai and the Bok River Mouth that historically have exceeded the guideline by orders of magnitude. While some improvement has been seen, at both of these sites, over the last three years with year-on-year declines and CFU counts that are approaching the guideline, faecal coliform counts appear to have somewhat increased in 2021 and are well above the guideline value. Given the current importance and likely future growth of both the mariculture and tourism industries within Saldanha

Bay, it is imperative that whatever efforts have been taken in recent years to combat pollution by faecal coliforms in Small Bay (e.g., upgrading of sewage and storm water facilities to keep pace with development and population growth) should be increased and applied more widely. Continued monitoring of bacterial indicators (with the inclusion of intestinal *Enterococci* spp.), to assess the effectiveness of adopted measures, is also recommended and should be undertaken at all sites on a bimonthly basis.

Concentrations of trace metals in marine organisms (specifically mussels and oysters) in Saldanha Bay have historically been routinely monitored by the former Department of Agriculture, Forestry and Fisheries (DAFF) and by mariculture farm owners. DAFF discontinued their Mussel Watch Programme in Saldanha Bay in 2007, but this has now been incorporated into the annual State of the Bay surveys.

Concentrations of lead and cadmium have regularly exceeded the historical food safety limits in mussels and oysters collected from certain locations in Saldanha Bay since the start of the monitoring Samples collected during the 2021 survey indicate an improvement in lead concentrations when compared to those collected during earlier years, in addition to falling below the guideline limit. Lead concentrations in shellfish collected from the deeper water at the mariculture farms are overall lower than those recorded from shore-based samples, and in nearly all cases within the food safety guideline limits as stipulated for that year. The reasons for the lower concentrations of lead in farmed mussels compared with those on the shore may be linked with higher growth rates for the farmed mussels, and the fact that the cultured mussels are feeding on phytoplankton blooms in freshly upwelled water that has only recently been advected into the Bay from outside and is therefore relatively uncontaminated. Higher concentrations of cadmium were recorded in mussel samples collected from farms in Outer Bay North between 2018 and 2020 than those collected from farms in Small and Big Bay and from shore-based research samples. Although cadmium concentrations have mostly been within guideline limits for recently collected bivalve samples, the cadmium levels border on the acceptable limit and is a concern. Historically, arsenic concentrations in shellfish have mostly been below the guideline limit, apart from a few samples collected between 2012 and 2014. When considering the revised guideline limit, however, arsenic concentrations become problematic in that it regularly exceeded food safety guidelines, even in recent samples. Mercury concentration in both mussels and oysters have remained well below the food safety limits in almost all cases throughout the monitoring campaign. The research shows that concentrations of trace metals are elevated at sites along the north-eastern shore within Small Bay particularly for lead at the Portnet and Saldanha Bay-North sites, arsenic at the Iron Ore Jetty and Fish factory sites and cadmium at the farms in Outer Bay North.

The high concentrations of lead, arsenic and cadmium in in bivalves collected for research from the shore and the aquaculture farms throughout the Bay points to the need for management interventions to address this issue, as metal contamination poses a serious risk to the health of people consuming bivalves. It is vitally important that this monitoring continues in the future and that data are made available to the public for their own safety.

Sediment Quality

The distribution of mud, sand and gravel within Saldanha Bay is influenced by wave action, currents and mechanical disturbance (e.g., dredging). Under natural circumstances, the prevailing high wave energy and strong currents would have flushed most fine sediment and mud particles out of the Bay, leaving behind the heavier, coarser sand and gravel fractions. However, obstructions to current flow and wave energy can result in increased deposition of finer sediment (mud). Large-scale disturbances of sediments (e.g., dredging) also re-suspends fine particles that were historically buried beneath the sand and gravel and these later settle in areas where water movement is reduced. Contaminants (trace metals and toxic pollutants) associate with fine sediment (silt and mud) and can have a negative impact on the environment when they are re-suspended. Accumulation of organic matter in benthic sediments can also give rise to problems as it depletes oxygen both in the sediments and surrounding water column as it decomposes.

Prior to large scale development in the Bay, it was reported that the proportion of fine material (silt and mud) in the sediments of Saldanha Bay was very low. Reduced water circulation in the Bay and dredging activities have resulted in an overall increase in fine material in sediments in the Bay. The most significant increases have been observed following dredging events. Data collected as part of the State of the Bay surveys since 1999 has shown a progressive decline in the amount of fine sediment (mud) to levels similar to those last seen in 1974. Despite these overall encouraging trends, the sediment at several deeper or more sheltered sites within Small and Big Bay still have elevated mud fractions. Areas most significantly affected in this way are all located in the vicinity of the Iron Ore Terminal, the mussel rafts and the Yacht Club Basin. The mud fraction at some sites in Small Bay has been slightly elevated in the last two years (2020 and 2021) but most sites still remain low.

Levels of total organic carbon (TOC) and total organic nitrogen (TON) are also elevated in the more sheltered and deeper areas of the Bay, notably near the Yacht Club Basin and Iron Ore Terminal. Phytoplankton production is still considered to be the dominant natural source of organic matter in sediments in the Bay but has almost certainly been greatly augmented by anthropogenic inputs of TOC and TON associated with waste discharge from the fish factories, faecal waste from the mussel rafts, sewage effluent and storm water runoff. In the past, accumulation of organic waste, especially in sheltered areas where there is limited water flushing, has led to hypoxia (reduced oxygen) with negative impacts on benthic communities (e.g., the Saldanha Yacht Club and under the mussel rafts). Prior to any major development, TOC levels in Saldanha Bay were mostly very low (between 0.2 and 0.5%) throughout the Bay and Lagoon. Data collected in 1989 and 1999 indicated considerably elevated levels of TOC in the vicinity of the Iron Ore Terminal (particularly in the shipping channels) and in Small Bay. Data from subsequent surveys (2000, 2001, 2004) and those undertaken between 2008 and 2013 suggest that TOC levels have remained high throughout this period. Levels of TOC began to decline following this and have continued on a downward trajectory right through to the present day. This is a very encouraging sign and may be linked with a reduction in the volumes of partially treated domestic waste water (sewage) into the Bay over the same period.

Levels of TON were first recorded in 1999 and were low at most sites in the Bay (≤0.2%) except for those in the Yacht Club Basin and near the mussel rafts in Small Bay. Levels were slightly or even considerably elevated at all sites that were monitored again in 2000, 2001 and 2004. Results from the State of the Bay surveys conducted between 2008 and 2013 suggest that, similar to the TOC results,

levels remained high for a while but have since shown a declining trend extending right through to the present day. Again, this is seen as a positive development and may well be linked to reduction of wastewater discharged into Small Bay

In areas of the Bay where muddy sediments tend to accumulate, trace metals and other contaminants often exceed acceptable threshold levels. This is believed to be due either to naturally occurring high levels of the contaminants in the environment (e.g., in the case of cadmium) or due to impacts of human activities (e.g., lead, copper, manganese and nickel associated with ore exports). While trace metals are generally biologically inactive when buried in the sediment, they can become toxic to biota when re-suspended as a result of mechanical disturbance. On average, the concentrations of all metals were highest in Small Bay, lower in Big Bay and lowest (mostly below detection limits) in Langebaan Lagoon. Following a major dredging event in 1999, cadmium concentrations in certain areas in Small Bay exceeded internationally accepted safety levels, while concentrations of other trace metals (e.g., lead, copper and nickel) approached threshold levels. After this time, there have been numerous smaller spikes in trace metal levels, mostly as a result of dredging operations. For example, trace metals in the entrance to Langebaan Lagoon were significantly elevated in 2011 following dredging operations that were conducted as part of the expansion of the Naval Boat Yard in Salamander Bay. Currently, trace metal levels are mostly well within safety thresholds except for a few sites in Small Bay, where thresholds have been exceeded on a number of occasions between 2016 and 2021. In this year's survey, cadmium concentrations were noticeably high in Langebaan Lagoon of which one site even exceeded the environmental quality guideline. Key areas of concern regarding trace metal pollution within Small Bay include the Yacht Club Basin, where cadmium and copper have exceeded recommended thresholds for five years in a row and enrichment factors (EF) continue to be high, as well as adjacent to the Multi-Purpose Terminal where levels of cadmium and lead are below internationally accepted guidelines, but still remain highly enriched relative to historic levels. Recent increases in the concentration of manganese around the Iron Ore Terminal are also concerning. Regular monitoring of trace metal concentrations is therefore strongly recommended to provide an early warning of any future changes.

Poly-aromatic hydrocarbon (PAH) contamination measured in the sediments of Saldanha Bay since 1999 has always been well below internationally accepted risk levels and not considered an environmental risk. Total petroleum hydrocarbon (TPH) levels, however, have fluctuated considerably in the vicinity of the ore terminal in recent years. In 2014, TPH Levels were found to be exceptionally high at some sites indicating heavily polluted conditions. The most likely explanation for the high observed TPH contamination levels is that a pollution incident associated with shipping activities took place. Alternatively, a pollution incident or routine operational activities on the jetty itself could be the cause of this contamination. While TPH and PAH findings in 2021 remain unchanged from 2020 and as such present no major concern, it is recommended that TPH monitoring within the vicinity of the ore terminal is continued to identify the occurrence of pollution incidents.

Macrophytes (eelgrass and saltmarshes)

Three distinct intertidal habitats exist within Langebaan Lagoon: seagrass beds, such as those of the eelgrass *Zostera capensis* (a type of seagrass); salt marsh dominated by cordgrass *Spartina maritima* and *Sarcocornia perennis* and the dune slack rush *Juncus kraussi*; and unvegetated sandflats dominated by the sand prawn, *Kraussillichirus kraussi* and the mudprawn *Upogebia capensis*. The

other major vegetation type present in the upper lagoon area, particularly where groundwater inflow occurs, are reed beds dominated by common reed *Phragmites australis*. Eelgrass and salt marsh beds are extremely important as they increase habitat diversity in the lagoon, provide an important food source, increase sediment stability, provide protection to juvenile fish and invertebrates from predators and generally support higher species richness, diversity, abundance and biomass of invertebrate fauna compared to unvegetated areas. Eelgrass and salt marsh beds are also important for waterbirds which feed directly on the shoots and rhizomes, forage amongst the leaves or use them as roosting areas at high tide.

As part of the 2020 State of the Bay assessment, change in reed and sedge communities surrounding the head of Langebaan Lagoon was assessed using Landsat 5,7 and 8 and Sentinel-2 satellite imagery covering the period 1989 to 2020 and the open-source geospatial platform Google Earth Engine (GEE). Results of this analysis indicated that variation in reed cover over time was relatively modest and that this has remained more or less constant over the last 31 years (1989 - 2020). The biggest perturbations in reed cover correspond with the two largest droughts that have been experienced in the region in this period (a 1:20 year event that occurred in the period 2002 - 2003) and an even bigger drought that occurred recently (a 1:100 year event in the period 2015 - 2017).

The 2020 assessment made use of an unsupervised classification approach within areas of previously mapped 'reeds and sedges' (van der Linden 2014). This provided a useful, relatively rapid approach to understanding the potential change in area of common reed. This year, the aim was to expand on this, first by undertaking a supervised classification with the hope of refining the mapping of several areas representative of a dominant aquatic macrophyte class and second by isolating the different spectral signatures of different vegetation classes. To aid the classification process, ground-truthing was undertaken in June 2021. This involved manually logging points in areas comprising different vegetation, water or other land cover characteristics using a handheld global positioning system (GPS) device. The results of this *in-situ* survey were then loaded into geographical information systems (GIS) software and used as training points which were manually expanded to training polygons to classify areas on satellite imagery. This process refined the unsupervised methodology undertaken in 2020 by taking direct observation points to train supervised classification and was further applied to a non-validated first iteration supervised classification effort for seagrass beds and salt marsh

Benthic macrofauna

Soft-bottom benthic macrofauna (animals living in the sediment that are larger than 1 mm) are frequently used as a measure to detect changes in the health of the marine environment resulting from anthropogenic impacts. This is largely because these species are short lived and, consequently, their community composition responds rapidly to environmental changes. Monitoring of benthic macrofaunal communities over the period 1999 – 2021 has revealed a relatively stable community in most parts of the Bay and Lagoon except for 2008 when a dramatic shift in benthic community composition occurred at all sites. This shift involved a decrease in the abundance and biomass of filter feeders and an increase in shorter lived opportunistic detritivores. This was attributed to the extensive dredging that took place during 2007 – 2008. Filter feeding species are typically more sensitive to changes in water quality than detritivores or scavengers and account for much of the variation in overall abundance and biomass in the Bay.

Aside from this Bay-wide phenomenon, localised impact on and subsequent improvements in health have been detected in the Yacht Club Basin and at the monitoring sites adjacent to the Sea Harvest discharge pipe. At one point (2008) benthic fauna had been almost eliminated from the Yacht Club Basin in Small Bay, owing to very high levels of trace metals and organic contaminants at this site (TOC, Cu, Cd and Ni). A similar scenario was evident in 2017 (high organic loading from discharge of fish waste) at Sea Harvest nearby. Benthic macrofauna communities in this area have, however, recovered steadily year-on-year since this time and are now almost on a par with other sites in Small Bay. Other notable changes in the health of benthic communities include the return of the suspension feeding sea-pen *Virgularia schultzei* to Big Bay and Langebaan Lagoon since 2004, as well as an increase in the percentage biomass of large, long-lived species such as the tongue worm *Listriolobus capensis*, previously *Ochetostoma capense*, and several gastropods. Certain areas of Small Bay that experience reduced water circulation patterns in (e.g., base of the Iron Ore Terminal, near the Small Craft Harbour and near mussel rafts) which results in the accumulation of fine sediment, organic material and trace metals (aggravated by anthropogenic inputs) still have impoverished macrofauna communities.

The presence of low-lying reef was noted during the baseline surveys and deployment of monitoring instruments in the Saldanha Bay sea-based Aquaculture Development Zone finfish area. The potential impacts of aquaculture on this habitat type and its associated epifaunal communities has not previously been assessed in the Bay. The reef has been described as low-profile reef, roughly < 1 m in height from the sea floor, that is subject to periodic, natural sand inundation. Substantial outcrops > 1 m in height are present in places and may form habitat for a well-established epifaunal community. Given this information, the 2021 monitoring survey included the collection of video footage of the reef at sampling sites where hard substrate was encountered. Footage was collected at two sites in Big Bay where reef was encountered, and this was used to provide a qualitative description of the epifaunal species present at each site. A total of 21 species were recorded with common species including: the West Coast rock lobster Jasus lalandii, red starfish Callopatiria granifera and reticulated starfish Henricia ornata, cape urchins Parechinus angulosus, and beds of the common feather star Comanthus wahlbergii. Given the identification of reef in the Big Bay precinct it was recommended that further studies be conducted to provide a quantitative assessment of the epifaunal reef communities present. In addition, the extent of the reef in Big Bay is yet to be determined and a detailed bathymetry survey will be required for this purpose.

Rocky intertidal communities

As a component of the ongoing State of the Bay evaluation, monitoring of rocky intertidal communities in Saldanha Bay was initiated in 2005. Eight rocky shore sites spanning a wave exposure gradient from very sheltered to exposed, are sampled in Small Bay, Big Bay and Outer Bay each year. These surveys have been repeated annually from 2008 to 2021, however, due to financial constraints, no survey was conducted in 2016. In the 2021 survey, a total of 114 species were recorded from the eight study sites, most of which had been found in previous surveys. The faunal component was represented by 20 species of filter feeders, 23 species of grazers, and 24 species of predators/ scavengers. The algal component comprised 33 corticated (foliose) seaweeds, seven ephemerals, five species of encrusting algae and two species of kelp. These species are common along much of the South African west coast, and many have been recorded by other studies conducted in the Saldanha Bay area. Rocky shore species found included four alien invasive species, the Mediterranean mussel *Mytilus galloprovincialis*,

three introduced barnacle species *Balanus glandula*, *Perforatus perforatus* and *Amphibalanus amphitrite*, and the newly recorded porcelain crab species *Porcellana africana*.

The most important factor responsible for community differences among sites remains exposure to wave action and to a lesser extent shoreline topography. Within a site, the vertical emersion gradient of increasing exposure to air leads to a clear zonation of flora and fauna from low-shore to high-shore. Species composition and abundance has remained similar between years and any differences that are evident are deemed natural seasonal and inter-annual phenomena, rather than anthropogenically-driven changes. Exceptions are the alien species introduced by hull fouling, ballast water or mariculture.

Fish

The fish community health in Small Bay in 2021 is considered to be in a moderately poor state compared to historical levels. Fish communities in Big Bay and Langebaan Lagoon, by contrast, appear to be in a relatively good state of health, with the 2021 survey indicating a relatively high diversity and abundance of and the fish communities in these areas. The abundance of some common species (white stump, gobies and black tail) remain low relative to earlier surveys throughout the Bay, whilst some other species like pipefish and gurnards have been completely absent from Small Bay in recent surveys.

This finding is consistent with most of the seine net survey history, where fish abundance at sites within or near the Langebaan MPA appeared to be stable within the observed inter-annual variability. This reflects natural and human induced impacts on the adult population size, recruitment success and use of the near-shore habitat by fish species; but may also be a result of the benefits of protection from exploitation and reduced disturbance at some sites due to the presence of the Langebaan MPA. Certainly, the studies by Kerwath *et al.* (2009), Hedger *et al.* (2010) and da Silva *et al.* (2013) demonstrated the benefits of the MPA for white stumpnose, elf and smooth hound sharks; and the protection of harders from net fishing in the MPA undoubtedly benefits this stock in the larger Bay area. The pressure to reduce this protection by allowing access to Zone B for commercial gill net permit holders should be resisted. This not only poses a threat to the productivity of the harder stock but also to other fish species that will be caught as bycatch. Harder recruitment to nearshore nursery areas appears to have not changed significantly over the monitoring period since 1994. A recent stock assessment, however, does indicate that the Saldanha-Langebaan harder stock is overexploited and effort reductions and commercial net gear restrictions are recommended to rebuild the stock (Horton *et al.* 2019).

The last five seine net surveys have recently revealed some concerning declines in elf recruitment to surf zone nurseries, and it is recommended that this should also be carefully monitored in the future. Interpretation of the recruitment signal of exploited fish species would be greatly enhanced if there was ongoing monitoring of recreational catch and effort in the system. Only commercial linefishers are required to submit catch returns and as most of the white stumpnose and elf fishing effort is recreational, there is a substantial gap with respect to catch-per-unit-effort data for this sector. Such data would provide another direct line of evidence as to the status of exploited fish stocks in the Saldanha Bay-Langebaan lagoon system.

The significant declines in juvenile white stumpnose abundance that occurred throughout the system over the period 2007 – 2020 suggested that the protection afforded by the Langebaan MPA was not enough to sustain the fishery at the historical high effort levels. Arendse (2011) found the adult stock to be overexploited using data collected during 2006 – 2008 already, and the evidence from the seine net surveys conducted since then certainly suggested that recruitment overfishing has occurred. The annual seine net surveys did act as an early warning system that detected poor recruitment and should have allowed for timeous adjustments in fishing regulations to reduce fishing mortality on weak cohorts and preserve sufficient spawner biomass. Unfortunately, despite repeatedly expressing concern about the collapse of white stump recruitment in State of the Bay Reports since at least 2013 and supporting the implementation of the harvest control measures recommended by Arendse (2011); namely a reduction in bag limit from 10 to 5 fish per person per day and an increase in size limit from 25 cm TL to 30 cm TL, the warning calls were not heeded. A statistically comprehensive analysis of fishery dependent and survey data confirmed the collapse of the Saldanha -Langebaan white stump stock and the fishery yield in recent years is a fraction of its historical peak or potential (Parker et al. 2017). The 2021 seine net survey has revealed an encouraging increase in juvenile white stumpnose in Big Bay and Langebaan Lagoon, with estimated overall abundance similar to levels last seen during the 2008 - 2011 period. It is likely that the protection of spawner biomass in the Langebaan MPA and the high fecundity of female white stumpnose, in conjunction with the reduced targeting of the species has allowed for some recovery of the stock. Ongoing monitoring will reveal if this apparent recovery in white stumpnose recruitment is sustained, but at this stage, to facilitate recovery it remains prudent to lobby for increased harvest control measures for this important fishery.

Extending the seine net monitoring record will facilitate analysis of the relationship between recruitment to the near shore nursery habitat and future catches in the commercial and recreational fisheries in the Bay. As fishing effort continues to increase, fishing mortality will need to be contained, if the fisheries are to remain sustainable. Although recruitment overfishing appears to have been taking place for several years now, the white stumpnose stock is not extirpated, and the situation is reversible. Reductions in fishing mortality can be achieved by effective implementation of more conservative catch limits and have an excellent chance of improving the stock status, catch rates and the size of white stumpnose in the future fishery. Indeed, there is circumstantial evidence that a reduction in fishing mortality occurred in response to poor catch rates and this possibly resulted in improved white stumpnose recruitment as observed in the 2021 seine net survey. We also support the recommendation of Horton *et al.* (2019) for a reduction in harder fishing effort and gear changes (increase in minimum mesh size) to facilitate stock recovery. Short term reductions in fishing mortality will have an economic cost but will yield substantially greater socio-economic benefits for fishers in the medium to longer term as the sustainable catch from an optimally exploited fish stock greatly exceeds that from a collapsed stock.

The economic value of the recreational fishery in Saldanha-Langebaan should not be regarded as regionally insignificant as a lot of the expenditure associated with recreational angling is taking place within Langebaan and Saldanha itself. Furthermore, the historically popular white stumpnose fishery used to be a major draw card to the area and has probably contributed significantly to the growth in the residential property market the region has experienced. These benefits should be quantified by an economic study of the recreational fisheries. The value of Small Bay as a fish nursery and the economic value of the resultant fisheries could then be quantitatively considered when the environmental impacts of the proposed future industrial developments within Small Bay are assessed.

The monitoring record from the annual seine net surveys will prove increasingly valuable in assessing and mitigating the impacts of future developments on the region's ichthyofauna.

Birds and seals

Together with the five islands within the Bay and Vondeling Island slightly to the South, Saldanha Bay and Langebaan Lagoon provide extensive and varied habitat for waterbirds and seals. This includes sheltered deep-water marine habitats associated with Saldanha Bay itself, sheltered beaches in the Bay, islands that serve as breeding refuges for seabirds and seals, rocky shoreline surrounding the islands and at the mouth of the Bay, and the extensive intertidal salt marshes, mud- and sandflats of the sheltered Langebaan Lagoon.

Saldanha Bay, and particularly Langebaan Lagoon, are of tremendous importance in terms of the diversity and abundance of waterbird populations species they support. At least 56 non-passerine waterbird species commonly use the area for feeding or breeding, and eleven species breed on the islands of Malgas, Marcus, Jutten, Schaapen and Vondeling alone. These islands support nationally important populations of African Penguin, Cape Gannet, Swift Tern, Kelp and Hartlaub's Gull, four species of marine cormorant, and important populations of the endemic African Oystercatcher. The lagoon is an important area for migratory waders and terns, as well as for numerous resident waterbird species. Waterbirds are counted annually on all the islands (DEA: Oceans and Coasts), and bi-annually in Langebaan Lagoon (Avian Demography Unit of the University of Cape Town).

Except for bank cormorants, the populations of the seabirds breeding on the islands of Saldanha Bay were on an increasing trajectory from the start of monitoring in the 1980s and 90s until around 2000. Factors that probably contributed to this include the reduction and eventual cessation of guano collecting in 1991, banning of egg collecting, increases in the biomass of small pelagic fish (particularly sardines) over this period, and in the case of the African Oystercatcher, the increase in mussel biomass as a result of the spread of the Mediterranean mussel.

On the islands of Saldanha Bay, populations of all these species then started to decline, particularly the penguins, gannets, crowned cormorants and kelp gulls, which dropped to 0.14%, 40% (in 2019), 23% and 20%, of their populations at the turn of the century, respectively. Declines in the numbers of seabirds breeding on the Saldanha Bay Islands can be attributed to several causes. These include (1) emigration of birds to colonies further south and east along the South African coast in response to changes in the distribution and biomass of small pelagic fish stocks, (2) starvation as a result of a decline in the biomass of sardines nationally, and particularly along the west coast over the last decade, (3) competition for food with the small pelagic fisheries within the foraging range of affected bird species, (4) predation of eggs, young and fledglings by Great White Pelicans, Kelp Gulls and Cape Fur Seals, and (5) collapse of the West Coast Rock Lobster stock upon which Bank Cormorants feed.

However, because populations are so depressed, conditions at the islands in Saldanha, particularly predation by Cape Fur Seals, Pelicans and Kelp Gulls, have now become the major factors in driving current population decreases for many seabird species. Direct amelioration actions to decrease these impacts at the islands (*Pelican Watch*, problem seal culling) have had mixed results, with the former proving more effective than the latter. Cape Fur Seal and Kelp Gull predation continue to pose a major threat to seabird survival at the Saldanha Bay Island colonies.

Decreasing numbers of migrant waders utilising Langebaan Lagoon reflects a global trend, which can be attributed to loss of breeding habitat and hunting along their migration routes as well as human disturbance and habitat loss on their wintering grounds. The fact that numbers of resident waders have also declined, however, suggests that unfavourable conditions persisting in Langebaan Lagoon as a result of anthropogenic disturbance may be partly to blame. Resident wader numbers in the winter of 2019 dropped to the lowest recorded in the 40-year count record, a continuation of the declining trend over the last decade. In Langebaan Lagoon, drastic population declines in four species of migratory waders, including the Ruddy Turnstone, Red Knot, Grey Plover and Curlew Sandpiper have signified this downward trend in summer migratory bird numbers. Most importantly, Curlew Sandpiper numbers had dropped from a pre-1990 average of just over 20 000 birds to just 700 birds in 2020. For the first time in a decade, however, Curlew Sandpiper numbers increased to over 6 000 in 2021, and although this still equates to only ~40% of the pre-1990 average summer count, it represents a considerable increase from counts undertaken during the preceding decade. Similar magnitude increases in the numbers of Ruddy Turnstones and Grey Plovers were recorded in 2021. Migratory wader counts in summer appeared to stabilize at around 3 000 – 5 000 birds over the period 2015 – 2020 and recovered significantly to about 13 000 birds in 2021. Ongoing seasonal counts will ascertain if this recovery is sustained or if it was only a once-off anomaly associated with the extraordinary global COVID-19 pandemic. It is highly recommended that the status of coastal and wading bird species continues to be monitored and that these data are used to inform and assesses the efficacy of management interventions aimed at halting the observed declines and supporting recovery of the region's birds.

Cape Fur Seals are amongst the largest marine top predators found in and around Saldanha Bay. They are opportunistic, generalist feeders that have been shown to benefit from human activities including utilisation of discards from fishing boats or taking fish directly from fisherman. In addition, seals compete with seabirds, such as penguins and gannets, as well as with commercial fisheries, for small pelagic fish which form a key part of their diets. It has been suggested that the increasing numbers of seals on Vondeling island may lead to increased pressure to cull seals both from a fisheries perspective as well as to protect important seabird species on which seals are known to prey. Concerns have also been raised that, with the increased number of seals along the shores surrounding Saldanha Bay and with the addition of finfish aquaculture in the Bay, seal numbers within the Bay will likely increase, along with the occurrence of problem seals. Although seals are likely attracted to the aquaculture infrastructure within Saldanha Bay that provides floating resting sites, it is unlikely that their numbers will continue to increase significantly as they are restricted to sub-adult males. Additionally, the carrying capacity of Vondeling Island appears to have been reached and the overall population within Southern Africa has remained stable over the last 30 years

Alien and invasive species

Human induced biological invasions have become a major cause for concern worldwide. The life history characteristics of the alien species, the ecological resilience of the affected area, the presence of suitable predators, biotic resistance and propagule pressure are a few of the many factors that can determine whether an alien species becomes a successful invader. Biological invasions can negatively impact biodiversity and can result in local or even global extinctions of indigenous species. Furthermore, alien species invasions can have tangible and quantifiable socio-economic impacts. Most of the introduced species in this country have been found in sheltered areas such as harbours

and are believed to have been introduced through shipping activities, mostly ballast water and hull fouling. As ballast water tends to be loaded in sheltered harbours, the species that are transported originate from these habitats and have a difficult time adapting to South Africa's exposed coast.

A recent paper by Robinson *et al.* (2020) reviewing marine invasion in South Africa, reports 95 species as being alien to South Africa, of which 56 are considered invasive, i.e., populations are expanding and are consequently displacing indigenous species. With the recent addition of five new alien species — the barnacle *P. perforatus*, the Japanese skeleton shrimp *Caprella mutica*, the North West African porcelain crab *P. africana*, the Chilean stone crab *Homalaspis plana* and the South American sunstar *Heliaster helianthus* — 29 alien species are confirmed to be present in Saldanha Bay and/or Langebaan Lagoon. All of these, except *H. helianthus*, *H. plana*, *P. perforatus* and the previously reported anemone *Sagartia ornata*, are considered invasive. It should be noted that *P. africana* was previously misidentified as the European porcelain crab, *P. platycheles*.

Other noteworthy invasive alien species that are present in Saldanha Bay include the Mediterranean mussel *M. galloprovincialis*, the barnacle *B. glandula*, the Pacific mussel *Semimytilus algosus* and the Western pea crab *Rathbunixa occidentalis*. The abundance of *M. galloprovincialis* on rocky shores in Saldanha Bay has been decreasing over the last few years, even to such an extent that no mussels were detected at certain sites. The reason behind this decline is, however, still not clear although numerous factors might be at play. No trend in the abundance of *B. glandula* over time is evident, although this species has shown a decrease in percentage cover at almost all sites in recent years. No conclusive trend in the spread and site preference of the Western pea crab *R. occidentalis* could be established, although it does seem to flourish in deeper water habitats and occurs at lower densities close to the iron ore and multi-purpose terminals. Despite abundance and dominance of the alien crab fluctuating quite substantially at certain sites in Big and Small Bay over time, evidence from the 2021 survey suggests that *R. occidentalis* is well established in the Bay. The pea crab has also expanded its distribution to Langebaan Lagoon, although it is restricted to only one site. The status of this crab within Danger Bay is currently not confirmed and more sampling efforts are needed.

The discovery of five new alien species over the past six years raises concern and highlights the need for management action. This is further exacerbated by the fact that alien species are considered to represent one of the greatest threats to rocky shore communities in Saldanha Bay, owing to their potential to become invasive, thereby displacing naturally occurring indigenous species. An additional 19 species are currently regarded as cryptogenic in Saldanha Bay and/or Langebaan Lagoon and comprehensive genetic analyses are urgently required to determine the definite status of these cryptogenic species.

Management actions should firstly be focused on invasive species already present in Saldanha Bay by assigning a rating to each species based on their impacts. Secondly, efforts should be focused on preventing further invasions. Watchlists have been identified as a useful preventative measure and are created based on selecting species with an invasion history, pathways to the area of concern, occurring in similar climatic regions or those with biological traits that could predispose them to becoming successful invaders. Another vital aspect includes identifying and managing important pathways of introduction. This should be done in combination with port control to monitor vessels entering harbours, treatment of hull fouling and ballast water before port entry and the regular monitoring of harbours. All these efforts require in-depth research. Such research will not only

contribute towards our understanding of the drivers and traits governing successful invasions, but also give insight into associated impacts. This, in turn, could be used to support directed management actions for successfully controlling invasions and mitigating impacts. However, the knowledge gained from research needs to be shared with stakeholders and policy makers to implement appropriate management strategies and inform action.

Summary

In summary, developments in Saldanha Bay and Langebaan Lagoon during the past thirty years have inevitably impacted on the environment. Most parameters investigated in this study suggest a considerable degree of negative impact having occurred over the last few decades. Long-term decreases in populations of fish (e.g., white stumpnose) and many bird species in Saldanha Bay and Langebaan Lagoon are of particular concern. These most likely reflect long-term changes in exploitation levels (fish) and habitat quality (sediment and water quality and increasing levels of disturbance) and in important forage species (e.g., benthic macrofauna). Recent improvements in some of these underlying indicators (e.g., sediment quality and macrofauna abundance and composition) are very encouraging, though, and will hopefully translate into improvements in the higher order taxa as well. There remains considerable work to be done in maintaining and restoring the health of the Bay, especially in respect of the large volumes of effluent that are discharged to the Bay, very little of which is compliant with the existing effluent quality standards. Reclaiming industrygrade or even potable water from effluent will play an important role in improving water quality in Saldanha Bay. A holistic approach in monitoring and assessing the overall health status of the Bay is essential, and regular (in some cases increased) monitoring of all parameters reported on here is strongly recommended, particularly in the face of increased development in the Bay.

TABLE OF CONTENTS

FOF	REWORD		I
EXE	CUTIVE S	SUMMARY	III
TAE	BLE OF CO	ONTENTS	XXI
GLC	OSSARY		xxvII
LIST	r of abb	REVIATIONS	xxxı
1	INTRO	DUCTION	1
1	L.1 B.	ACKGROUND	1
1	L.2 S	TRUCTURE OF THIS REPORT	3
1	L.3 W	/hat's new in the 2021 edition of the State of Saldanha Bay and Langebaan Lagoon report \dots	5
2	BACKG	ROUND TO ENVIRONMENTAL MONITORING AND WATER QUALITY MANAGEMENT	8
2	2.1 IN	ITRODUCTION	8
2	2.2 N	1ECHANISMS FOR MONITORING CONTAMINANTS AND THEIR EFFECTS ON THE ENVIRONMENT	9
2	2.3 IN	IDICATORS OF ENVIRONMENTAL HEALTH AND STATUS IN SALDANHA BAY AND LANGEBAAN LAGOON	11
3	ACTIVI	TIES AND DISCHARGES AFFECTING THE HEALTH OF THE BAY	15
3	3.1 IN	ITRODUCTION	15
3	3.2 U	RBAN AND INDUSTRIAL DEVELOPMENT	18
	3.2.1	Frontier Power SA Gas to Power	27
	3.2.2	Karpowership	
	3.2.3	The Saldanha Bay Industrial Development Zone	28
	3.2.4	The Sishen-Saldanha oreline expansion project	29
	3.2.5	Development of liquid petroleum gas facilities in Saldanha Bay	29
	3.2.6	Liquefied Natural Gas Import Facilities	30
	3.2.7	Gas fired independent power plant	31
	3.2.8	Crude oil storage facility	31
	3.2.9	Elandsfontein phosphate mine	31
	3.2.10	Zandheuvel phosphate mine	32
	3.2.11	Manganese storage expansion	33
	3.2.12	TNPA projects under auspices of Operation Phakisa	34
	3.2.1	2.1 Vessel Repair Facility (VRF) at Berth 205	34
	3.2.1	2.2 Mossgas Jetty	35
	3.2.1	0 / 1 //	
	3.2.1	2.4 Marine Environmental Impact Assessment	35
3	3.3 Ex	XPORT OF METAL ORES FROM THE PORT OF SALDANHA	38
	3.3.1	Air quality management in Saldanha Bay	40
3		REDGING AND PORT EXPANSION	_
3	3.5 SI	HIPPING, BALLAST WATER DISCHARGES, AND OIL SPILLS	44
	3.5.1	Shipping and ballast water	44
	3.5.2	Oil spills	50
	3.5.3	Noise	51
3	3.6 E	FFLUENT DISCHARGES INTO THE BAY	52
	3.6.1	Legislative context for pollution control in South Africa	53
	3.6.2	Reverse osmosis plants	57
	3.6.2	.1 Transnet NPA Desalination Plant	57

	2	c 2 2	Mark Coast District Manufactuality Description District	F0
	_	6.2.2	West Coast District Municipality Desalination Plant	
		6.2.3	ArcelorMittal RO plant	
	3.6.3		vage and associated wastewaters	
	_	6.3.1	Environmental impacts	
	_	6.3.2	Management of treated effluent in Saldanha Bay and Langebaan	
	_	6.3.3	Saldanha Wastewater Treatment Works	
	_	6.3.4	Langebaan Wastewater Treatment Works	
	_	6.3.5	Summary	
	3.6.4		rm water	
	_	6.4.1	Stormwater management in Saldanha	
	_	6.4.2	Stormwater management in Langebaan	
	3.6.5		n processing plants	
	_	6.5.1	Sea Harvest Fish Processing Plant	
		6.5.2	Re-commissioning of the Premier Fishing fish processing plant	
	3.7		IES	
	3.8		E AQUACULTURE	
	3.8.1	. Sal	danha Bay Aquaculture Development Zone	106
	3.	8.1.1	2021 Benthic invertebrate monitoring	
	3.	8.1.2	2021 Annual benthic chemical survey	
	3.8.2	? Aqı	uaculture sub-sectors	
	3.	8.2.1	Shellfish marine aquaculture	
	3.	8.2.2	Finfish cage farming	116
4	MAN	IAGEM	ENT AND POLICY DEVELOPMENT	119
	4.1		AL MANAGEMENT PROGRAMME	
	4.2	STRATE	GIC ENVIRONMENTAL ASSESSMENTS FOR THE GREATER SALDANHA BAY AREA	121
	4.3	ENVIRO	NMENTAL MANAGEMENT FRAMEWORK	121
	4.4	GENER	IC ENVIRONMENTAL MANAGEMENT PROGRAMME	123
	4.5	SPECIA	L MANAGEMENT AREA	123
5	CPO		ATER	124
Э	GKO	ONDW	ATEK	124
	5.1	INTROD	DUCTION	124
	5.2	REGION	NAL HYDROGEOLOGY	124
	5.3	GROUN	IDWATER, AQUIFERS AND WELLFIELDS	127
	5.3.1		gebaan Road Aquifer (LRA) System	
	5.3.2		ndsfontein Aquifer System (EAS)	
	5.3.3		pefield wellfield	
	5.4	•	IDWATER FLOW	
	5.5		ED GROUNDWATER USE AND STATUS	
			NAL DATABASE STATUS	
	5.6			
	5.7	SUMM	ARY	145
6	WAT	ER QU	ALITY	147
	<i>c</i>	1		
	6.1		DUCTION	
	6.2		ATION AND CURRENT PATTERNS	
	6.3	WAVE	ACTION	152
	6.4	WATER	R TEMPERATURE	153
	6.5	SALINIT	Υ	162
	6.5.1	. Sal	danha Bay	162
	6.5.2	? Lan	gebaan Lagoongebaan Lagoon	164
	6.6	Dissol	VED OXYGEN	169

	6.7	TURBID	тү	177
	6.8	Вкоми	DE	179
	6.9	Microi	BIAL INDICATORS	180
	6.9.1		ter quality guidelines	
	6.9	9.1.1	Recreational Use	
	6.9	9.1.2	Mariculture Use	182
	6.9.2	? Mic	robial monitoring in Saldanha Bay and Langebaan Lagoon	182
	6.9	9.2.1	Water quality for recreational use	183
	6.9	9.2.2	Water quality for mariculture	187
	6.10	HEAVY	METAL CONTAMINANTS IN THE WATER COLUMN	192
	6.10.	.1 /	Mussel Watch Programme	193
	6.10.	.2 1	Mariculture bivalve monitoring	207
	6.	10.2.1	Trace metals in mussels farmed in Saldanha Bay	207
	6.	10.2.2	Trace metals in oysters farmed in Saldanha Bay	211
	6.11	SUMMA	ry of water quality in Saldanha Bay and Langebaan Lagoon	213
7	SEDI	MFNTS		215
•				
	7.1		OUND	
	7.2		NT PARTICLE SIZE COMPOSITION	
	7.3		DRGANIC CARBON (TOC) AND NITROGEN (TON)	
	7.4		METALS	
	7.4.1	-	tial variation in trace metals levels in Saldanha Bay	
		4.1.1	Cadmium	
		4.1.2	Copper	
7.4.1.3		_	Nickel	
		4.1.4 4.1.5	Lead	
	7.4.2	_	nporal variation in trace metal levels in Saldanha Bay	
		4.2.1	Cadmium	
		4.2.1 4.2.2	Copper	
		4.2.3	Nickel	
	7.4	4.2.4	Lead	
	7.	4.2.5	Manganese	246
	7.	4.2.6	Iron	246
	7.5	HYDRO	CARBONS	254
8	٨٥١١	ATIC M	ACROPHYTES IN LANGEBAAN LAGOON	257
0	AQU	ATTC IV	ACROPTITIES IN EARGEDARK EAGOON	237
	8.1	Сомм	JNITY COMPOSITION AND DISTRIBUTION	257
	8.2		ERM CHANGES IN AQUATIC MACROPHYTES IN LANGEBAAN LAGOON	
	8.2.1	. Ree	d and sedge communities	259
	8.2.2	? Sea	grass	261
	8.2.3	S Salt	marshes	263
	8.3	MAPPI	IG RECENT CHANGES IN AQUATIC MACROPHYTE DISTRIBUTION USING REMOTELY SENSED DATA	A AND SATELLITE
	IMAGERY	: Appro	ACH FOR 2020 – 2021	265
9	RFN ⁻	тніс м	ACROFAUNA	277
,				
	9.1		OUND	
	9.2		IC DATA ON BENTHIC MACROFAUNA COMMUNITIES IN SALDANHA BAY	
	9.3		ACH AND METHODS USED IN MONITORING BENTHIC MACROFAUNA IN 2021	
	9.3.1		ppling	
	9.3.2		istical analysis	
	9.3	3.2.1	Community structure and composition	280

9.3.2.2 Diversity indices	281
9.4 BENTHIC MACROFAUNA 2021 SURVEY RESULTS	281
9.4.1 Species diversity	281
9.4.2 Community structure	282
9.5 CHANGES IN ABUNDANCE, BIOMASS AND COMMUNITY STRUCTURE OVER TIME	290
9.5.1 Species richness	
9.6 ABUNDANCE, BIOMASS AND COMMUNITY COMPOSITION	
9.7 COMMUNITY STRUCTURE	
9.7.1 Small Bay	
9.7.2 Big Bay	
9.7.3 Langebaan Lagoon	
5	
9.7.4 Sea Harvest Sites	
9.8 ELANDSFONTEIN 2021 SURVEY RESULTS	
9.9 SUMMARY OF BENTHIC MACROFAUNA FINDINGS	304
10 ROCKY INTERTIDAL COMMUNITIES	307
10.1 BACKGROUND	307
10.2 Approach and methodology	308
10.2.1 Study sites	308
10.2.2 Methods	308
10.2.3 Data analysis	311
10.3 RESULTS AND DISCUSSION	312
10.3.1 Spatial variation in community composition	312
10.3.1.1 High-shore	
10.3.1.2 Mid-shore	314
10.3.1.3 Low-shore	315
10.3.1.4 Spatial analysis of diversity indices	317
10.3.2 Temporal analysis	318
10.3.2.1 Temporal analysis of diversity indices	318
10.3.2.2 Temporal trends in rocky shore community patterns	318
10.3.2.3 Species responsible for temporal trends	322
10.3.2.4 Temporal variations in abundance of functional groups	323
10.3.3 Summary of findings	329
11 FISH COMMUNITY COMPOSITION AND ABUNDANCE	330
TISH COMMONITY COMPOSITION AND ADDINGANCE	
11.1 Introduction	330
11.2 METHODS	334
11.2.1 Field sampling	334
11.2.2 Data analysis	334
11.3 Results	336
11.3.1 Description of inter annual trends in fish species diversity	336
11.3.2 Description of inter-annual trends in fish abundance in Small Bo	
lagoon 338	y, big bay and langebaan
11.3.3 Temporal trends in key fishery species	240
11.4 CONCLUSION	344
12 BIRDS AND SEALS	347
42.4	
12.1 Introduction	
12.2 BIRDS OF SALDANHA BAY AND THE ISLANDS	
12.2.1 National importance of Saldanha Bay and the islands for birds .	
12.2.2 Ecology and status of the principle bird species	349

	12.3	BIRDS OF LANGEBAAN LAGOON	367
	12.3	1.1 National importance of Langebaan Lagoon for waterbirds	367
	12.3	The main groups of birds and their use of habitats and food	368
	12.3	3.3 Inter-annual variability in bird numbers	371
	12.4	OVERALL STATUS OF BIRDS IN SALDANHA BAY AND LANGEBAAN LAGOON	376
	12.5	SEALS	377
	12.5	.1 Cape Fur Seals	377
13	ALIE	N AND INVASIVE SPECIES IN SALDANHA BAY AND LANGEBAAN LAGOON	382
	13.1	Background information	382
	13.1.	.1 General information and definitions	382
	13.1.	.2 Marine alien species in South Africa	382
	13.1	.3 Marine alien and invasive species in Saldanha Bay	383
	13.1.	.4 Potential vectors of introduction to South Africa	384
	13.1.	.5 Patterns related to invasion success of alien species	385
	13.2	STUDY APPROACH TO MONITOR ALIEN SPECIES WITHIN SALDANHA BAY	385
	13.3	ALIEN AND INVASIVE SPECIES CONFIRMED IN SALDANHA BAY AND/ OR LANGEBAAN LAGOON	
	13.3	3.1 Shell worm Boccardia proboscidea	388
	13.3	2.2 Acorn barnacle Balanus glandula	389
	13.3	3.3 Hitchhiker amphipod Jassa slatteryi	391
	13.3		
	13.3	2.5 Western pea crab Rathbunixa occidentalis	392
	13.3	- · · · · · · · · · · · · · · · · · · ·	
	13.3	, ,	
	13.3	,	
	13.3	, , , , , , , , , , , , , , , , , , , ,	
	13.3	The second secon	
	13.3		
	13.3	- ,	
	13.3		
	13.3		
	13.3.	P P	
	13.3		
	13.3		
	13.3	, ,	
	13.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	13.3	,	
	13.3		
	13.3	2 · P · P · · · · · · · · · · · · · · ·	
	13.3		
	13.3		
	13.3	,	
	13.3	, , , , ,	
	13.3	, , , ,	
	13.3	3	
	13.3	, , , , ,	
	13.3.	3 , 3 , 3 ,	
14	MAN	NAGEMENT AND MONITORING RECOMMENDATIONS	
	14.1	THE MANAGEMENT OF ACTIVITIES AND DISCHARGES AFFECTING THE HEALTH OF THE BAY	413

14.1	.1 Human settlements, water and wastewater	414
14.1	.2 Dredging	414
14.1	.3 Fish factories	415
14.1	.4 Marine Aquaculture	415
14.1	.5 Shipping, ballast water discharges and oil spills	416
14.1	.6 Recommendations	417
14.2	GROUNDWATER	417
14.3	WATER QUALITY	419
14.4	SEDIMENTS	422
14.5	MACROPHYTES	422
14.6	BENTHIC MACROFAUNA	423
14.7	ROCKY INTERTIDAL	424
14.8	FISH	425
14.9	BIRDS AND SEALS	426
14.10	ALIEN INVASIVE SPECIES	427
14.11	SUMMARY OF ENVIRONMENTAL MONITORING RESULTS	431
15 REFI	ERENCES	435
16 APP	ENDIX 1	475
		488

GLOSSARY

Alien species Species whose presence in a region is attributable to human actions

that enabled them to overcome fundamental biogeographical barriers (i.e., human-mediated extra-range dispersal) (synonyms:

Introduced, non-indigenous, non-native, exotic).

Articulated coralline algae Branching, tree-like plants which are attached to the substratum by

crustose or calcified, root-like holdfasts.

Aquaculture The sea-based or land-based rearing of aquatic animals or the

cultivation of aquatic plants for food

Aquifer Underground layer of water-bearing permeable rock, rock fractures

or unconsolidated materials (gravel, sand, or silt) from which

groundwater can be extracted using a water well.

Biodiversity The variability among living organisms from all terrestrial, marine,

and other aquatic ecosystems, and the ecological complexes of which they are part: this includes diversity within species, between

species and of ecosystems.

Biota All the plant and animal life of a particular region.

Black tides This is caused when large plankton blooms decay and deplete all the

oxygen. Anaerobic bacteria (not requiring oxygen) subsequently continue the decay process, causing the characteristic sulphurous

smell and causing mortalities.

Colony-forming unit A colony-forming unit (CFU) is a unit used to estimate the number of

viable bacteria or fungal cells in a sample.

Community structure Taxonomic and quantitative attributes of a community of plants and

animals inhabiting a particular habitat, including species richness and

relative abundance structurally and functionally.

Coralline algae Coralline algae are red algae in the Family Corallinaceae of the order

Corallinales characterized by a thallus that is hard as a result of

calcareous deposits contained within the cell walls.

Corticated algae Algae that have a secondarily formed outer cellular covering over

part or all of an algal thallus. Usually relatively large and long-lived.

Crustose coralline algae Slow growing crusts of varying thickness that can occur on rock,

shells, or other algae.

Cryptogenic Species of unknown origin.

Dredge spoil The unconsolidated, mixed sediments composed of soil, rock, or

shell materials extracted and deposited during dredging and

dumping activities.

Ephemeral algae Opportunistic algae with a short life cycle that are usually the first

settlers on a rocky shore.

Extralimital Species whose native range falls within the political boundaries of a

country, but whose presence in another part of the same country is attributable to human transport across fundamental biogeographical

barriers.

Fauna General term for all the animals found in a particular location.

Flora General term for all the plant life found in a particular location.

Foliose algae Leaf-like, broad and flat; having the texture or shape of a leaf.

Filter-feeders Animals that feed by straining suspended matter and food particles

from water.

Functional group A collection of organisms of specific morphological, physiological,

and/or behavioural properties.

Grazer An herbivore that feeds on plants/algae by abrasion from the

surface.

Groundwater Water held underground in the soil or in pores and crevices in rock.

Harmful algal bloom Overgrowths of algae in water. Examples include red tides, blue-

green algae, and cyanobacteria.

Image classification The process of assigning land cover classes to image pixel values.

Indigenous Species within the limits of their native range (Synonyms: native).

Intertidal The shore area between the high- and the low-tide levels.

Invasive Alien species that have self-replacing populations over several

generations and that have spread from their point of introduction.

Invertebrate Animals that do not have a backbone. Invertebrates either have an

exoskeleton (e.g., crabs) or no skeleton at all (worms).

Kelp A member of the order Laminariales, the more massive brown algae.

Macrophyte An aquatic plant large enough to be seen by the naked eye.

Native Species within the limits of their native range (Synonyms:

indigenous).

Naturalised Alien species that have self-replacing populations over several

generations outside of captivity or culture, but that have not spread

from their point of introduction.

Opportunistic Capable of rapidly occupying newly available space.

Paleo-channel Old or ancient river channels often infilled with course fluvial

deposits which can store and transmit appreciable quantities of

water.

Polychromatic Having various or changing colours; multicoloured.

A matrix of cells (or pixels) organized into rows and columns (i.e., a grid) where each cell contains a value representing information, such as land class. Rasters are digital aerial photographs, imagery from

antallitan dinital nintuuna annun annun dunana

satellites, digital pictures, or even scanned maps.

Rhizome A modified subterranean plant stem that sends out roots and shoots

from its nodes.

Rocky shore community A group of interdependent organisms inhabiting the same rocky

shore region and interacting with each other.

Scavenger An animal that eats already dead or decaying animals.

European optical imaging satellite providing global coverage 20 m

Sentinel-1x/2x resolution imagery. 1A launched in 2014, 1B in 2016. 2A launched in

2015, 2B in 2017, and 2C proposed launch date in 2024.

Shore height zone Zone on the intertidal shore recognizable by its community.

Species diversity The number of different species and relative abundance of each of

those species present in an ecosystem.

Species richness The number of species within a defined region.

A unique combination of values under different light wavelengths for Spectral signature

a particular pixel in a remotely sensed image.

Supervised image

classification

Thallus

Raster

A procedure for identifying spectrally similar areas on an image by identifying training sites of known targets and then extrapolating those spectral signatures to other areas of unknown targets.

General form of an alga that, unlike a plant, is not differentiated into

stems, roots, or leaves.

Topography The relief features or surface configuration of an area

Location information (either points or polygons) within or

encompassing a known associated land cover class. An image Training sample

classification algorithm uses the training samples, saved as a feature

class, to identify the land cover classes in the entire image.

Unsupervised image

classification

A process by which each pixel value in a dataset or image is identified to be a member of one of the inherent categories present in the image collection, without the use of labelled training samples.

LIST OF ABBREVIATIONS

degrees Celsius °C

Acoustic Doppler Current Profiler ADCP

ADZ Aquaculture Development Zone

AEL Air Emissions Licence

AMC Aquaculture Management Committee

AOU Apparent Oxygen Utilization

API **Application Programming Interface**

ASC Aquaculture Stewardship Council

AZE Acceptable Zone of Effect

BA Basic Assessment

BAR **Basic Assessment Report**

BCLME Benguela Current Large Marine Ecosystem

CBA Critical Biodiversity Area

Council for Geoscience (Est 1993 it was the Geological Survey of South Africa) CGS

CMP Coastal Management Programme

CNG **Compressed Natural Gas**

COD Chemical Oxygen Demand

CSIR Council for Scientific and Industrial Research

CWAC Co-ordinated Waterbird Counts

CWDP Coastal Water Discharge Permit

Department of Agriculture, Forestry and Fisheries (In June 2019, DAFF was DAFF

incorporated into the Department of Environmental Affairs (DEA) to form the

Department of Forestry, Fisheries and the Environment (DFFE)).

DD **Decimal Degrees**

Department of Environmental Affairs (In June 2019, DEA was incorporated into DEA

the Department of Agriculture, Forestry and Fisheries (DAFF) to form the

Department of Forestry, Fisheries and the Environment (DFFE)).)

DEA&DP Western Cape Department of Environmental Affairs & Development Planning

Department of Forestry, Fisheries and the Environment (In June 2019 the DFFE **DFFE**

had been established by incorporating the forestry and fisheries functions from

the previous Department of Agriculture, Forestry and Fisheries into the

Department of Environmental Affairs)

DoE Department of Energy

DWA Department of Water Affairs

DWAF Department of Water Affairs and Forestry (Est. 1994 up until May 2009)

DWS Department of Water and Sanitation (DWS was established in May 2009 and was

previously DWAF. DWS is the current custodian of water resources)

EA Environmental Authorisation

EAS Elandsfontein Aquifer System

EC Electrical Conductivity

EEM Elandsfontein Exploration and Mining (Pty) Ltd

EIA Environmental Impact Assessment

EICAT The Environmental Impact Classification for Alien Taxa

EMF Environmental Management Framework

EMMP Environmental Management and Maintenance Plan

EMPr Environmental Management Programme

ET Evapotranspiration

FEPA Freshwater Ecosystem Priority Area

FPP Floating Power Plant

GA General Authorisation

GDA General Discharge Authorisation

GEE Google Earth Engine

GIS Geographical Information System

GRAII Groundwater Resource Assessment (Phase II)

GRU Groundwater Response (or Resource) Unit

GSB Greater Saldanha Bay

ha Hectare

ICMA National Environmental Management: Integrated Coastal Management Act (No.

24 of 2008)

IDZ Industrial Development Zone

km kilometre

km² square kilometre

L/hr litres per hour

L/s litres per second

L/s/km² litres per second per square kilometre

LNG Liquefied Natural Gas

LPG Liquid Petroleum Gas

LRA Langebaan Road Aquifer

LRAS Langebaan Road Aquifer System

m metres

m amsl Metres above mean sea level

m bgl Metres below ground level

m² square metres

m³/a metres cubed per annum

MAE Mean Annual Evaporation

MAP Mean Annual Precipitation

MAR Mean Annual Runoff

MAR Managed Aquifer Recharge

max Maximum

mg/L milligrams per litre

min Minimum

MLRA Marine Living Resources Act (No. 18 of 1998)

mm millimetre

mm/a millimetres per annum

Mm³/a Million cubic metres per annum

MPA Marine Protected Area

mS/m milliSiemens per meter

Mtpa Million tons per annum

NEMA National Environmental Management Act (No. 107 of 1998)

NEMBA National Environmental Management: Biodiversity Act (No. 10 of 2004)

NEMPAA National Environmental Management: Protected Areas Amendment

NFEPA National Freshwater Ecosystem Priority Area

NGA National Groundwater Archive

NOAA National Oceanic and Atmospheric Administration

NWA National Water Act (No. 36 of 1998)

PAH Poly-Aromatic Hydrocarbons

ppt Parts per thousand

PSU Practical Salinity Unit

Q Discharge/Yield

RMA Responsible Managing Authorities

RO Reverse Osmosis

RQO Resource Quality Objectives

RWL Rest Water Level

RWQO Receiving Water Quality Objectives approach

SBLM Saldanha Bay Local Municipality

SBM Saldanha Bay Municipality

SBWQFT Saldanha Bay Water Quality Forum Trust

SEA Strategic Environmental Assessment

SWSA-gw Strategic Water Source Areas - groundwater

TNPA Transnet National Ports Authority

TOC Total Organic Carbon

TON Total Organic Nitrogen

TPH Total Petroleum Hydrocarbon

TSS Total Suspended Solids

UGEP Utilisable Groundwater Exploitation Potential

VRF Vessel Repair Facility

WARMS Water Authorisation and Registration Management System

WC Western Cape

WCDM West Coast District Municipality

WGS84 Since the 1st January 1999, the official co-ordinate system for South Africa

WL water level

WRC Water Research Commission.

WWTW Wastewater Treatment Works

1 INTRODUCTION

1.1 Background

Saldanha Bay is situated on the west coast of South Africa, approximately 100 km north of Cape Town, and is directly linked to the shallow, tidal Langebaan Lagoon. Saldanha Bay and Langebaan Lagoon are areas of exceptional beauty and are considered South African biodiversity "hot spots". A number of marine protected areas have been proclaimed in and around the Bay, while Langebaan Lagoon and much of the surrounding land falls within the West Coast National Park (Figure 1-1). Langebaan Lagoon was also declared a Ramsar Site in 1988, along with a series of islands within Saldanha Bay (Schaapen, Marcus, Malgas, Jutten and Vondeling).

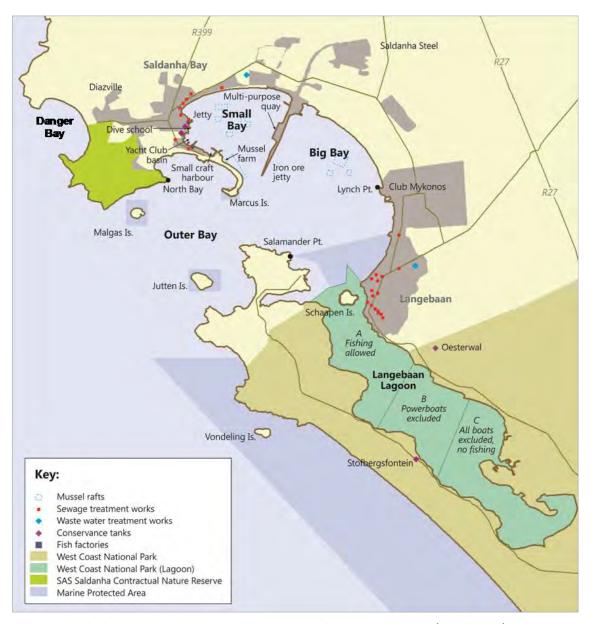


Figure 1-1 Saldanha Bay, Langebaan Lagoon and Danger Bay showing development (grey shading) and conservation areas.

Saldanha Bay and Langebaan Lagoon have long been the focus of scientific study and interest largely owing to the conservation importance and its many unique features. A symposium on research in the natural sciences of Saldanha Bay and Langebaan Lagoon was hosted by the Royal Society of South Africa in 1976 in an attempt to draw together information from the various research studies that had been and were being conducted in the area. The symposium served to focus the attention of scientific researchers from a wide range of disciplines on the Bay and resulted in the development of a large body of data and information on the status of the Bay and Lagoon at a time prior to any major developments in the Bay.

More recently (in 1996), the Saldanha Bay Water Quality Forum Trust (SBWQFT), a voluntary organisation representing various organs of State, local industry and other relevant stakeholders and interest groups, was inaugurated with the aim of promoting an integrated approach to the management, conservation and development of the waters of Saldanha Bay and the Langebaan Lagoon, and the land areas adjacent to, and influencing it. Since its inauguration the SBWQFT has played an important role in guiding and influencing management of the Bay and in commissioning scientific research aimed at supporting informed decision making and sustainable management of the Saldanha Bay/Langebaan Lagoon ecosystem. Monitoring of a number of important ecosystem indicators was initiated by the SBWQFT in 1999 including water quality (faecal coliform, temperature, oxygen, Ph and trace metals), sediment quality (trace metals, hydrocarbons, Total organic carbon (TOC) and nitrogen) and benthic macrofauna. The range of parameters monitored has since increased to include surf zone fish and rocky intertidal macrofauna (both initiated in 2005) and has culminated in the commissioning of a "State of the Bay" report series that has been produced annually since 2008. Despite these noteworthy successes in environmental monitoring, the history of the area has been tainted with overexploitation and lack of care for the environment, the environment generally being the loser in both instances.

The first State of the Bay report was produced in 2006 by Anchor Environmental Consultants (Pty) Ltd and served to draw together all available information on the health status and trends in a wide range of parameters that provide insights into the health of the Saldanha Bay and Langebaan Lagoon ecosystem. The 2006 report incorporated information on trends in a full range of physico-chemical indicators including water quality (temperature, oxygen, salinity, nutrients, pH and trace metals), sediment quality (particle size, trace metal and hydrocarbon contaminants, TOC and nitrogen), ecological indicators (chlorophyll a, intertidal and subtidal benthic macrofauna, fish and birds) and alien and invasive species in the Bay. This information was drawn from work commissioned by the SBWQFT as well as a range of other scientific monitoring programmes and studies. The 2006 report was presented in two formats — one data rich form that was designed to provide detailed technical information in trends in each of the monitored parameters and the second in an easy to read form that was accessible to all stakeholders.

The success of the first State of the Bay report and the ever-increasing pace of development in and around the Saldanha Bay encouraged the SBWQFT to produce the second Sate of the Bay report in 2008, and then annually from this time onwards. This (2021) report is the 14th in the series and provides an update on the health of all monitored parameters in Saldanha Bay, Langebaan Lagoon and Danger Bay in the time since the last State of the Bay assessment (2020). It includes information on trends in all of the parameters reported on in the previous reports (2006, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 and 2020).

This edition also incorporates a number of additional indicators not previously covered by the State of the Bay reports (focussing mostly on activities and discharges that affect the health of the system). Readers that are familiar with the State of Saldanha Bay and Langebaan Lagoon report series are encouraged to consult Section 1.3 of this report, which highlights new and updated information that has been included in this edition.

1.2 Structure of this report

This report draws together all available information on water quality and aquatic ecosystem health of Saldanha Bay and Langebaan Lagoon, and on activities and discharges affecting the health of the Bay. The emphasis has been on using data from as wide a range of parameters as possible that are comparable in both space and time and cover extended periods which provide a good reflection of the long-term environmental health in the Bay as well as recent changes in the health status of the system. The report is composed of fourteen chapters each of which addresses different aspects of the health of the system.

Chapter One introduces the State of the Bay Reporting programme and explains the origin of and rationale for the programme, and provides the report outline.

Chapter Two provides background information to anthropogenic impacts on the environment and the range of different approaches to monitoring these impacts, which captures the differences in the nature and temporal and spatial scale of these impacts.

Chapter Three provides a summary of available information on historic and ongoing activities, discharges and other anthropogenic impacts to the Bay that are likely to have had or are having some impact on environmental health.

Chapter Four outlines the coastal and environmental management measures in the greater Saldanha Bay area developed/implemented to facilitate sustainable development in an area where industrial development (Saldanha Bay IDZ and associate industrial development), residential and conservation areas (Ramsar Site, MPAs and National Parks) are immediately adjacent to one another.

Chapter Five summarises available information on the importance of groundwater for Saldanha Bay and Langebaan Lagoon and presents information on the use of groundwater in this region and potential concerns this use poses for the ecology of the Bay.

Chapter Six summarises available information on water quality parameters (temperature, oxygen, salinity, nutrients, pH and trace metals) that have historically been monitored in the Bay and Lagoon and reflects on what can be deduced from these parameters regarding the health of the Bay.

Chapter Seven summarises available information on sediment monitoring that has been conducted in Saldanha Bay, Danger Bay and Langebaan Lagoon with further interpretation of erosion monitoring results along Langebaan Beach, which was initiated by the Saldanha Bay Local Municipality in 1996, and changes in sediment composition (particle size distribution) and quality (trace metal, organic carbon and nitrogen content) over time and/or related to dredging events. .

Chapter Eight presents data on the current status and historical changes in aquatic vegetation communities (macrophytes) associated with Langebaan Lagoon and Saldanha Bay and also highlights the importance of groundwater discharge to the Bay and Lagoon for these communities.

Chapter Nine presents data on changes in benthic macrofauna in Saldanha Bay and Langebaan Lagoon from the 1970s to the present day.

Chapter Ten addresses changes that have occurred in the rocky intertidal zones in and around Saldanha Bay over the past 20 years and presents results from a rocky intertidal monitoring survey initiated in 2005.

Chapter Eleven summarises all available information on the fish community and composition in the Bay and Lagoon, as deduced from both seine and gill net surveys, and presents results from a surf zone fish monitoring survey initiated in 2005. In 2014 this survey was expanded to include Danger Bay.

Chapter Twelve provides detailed information on the status of key bird species utilising the offshore islands around Saldanha Bay as well as providing an indication of the national importance of the area for birds. Additionally, a brief summary of the current status of the Saldanha Bay seal population is provided.

Chapter Thirteen summarises available information of marine alien species known to be present in Saldanha Bay and Langebaan Lagoon as well as trends in their distribution and abundance.

Chapter Fourteen provides a tabulated summary of the key changes detected in each parameter covered in this report and assigns a health status rank to each. This chapter also provides recommendations for future environmental monitoring for the Bay and of management measures that ought to be adopted in the future.

1.3 What's new in the 2021 edition of the State of Saldanha Bay and Langebaan Lagoon report

Readers who are familiar with the State of the Bay report series will know that while the various chapters of this report are updated each year with new data and information that has been collected during the course of the preceding twelve months, either through dedicated surveys commissioned by the SBWQFT or other dedicated individuals and agencies, much of the background or contextual information pertinent to the State of the Bay remains the same. While this background and contextual information is important, it can be a little tedious to wade through for those who have seen it all before. This section of the report consequently serves to highlight what new data and information has been included in each of the chapters of this report to make it easier for those readers to home in on the material that is of greatest interest to them.

Chapter 3: Activities and discharges affecting the health of the Bay

Only developments and activities which have experienced changes since the last State of the Bay report (2020) are retained in this chapter. Completed, stagnated or pending developments are briefly summarised in the relevant section and the reader is referred to the previous report of 2020 for more details. Additional and updated information included in the sections of this chapter are listed below:

- Numbers of visitors to the West Coast National Park;
- Metal exports from the Saldanha Bay Multipurpose and Iron Ore Terminal;
- Information on new and existing development proposals for Saldanha (Zandheuvel phosphate mine, and the development of additional vessel repair facilities in the Port of Saldanha);
- Shipping traffic and ballast water discharges;
- Effluent discharges into Saldanha Bay:
 - the volumes and quality of wastewater discharged into the Bay from the Saldanha and Langebaan Water Treatment Works, including the details on the effort of the Saldanha Bay Municipality to reclaim freshwater from treated wastewater
 - o fish processing establishments in Saldanha (new information on environmental monitoring data for Sea Harvest)
- Mariculture industry in Saldanha, including an update on the development of the Aquaculture Development Zone.

Chapter 4: Coastal and environmental management

Little has happened in respect of new policy and management interventions in Saldanha Bay so this chapter simply provides a brief summary of key interventions that have been introduced in the last few years.

Chapter 5: Groundwater

This is the fifth year that this new addition appears in the State of the Bay report and the chapter has been extensively revised by the team at GEOSS Groundwater and Earth Sciences. This chapter serves to highlight the importance of groundwater for Saldanha Bay and Langebaan Lagoon and presents lot of new information on the use of groundwater in this region, potential concerns that this use poses

for the ecology of the Bay, and presents data on trends in water level and water quality from key monitoring locations around the Bay. It also presents results from a recent Time Domain Electromagnetic (TDEM) geophysical survey that was carried out in the Saldanha Bay area between Yzerfontein and the Aurora-Piketberg Mountain Range in 2020. This survey has provided important new insights into groundwater recharge and flows in the region/

Chapter 6: Water quality

This chapter presents new information on variations in temperature, salinity, dissolved oxygen, and dissolved inorganic nitrogen at various locations in the Bay and at the head of the lagoon, as well as new updated information on levels of microbial indicators (faecal coliforms and *Escherichia coli*.) in the Bay collected by the SBWQFT and the Saldanha Bay Municipality. It also presents new information on trace metals in mussels on the shoreline and offshore mariculture facilities as well as trace metals in oysters. Water quality monitoring activities that were initiated as part of the Environmental Monitoring Programme for the ADZ are providing valuable new insights into oxygen dynamics in the Bay and has again highlighted the impacts of reduced water circulation and organic loading in Small Bay.

Chapter 7: Sediments

The chapter presents includes new information on grain size composition and health of benthic sediment in Saldanha Bay (Total Organic Carbon and Nitrogen, trace metals and hydrocarbons). This year our understanding of spatial patterns in sediment characteristics (particle size distribution, organic carbon and nitrogen, and trace metals) has been greatly expanded through the inclusion of an extra 27 sampling sites that were sampled as part of the Saldanha ADZ monitoring programme in March/April 2021 (14 Sites in Big Bay, 7 in Outer Bay North and 6 within Small Bay).

Chapter 8: Aquatic macrophytes

In 2020, a chapter dedicated to aquatic macrophytes was included for the first time. A relatively rapid approach was undertaken using remotely sensed data in an attempt to determine the potential shifts in common reed *Phragmites australis* around Geelbek along the southern and south-eastern shores of the Langebaan Lagoon. This year, the technique was expanded and benefitted from a ground-truthing exercise to refine the initial mapping and compile time-series maps of other aquatic macrophytes, seagrass and salt marshes, highlighting recent changes that complement previous studies looking at long-term shifts in these ecosystems. These communities make an important contribution to the ecology of the Bay (as a feeding, breeding and roosting area, for invertebrates, fish and birds). Their extent and abundance are dependent on groundwater inflow and thus the changes detected even from a few years' worth of remotely sensed data is useful in elucidating potential changes in groundwater inflow due to a variety of factors

Chapter 9: Benthic macrofauna

This chapter presents new information on species composition, abundance, biomass and health of benthic macrofauna communities in Saldanha Bay and Langebaan Lagoon as revealed by dedicated monitoring activities undertaken by the SBQWFT. It is also benefits from the inclusion of an extra 27

sampling sites that were sampled as part of the Saldanha ADZ monitoring programme in March/April 2021.

Chapter 10: Intertidal invertebrates (rocky shores)

This chapter presents new information on species composition, abundance, biomass and health of rocky intertidal invertebrate communities in Saldanha Bay and Langebaan Lagoon as revealed by dedicated monitoring activities undertaken by the SBQWFT. Rocky shores in Saldanha Bay are largely dominated by alien species whose population sizes and distributions change considerably from year to year.

Chapter 11: Fish

This chapter presents new information on species composition, abundance, biomass and health of fish communities in Saldanha Bay and Langebaan Lagoon and provides updates on the current population status of key linefish, net-fish and angling species in the Bay.

Chapter 12: Birds and seals

This chapter provides an update on the species threat status, and presents new data on the composition, abundance and health of birds breeding and feeding in Langebaan Lagoon and on the Islands in Saldanha Bay. It also data on trends in the numbers of seals breeding on Vondeling island, which is the only breeding colony in the Bay.

Chapter 13: Alien invasive species

This chapter presents new information and data on the number, distribution and abundance of alien invasive marine species in Saldanha Bay and Langebaan Lagoon, and provides a summary of new information on the ecology, spread, abundance of alien marine species that occur in Saldanha Bay and Langebaan Lagoon and on their ability to impact biodiversity as ecosystem engineers. No new alien or invasive species have been recorded in Saldanha Bay or Langebaan Lagoon since 2018 (i.e., the Chilean stone crab *Homalaspis plana* (Peters & Robinson 2018)).

Chapter 14: Management and monitoring recommendations

This chapter includes updated recommendations on management actions that need to be implemented to mitigate key threats highlighted in the previous chapters.

2 BACKGROUND TO ENVIRONMENTAL MONITORING AND WATER QUALITY MANAGEMENT

2.1 Introduction

Pollution is defined by the United Nations Convention on the Law of the Sea as 'the introduction by man, directly or indirectly, of substances or energy into the marine environment, including estuaries, which results in such deleterious effects as harm to living resources and marine life, hazards to human health, hindrance to marine activities, including fishing and other legitimate uses of the sea, impairment of quality for use of the sea water and reduction of amenities'. A wide variety of pollutants are generated by man, many of which are discharged to the environment in one form or another. Pollutants or contaminants can broadly be grouped into five different types: trace metals, hydrocarbons, organochlorines, radionuclides, and nutrients. Certain metals normally found in very low concentrations in the environment (hence referred to as trace metals) are highly toxic to aquatic organisms. These include for example mercury, cadmium, arsenic, lead, chromium, zinc and copper. These metals occur naturally in the earth's crust, but mining of metals by man is increasing the rate at which these are being mobilised which is enormously over that achieved by geological weathering. Many of these metals are also used as catalysts in industrial processes and are discharged to the environment together with industrial effluent and wastewater. Hydrocarbons discharged to the marine environment include mostly oil (crude oil and bunker oil) and various types of fuel (diesel and petrol). Sources of hydrocarbons include spills from tankers, other vessels, refineries, storage tanks, and various industrial and domestic sources. Hydrocarbons are lethal to most marine organisms due to their toxicity, but particularly to marine mammals and birds due to their propensity to float on the surface of the water where they come into contact with seabirds and marine mammals. Organochlorines do not occur naturally in the environment and are manufactured entirely by man. A wide variety of these chemicals exists, the most commonly known ones being plastics (e.g., polyvinylchloride or PVC), solvents and insecticides (e.g., DDT). Most organochlorines are toxic to marine life and have a propensity to accumulate up the food chain. Nutrients are derived from several sources, the major one being sewage, industrial effluent, and agricultural runoff. They are of concern owing to the vast quantities discharged into the environment each year which has the propensity to cause eutrophication of coastal and inland waters. Eutrophication in turn can result in proliferation of algae, phytoplankton (red tide) blooms, and deoxygenation of the water (black tides).

It is important to monitor both the concentration of these contaminants in the environment and their effects on biota such that negative effects on the environment can be detected at an early stage before they begin to pose a major risk to environmental and/or human health.

2.2 Mechanisms for monitoring contaminants and their effects on the environment

The effects of pollutants on the environment can be detected in a variety of ways as can the concentrations of the pollutants themselves in the environment. Three principal ways exists for assessing the concentration of pollutants in aquatic ecosystems — through the analysis of pollutant concentrations in the water itself, in sediments or in living organisms. Each has their advantages and disadvantages.

For example, the analysis of pollutant concentrations in water samples is often problematic owing to the fact that even at concentrations lethal to living organisms, they are difficult to detect without highly sophisticated sampling and analytical techniques. Pollutant concentrations in natural waters may vary with factors such as season, state of the tide, currents, extent of freshwater runoff, sampling depth, and the intermittent flow of industrial effluents, which complicates matters even further. In order to accurately elucidate the degree of contamination of a particular environment, many water samples usually have to be collected and analysed over a long period of time. The biological availability of pollutants in water also presents a problem in itself. It must be understood that some pollutants present in a water sample may be bound chemically to other compounds that renders them unavailable or non-toxic to biota (this is common in the case of trace metals).

Another way of examining the degree of contamination of a particular environment is through the analysis of pollutant concentrations in sediments. This has several advantages over the analysis of water samples. Most contaminants of concern found in aquatic ecosystems tend to associate preferentially with (i.e., adhere to) suspended particulate material rather than being maintained in solution. This behaviour leads to pollutants becoming concentrated in sediments over time. By analysing their concentrations in the sediments (as opposed to in the water) one can eliminate many of the problems associated with short-term variability in contaminant concentrations (as they reflect conditions prevailing over several weeks or months) and concentrations tend to be much higher which makes detection much easier. The use of sediments for ascertaining the degree of contamination of a particular system or environment is therefore often preferred over the analysis of water samples. However, several problems still exist with inferring the degree of contamination of a particular environment from the analysis of sediment samples.

Some contaminants (e.g., bacteria and other pathogens) do not accumulate in sediments and can only be detected reliably through other means (e.g., through the analysis of water samples). Concentrations of contaminants in sediments can also be affected by sedimentation rates (i.e., the rate at which sediment is settling out of the water column) and the sediment grain size and organic content. As a general rule, contaminant concentrations usually increase with decreasing particle size, and increase with increasing organic content, independent of their concentration in the overlying water. Reasons for this are believed to be due to increases in overall sediment particle surface area and the greater affinity of most contaminants for organic as opposed to inorganic particles (Phillips 1980, Phillips & Rainbow 1994). The issue of contaminant bioavailability remains a problem as well, as it is not possible to determine the biologically available portion of any contaminant present in sediments using chemical methods of analysis alone.

One final way of assessing the degree of contamination of a particular environment is by analysing concentrations of contaminants in the biota themselves. There are several practical and theoretical advantages with this approach. Firstly, it eliminates any uncertainty regarding the bioavailability of the contaminant in question as it is by nature 'bioavailable'. Secondly, biological organisms tend to concentrate contaminants within their tissues several hundred or even thousands of times above the concentrations in the environment and hence eliminate many of the problems associated with detecting and measuring low levels of contaminants. Biota also integrates concentrations over time and can reflect concentrations in the environment over periods of days, weeks, or months depending on the type of organism selected. Not all pollutants accumulate in the tissues of living organisms, including for example nutrients and particulate organic matter. Thus, while it is advantageous to monitor contaminant concentrations in biota, monitoring of sediment and water quality is often also necessary.

Different types of organisms tend to concentrate contaminants at different rates and to different extents. In selecting what type of organism to use for biomonitoring it is generally recommended that it should be sedentary (to ensure that it is not able to move in and out of the contaminated area), should accumulate contaminants in direct proportion with their concentration in the environment, and should be able to accumulate the contaminant in question without lethal impact (such that organisms available in the environment reflect prevailing conditions and do not simply die after a period of exposure). Giving cognisance to these criteria, the most commonly selected organisms for biomonitoring purposes include bivalves (e.g., mussels and oysters) and algae (i.e., seaweed).

Aside from monitoring concentrations of contaminant levels in water, sediments, and biota, it is also possible, and often more instructive, to examine the species composition of the biota at a particular site or in a particular environment to ascertain the level of health of the system. Some species are more tolerant of certain types of pollution than others. Indeed, some organisms are extremely sensitive to disturbance and disappear before contaminant concentrations can even be detected reliably whereas others proliferate even under the most noxious conditions. Such highly tolerant and intolerant organisms are often termed biological indicators as they indicate the existence or concentration of a particular contaminant or contaminants simply by their presence or absence in a particular site, especially if this changes over time. Changes in community composition (defined as the relative abundance or biomass of all species) at a particular site can therefore indicate a change in environmental conditions. This may be reflected simply as: (a) an overall increase/decrease in biomass or abundance of all species, (b) as a change in community structure and/or overall biomass/abundance but where the suite of species present remain unchanged, or (c) as a change in species and community structure and/or a change in overall biomass/abundance (Figure 2-1). Monitoring abundance or biomass of a range of different organisms from different environments and taxonomic groups with different longevities, including for example invertebrates, fish and birds, offers the most comprehensive perspective on change in environmental health spanning months, years and decades.

The various methods for monitoring environmental health all have advantages and disadvantages. A comprehensive monitoring programme typically requires that a variety of parameters be monitored covering water, sediment, biota and community health indices.

2.3 Indicators of environmental health and status in Saldanha Bay and Langebaan Lagoon

For the requirements of the Saldanha Bay and Langebaan Lagoon State of the Bay monitoring programme, a ranking system has been devised that incorporates both the drivers of changes (i.e., activities and discharges that affect environmental health) and a range of different measures of ecosystem health; from contaminant concentrations in seawater, to change in species composition of a range of different organisms (Figure 2-1 and Table 2.1). Collectively, these parameters provide a comprehensive picture of the State of the Bay and also a baseline against which future environmental change can be measured. Each of the threats and environmental parameters incorporated within the ranking system was allocated a health category depending on the ecological status and management requirements in particular areas of Saldanha Bay and Langebaan Lagoon. An overall Desired Health category is also proposed for each environmental parameter in each area, which should serve as a target to be achieved or maintained through management intervention.

Various physical, chemical and biological factors influence the overall health of the environment. Environmental parameters or indices that can be used to represent the broader health of the environment and are feasible to measure, both temporally and spatially were selected. The following environmental parameters or indices are reported on:

Activities and discharges affecting the environment: Certain activities (e.g., shipping and small vessel traffic, the mere presence of people and their pets, trampling) can cause disturbance in the environment especially to sensitive species that, along with discharges to the marine environment (e.g., effluent from fish factories, treated sewage, and ballast water discharged by ships) can lead to degradation of the environment through loss of species (i.e., loss of biodiversity), or increases in the abundance of pest species (e.g., red tides), or the establishment of alien species. Monitoring activity patterns and levels of discharges can provide insight into the reasons for any observed deterioration in ecosystem health and can help in formulating solutions for addressing negative trends.

Water quality: Water quality is a measure of the suitability of water for supporting aquatic life and the extent to which key parameters (temperature, salinity, dissolved oxygen, nutrients and chlorophyll a, faecal coliforms and trace metal concentrations) have been altered from their natural state. Water quality parameters can vary widely over short time periods and are principally affected by the origin of the water, physical and biological processes and effluent discharge. Water quality parameters provide only an immediate (very short term — hours to days) perspective on changes in the environment and do not integrate changes over time.

Sediment quality: Sediment quality is a measure of the extent to which the nature of benthic sediments (particle size composition, organic content, trace metals and contaminant concentrations) has been altered from its natural state. This is important as it influences the types and numbers of organisms inhabiting the sediments and is, in turn, strongly affected by the extent of water movement (wave action and current speeds), mechanical disturbance (e.g., dredging) and quality of the overlying water. Sediment parameters respond quickly to changes in the environment but are also able to integrate changes over short periods of time (weeks to months) and are thus good indicators or short to very short-term changes in environmental health.

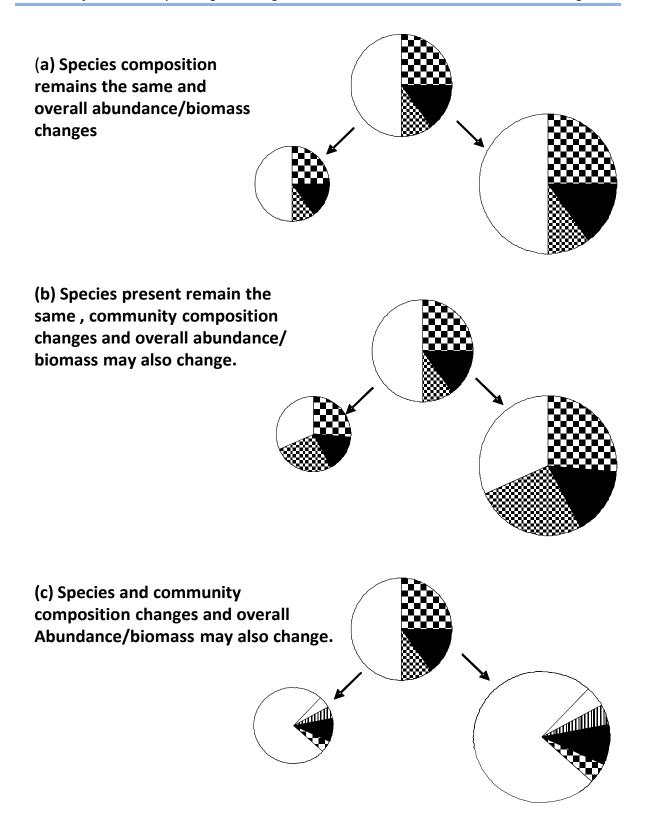


Figure 2-1 Possible alterations in abundance/biomass and community composition. Overall abundance/biomass is represented by the size of the circles and community composition by the various types of shading. After Hellawell (1986).

Coastal development: Coastal development includes development activities such as infrastructure (harbours and launch sites, cities, towns, housing, roads and tourism), as well as dredging and the disposal of dredge spoil. Coastal developments pose a major threat to many components of marine and coastal environments, owing to their cumulative effects, which are often not taken into account by impact assessments. Associated impacts include organic pollution of runoff and sewerage, transformation of the supratidal environment, alteration of dune movement, increased access to the coast and sea, and the negative impacts on estuaries.

Shoreline erosion: Anthropogenic activities, particularly structures erected in the coastal zone (e.g., harbours, breakwaters, buildings) and dredging activities, can also profoundly influence shorelines composed of soft sediment (i.e., sandy beaches) leading to erosion of the coast in some areas and the accumulation of sediment in others. Many of the beaches in Saldanha Bay have experienced severe erosion in recent decades to the extent that valuable infrastructure is severely threatened in some areas.

Macrophytes: Estuarine macrophytes are good indicators of ecological health and condition due to their temperature and salinity tolerance range, sensitivity to nutrient loads and extent in response to anthropogenic and climatic changes. They can be monitored relatively infrequently (1x per year) as well as at low cost once the initial ground-truthing assessment has been captured. With advancements in remote sensing and spatial analytics a long-term monitoring framework can be easily maintained.

Benthic Macrofauna: Benthic macrofauna are mostly short-lived organisms (1 - 3 years) and hence are good indicators of short to medium term (months to years) changes in the health of the environment. They are particularly sensitive to changes in sediment composition (e.g., particle size, organic content and trace metal concentrations) and water quality.

Rocky intertidal Communities: Rocky intertidal invertebrates are also mostly short-lived organisms (1 – 3 years) and as such are good indicators of short to medium term changes in the environment (months to years). Rocky intertidal communities are susceptible to invasion by exotic species (e.g., Mediterranean mussel), deterioration in water quality (e.g., nutrient enrichment), structural modification of the intertidal zone (e.g., causeway construction) and human disturbance resulting from trampling and harvesting (e.g., bait collecting).

Fish: Fish are mostly longer-lived animals (3 - 10 years +) and as such are good indicators of medium to long-term changes in the health of the environment. They are particularly sensitive to changes in water quality, changes in their food supply (e.g., benthic macrofauna) and fishing pressure.

Birds: Birds are mostly long-lived animals (6-15 years +) and as such are good indicators of long-term changes in the health of the environment. They are particularly susceptible to disturbance by human presence and infrastructural development (e.g., housing development), and changes in food supply (e.g., pelagic fish and intertidal invertebrates).

Alien species: A large number of alien marine species have been recorded as introduced to southern African waters. South Africa has at least 95 confirmed alien species, 56 of which are considered invasive, including the Mediterranean mussel *Mytilus galloprovincialis*, the barnacle *Balanus glandula* and the Western pea crab *Rathbunixa occidentalis*. Most of the introduced species in South Africa have been found in sheltered areas such as harbours and are believed to have been introduced

through shipping activities, mostly ballast water. Ballast water tends to be loaded in sheltered harbours. For this reason, species that are transported often originate from these habitats and have a difficult time adapting to the more exposed sections of the southern African coastline, but are easily able to gain a foothold in sheltered bays such as Saldanha Bay.

Table 2.1 Ranking categories and classification thereof as applied to Saldanha Bay and Langebaan Lagoon for the purposes of this report.

Health category		Ecological perspective	Management perspective	
Natural		No or negligible modification from the natural state.	Relatively little human impact.	
Good	<u></u>	Some alteration to the physical environment. Small to moderate loss of biodiversity and ecosystem integrity.	Some human-related disturbance, but ecosystems essentially in a good state, however, continued regular monitoring is strongly suggested.	
Fair		Significant change evident in the physical environment and associated biological communities.	Moderate human-related disturbance with good ability to recover. Regular ecosystem monitoring to be initiated to ensure no further deterioration takes place.	
Poor		Extensive changes evident in the physical environment and associated biological communities.	High levels of human related disturbance. Urgent management intervention is required to avoid permanent damage to the environment or human health.	

3 ACTIVITIES AND DISCHARGES AFFECTING THE HEALTH OF THE BAY

3.1 Introduction

Industrial development of Saldanha Bay dates back to the early 1900s with the establishment of a commercial fishing and rock lobster industry in the Bay. By the mid-1900s, Southern Seas Fishing Enterprises and Sea Harvest Corporation had been formed, with Sea Harvest becoming the largest fishing operation in Saldanha Bay to date. Human settlement and urbanization grew from village status in 1916, to an important city with a population of more than 40 000 today. With increasing numbers of fishing vessels operating in Saldanha Bay, and to facilitate the export of iron ore from the Northern Cape, the Bay was targeted for extensive development in the early 1970s. The most significant developments introduced at this time were the causeway linking Marcus Island to the mainland, to provide shelter for ore-carriers, and the construction of the Iron Ore Terminal. These two developments effectively separated the Bay into two compartments — Small Bay and Big Bay. By the end of the 1970s Saldanha Bay harbour was an international port able to accommodate large orecarriers.

Port facilities in Saldanha Bay now include the main Transnet Iron Ore Terminal with berths for three ore carriers, an oil jetty, a multi-purpose terminal, and a general maintenance quay, a fishing harbour which is administered by the Department of Environmental Affairs, a Small Craft Harbour which is used by fishing vessels and tugs, three yacht marinas (Saldanha, Mykonos and Yachtport SA), a Naval boat yard at Salamander Bay and numerous slipways for launching and retrieval of smaller craft. Development of the port and fishing industry have served to attract other industry to the area, including oil and gas, ship repair and steel industries, and also resulted in a rapid expansion in urban development in Saldanha and Langebaan. Urban and industrial developments encroaching into coastal areas have caused the loss of coastal habitats and affect natural coastal processes, such as sand movement. Development of the port is expected to increase dramatically with the establishment of the Saldanha Bay Industrial Development Zone (IDZ), a process that was initiated in 2013.

Metal ores exported from the Port of Saldanha Bay include iron, lead, copper, zinc, and manganese. The Port of Saldanha currently has the capacity to export up to 60 million tonnes of iron ore per year but is in the process of upgrading the infrastructure to support an annual export of 80 million tonnes. However, the Transnet Port Terminals have thus far been unsuccessful in obtaining a variation to their existing Air Emission License (AEL) applicable to the Iron Ore Terminal for the storage and handling of coal and ore. The latest application was for the increase of handling and storage of coal and ore to 67 million tonnes per annum and was accompanied by an impact assessment and public participation process. The competent authority denied TPT the amendment concluding that environmental impacts at the current production level are already too high.

Disposal of wastewater is a major problem in the region, and much of it finds its way into the Bay as partially treated sewage, storm water, industrial effluent (brine, cooling water discharges and fish factory effluent) and ballast water. Until recently sewage discharge was arguably the most important waste product that is discharged into Saldanha Bay in terms of its continuous environmental impact. Sewage is harmful to biota due to its high concentrations of nutrients which stimulate primary production that in turn leads to changes in species composition, decreased biodiversity, increased

dominance, and toxicity effects. The changes to the surrounding biota are likely to be permanent depending on distance to outlets and are also likely to continue increasing in future given the growth in industrial development and urbanisation in the area. During the recent drought in the Western Cape, however, industry and local municipalities came together to investigate the feasibility of reclaiming industrial grade and potable freshwater from treated sewage in Saldanha Bay. Major infrastructural changes are required for the re-cycling of treated sewage and are associated with significant initial as well as ongoing fiscal investments. Budgetary constraints experienced by local municipalities were overcome by means of a public-private partnership. The majority of the wastewater is being used for irrigation, and current water users receiving treated effluent include: the Weskus School, Saldanha Sports Ground (Stadium and practise field), Blue Bay Lodge and the Langebaan Country Estate. It is reported that no effluent from The Langebaan Wastewater treatment works is entering the Bay. In contrast, the balance of treated effluent from Saldanha WWTW not used for irrigation is currently discharged into the Bok river and ultimately ends up in the ocean, however, SMB has identified a future user for the treated effluent and an allocation has been made available to them.

Ballast water discharges are by far the highest in terms of volume and have been increasing year on year due to constant and increasing shipping traffic. Ballast water often includes high levels of contaminants such as trace metals and hydrocarbons, and, along with the vessels that carry the ballast water, serves to transport alien species from other parts of the world into Saldanha Bay. Ballast water discharges can, however, be effectively managed and the remit of the International Maritime Organisation (IMO) is to reduce the risks posed by ballast water to a minimum through the direct treatment of the water while on board the ship, as well as by regulating the way in which ballast water is managed while the ship is at sea. Although no domestic legislation is currently in place to regulate ballast water discharge, the Transnet National Port Authority in Saldanha Bay has implemented a number of mechanisms to track and control the release of ballast water into the harbour.

Dredging in Saldanha Bay has had tremendous immediate impact on benthic micro- and macrofauna, as particles suspended in the water column kill suspension feeders like fish and zooplankton. It also limits the penetration of sunlight in the water column and causes die offs of algae and phytoplankton. Furthermore, fine sediment can drift into the Langebaan Lagoon, changing the sediment composition, which in turn can directly and indirectly (through their food supply) affect wader birds in the lagoon. The damage caused by dredging is generally reversible in the long term, and although the particle composition of the settled material is likely to be different, ecological functions as well as major species groups generally return in time. Transnet intends to construct new port infrastructure to support the Industrial Development Zone (IDZ) and dredging activities are likely to commence in the near future.

Saldanha Bay is a highly productive marine environment and constitutes the only natural sheltered embayment in South Africa (Stenton-Dozey *et al.* 2001). These favourable conditions have facilitated the establishment of an aquaculture industry in the Bay. A combined 464 ha of sea space are currently available for aquaculture production in Outer Bay, Big Bay and Small Bay. With the support of finances and capacity allocated to the Operation Phakisa Delivery Unit, the Department of Agriculture Forestry and Fisheries established a sea-based Aquaculture Development Zone (ADZ) in Saldanha Bay. The ADZ areas comprise four precincts totalling 420 ha of new aquaculture areas in Saldanha Bay. Previously

allocated areas have been incorporated into the ADZ which now comprised a total area of 884 ha set aside for mariculture.

Historic studies as well as the State of the Bay surveys have shown that these culture operations can lead to organic enrichment and anoxia in sediments under the culture rafts and ropes. The source of the contamination is believed to be mainly faeces, decaying mussels and fouling species. The scale of the proposed ADZ is significant and environmental monitoring of the Bay should be intensified to prevent significant ecological impacts, as well as loss to the mariculture sector itself.

Each of the aspects summarised above are addressed in more detail in the various sections of this Chapter. The impacts of these various activities and discharges are evaluated against their potential threat to the ecological integrity of Saldanha Bay and Langebaan Lagoon. In some instances, proposed developments (including environmental impacts and proposed mitigation measures) detailed in previous reports have been omitted and the reader is referred to earlier State of Saldanha Bay and Langebaan Lagoon Reports for further information on these development proposals. This only applies to those developments and activities that have not changed significantly in the past year.

Concerns have been raised that cumulative impacts on the marine environment in Saldanha Bay have not been adequately addressed by many of recent development proposals. This applies especially to the cumulative impacts that will arise from future development within the Saldanha Bay IDZ and Aquaculture Development Zone (ADZ). Furthermore, the impact on the Saldanha Bay marine environment from projects that are primarily land-based, such as storage facilities for crude oil and liquid petroleum gas, has generally been underestimated or even ignored. It has been proposed that a more holistic management strategy is needed to deal with the piece meal Environmental Impact Assessments (EIA). Various environmental management instruments have been proposed for the Greater Saldanha Bay Area, including (1) a generic Environmental Management Programme (EMPr), (2) an Environmental Management Framework (EMF), (3) a Strategic Environmental Assessment (SEA), and (4) the declaration of a Special Management Area (Refer to Chapter 4 for more details on this). An Intergovernmental Task Team (IGTT) has been set-up to consider these and other proposals. If these management instruments are indeed implemented, measures for the conservation alongside rapid development of the Saldanha Bay area will be addressed more effectively.

3.2 Urban and industrial development

Saldanha grew from a small fishing village into a town that supports multiple industries largely as a result of the benefits it accrues from being a sheltered bay on an otherwise exposed coastline. The development of a large-scale industrial port in Saldanha Bay commenced with the construction of an iron ore export facility in the 1970s. The primary purpose of the port at that stage was to facilitate the export of iron ore as part of the Sishen-Saldanha Bay Ore Export Project. The first major development in the Bay towards the realisation of these goals was the construction of the Iron Ore Terminal and a causeway, built in 1975, that linked Marcus Island to the mainland, providing shelter for ore-carriers. The construction of the Iron Ore Terminal essentially divided Saldanha Bay into two sections: a smaller area bounded by the causeway, the northern shore and the ore terminal (called Small Bay); and a larger, more exposed area adjacent called Big Bay, leading into Langebaan lagoon (Figure 3-3).

In the late 1990s, a multi-purpose terminal (MPT) was completed, which was followed by an offshore fabrication facility. Existing facilities now include an oil import berth, three small craft harbours, a loading quay and a tug quay. Mariculture farms and several fish processing factories also make use of the Bay. Approximately 400 ha of Saldanha Bay were zoned for mariculture operations in 1997, the majority of which farm mussels and oysters. Development of the causeway and Iron Ore Terminal in Saldanha Bay greatly modified the natural water circulation and current patterns (Weeks *et al.* 1991b) in the Bay. Combined with increasing land-based effluent discharges into the Bay, these developments have led to reduced water exchange and increased nutrient loading of water within the Bay. More recently, Henrico & Bezuidenhout (2020) illustrate how the construction of the harbour altered the bathymetry within the Bay leading to an increased water depth of roughly 1.4 m, steeper surf zone slopes (as a result of erosion of the north eastern edge of the Bay) and a generally smoother, steeper bottom profile in the Bay (Chapter 7).

Aerial photographs taken in 1960 (Figure 3-1), 1989 (Figure 3-2) and in 2007 (Figure 3-3) clearly show the extent of development that has taken place within Saldanha By over the last 50 years. The current layout of the Port of Saldanha is shown in Figure 3-4. Future plans, including short term (2028) and long-term (Beyond 2048) goals for the development of the Bay are shown in Figure 3-5 and Figure 3-6, these were taken from the National Port Plans 2019 update (TNPA 2019).

Future industrial development of Saldanha Bay will be strongly driven by Operation Phakisa, which was launched in July 2014 by the South African Government with the goal of boosting economic growth and creating employment opportunities. Operation Phakisa is an initiative that was highlighted in the National Development Plan (NDP) 2030 to address issues such as poverty, unemployment and inequality in South Africa. "Phakisa" means "hurry up" in Sesotho emphasising the government's urgency to deliver. Operation Phakisa is a cross-sectoral programme, one of which is focused on unlocking the economic potential of South Africa's oceans through innovative programmes. Four critical areas were identified to further explore and unlock the potential of South Africa's oceans:

- 1. Marine transport and manufacturing;
- 2. Offshore oil and gas exploration;
- 3. Marine aquaculture; and
- 4. Marine protection services and ocean governance.

In line with this development, Transnet and Transnet National Ports Authority (TNPA) have thus far initiated three developments in the Port of Saldanha Bay related to oil and gas services as well as marine infrastructure repair and fabrication. These developments are described in more detail in the sections below. Furthermore, the established Saldanha Bay aquaculture industry will be expanded through the Saldanha Bay Aquaculture Development Zone (ADZ) under the auspices of Operation Phakisa (Section 3.8).

Figure 3-1 Composite aerial photo of Saldanha Bay and Langebaan Lagoon taken in 1960 (Source Department of Surveys and Mapping). Note the absence of the ore terminal and causeway and limited development at Saldanha and Langebaan.

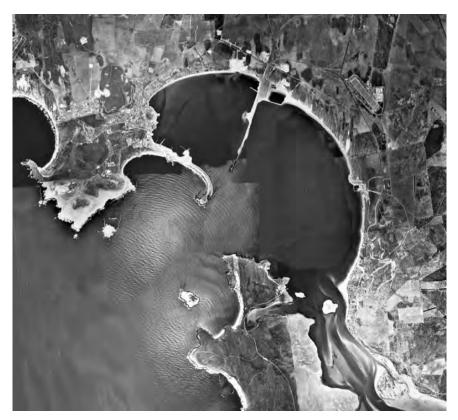


Figure 3-2 Composite aerial photo of Saldanha Bay and Langebaan Lagoon taken in 1989 (Source Department of Surveys and Mapping). Note the presence of the ore terminal, the causeway linking Marcus Island with the mainland, and expansion of settlements at Saldanha and Langebaan.

Figure 3-3 Composite aerial photo of Saldanha Bay and Langebaan Lagoon taken in 2007 (Source Department of Surveys and Mapping). Note expansion in residential settlements particularly around the town of Langebaan.

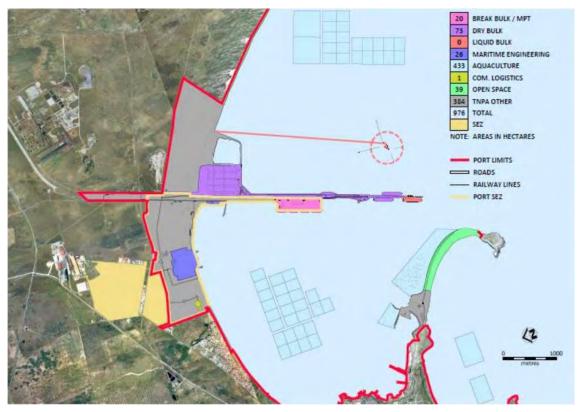


Figure 3-4 Current layout of Transnet Saldanha Bay Port (Source: Transnet National Port Authority 2019, National Port Plans 2019 update).

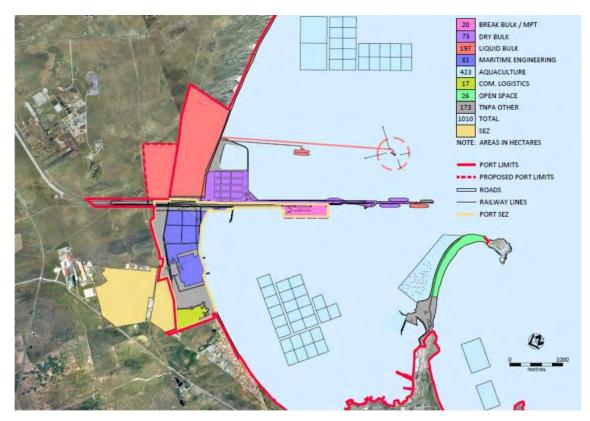


Figure 3-5 Short term layout (2028) of Transnet Saldanha Bay Port (Source: Transnet National Port Authority 2019, National Port Plans 2019 update).

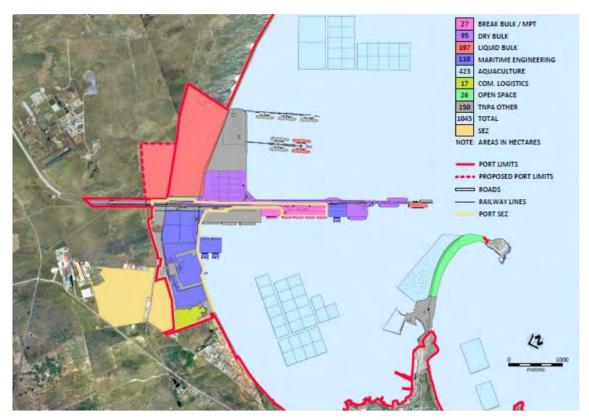


Figure 3-6 Long-term layout (2044) of Transnet Saldanha Bay Port (Source: Transnet National Port Authority 2019, National Port Plans 2019 update).

Data on population growth in the town of Saldanha and Langebaan Lagoon are available from the 1996, 2001 and 2011 census data. The population of Saldanha increased from 16 820 in 1996 to 21 636 in 2001 and to 28 135 in 2011, growth slowing from an initial rate of 5.7% per year in the first period to just 2.7% per year in the second (Statistics South Africa 2014). In contrast, the Langebaan population increased from 2 735 to 3 428 between 1996 and 2001 (2.5% per year), and rapidly from there up to 8 294 in 2011 (a growth rate of 9.24%/year) (Table 3.1) (Statistics South Africa 2014). The human population in Saldanha Bay, particularly that in Langebaan Village, is therefore expanding rapidly, which has been attributed to the immigration of people from surrounding municipalities in search of real or perceived jobs (Saldanha Bay Municipality 2011). These population increases are no doubt increasing pressure on the marine environment and the health of the Bay through increased demand for resources, trampling of the shore and coastal environments, increased municipal (sewage) and household discharges (which are ultimately disposed of in Saldanha Bay) and increased storm water runoff due to expansion of tarred and concreted areas.

Urban development around Langebaan Lagoon has encroached right up to the coastal margin, leaving little or no coastal buffer zone (Figure 3-7 and Figure 3-8). Allowing an urban core to extend to the waters' edge places the marine environment under considerable stress due to trampling and habitat loss. It also increases the risks of erosion due to removal of vegetation and interferes with certain coastal processes such as sand deposition and migration.

Expansion of tarred areas also increases the volumes of storm water entering the marine environment, which ultimately can have a detrimental effect on ecosystem health via the input of various contaminants and nutrients (See Section 3.6).

Table 3.1 Total human population and population growth rates for the towns of Saldanha and Langebaan from 2001 to 2011 (Statistics South Africa 2014).

Location	Total Population 1996	Total Population 2001	Total Population 2011	Growth 2001 – 2011 (%/yr.)
Saldanha	16 820	21 363	28 135	2.66
Langebaan	2 735	3 428	8 294	9.24

Figure 3-7 Satellite image of Saldanha (Small Bay) showing little or no set-back zone between the town and the Bay. Source: Google Earth.

Figure 3-8 Satellite image of Langebaan showing absence of development set-back zone between the town and the lagoon. Source: Google Earth.

Industrial and urban development in and around Saldanha Bay has been matched with increasing tourism development in the area, specifically with the declaration of the West Coast National Park, Langebaan Lagoon being declared a National Wetland RAMSAR site and establishment of holiday resorts like Club Mykonos and Blue Water Bay. The increased capacity for tourism results in higher levels of impact on the environment in the form of increased pollution, traffic, fishing and disturbance. Long-term data (2005 – 2021) on numbers of visitors to the West Coast National Park (WCNP) indicate strong seasonal trends in numbers of people entering the park, peaking in the summer months and December holiday period, and during the flower season in August and September (Figure 3-9). Paying day guests (excluding international visitors) and free guests¹ contribute the most to this seasonal pattern, while international guests and overnight guest numbers are relatively constant throughout the year. International and overnight guest numbers are considerably lower than the other visitor categories (Figure 3-9). The number of free guests has been increasing steadily over time and now equals the proportion of day guests, however, the recent data format shows that this category is likely made up of equal parts complimentary guests and guests with memberships, such as Wild Card holders (Figure 3-10). The popularity or overnight stays inside the park decreased substantially after 2009, reaching an all-time low in the last rolling year 2020/2021 with only 12 overnight guests on record. It should be noted that SANParks tourism data is now managed by national head office and the reporting structure has been standardised across all national parks. Total number of guests and wild card holder numbers were only available for 2018/19.

* ANCHOR

24

¹ These include Wild Card, school class, military personnel, official visits, staff, residents and 'other' entries.

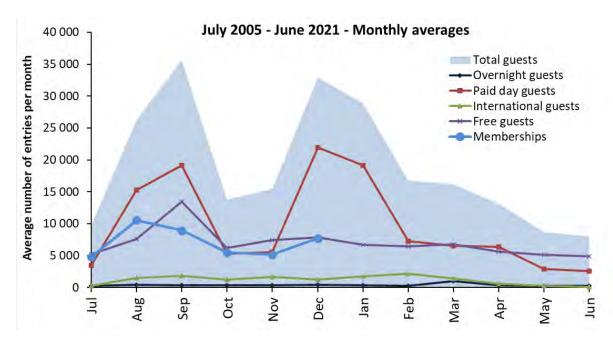


Figure 3-9 Monthly average numbers of entries into the West Coast National Park between July 2005 and June 2021. Paid day guests include all South African visitors (adults and children), while Overnight guests refer to those staying in SANParks accommodation. International guests include all SADC and non-African day visitors (adults and children) while the category 'Free guests' includes residents, staff, military, school visits, wild cards etc. Note that SANParks tourism data is now managed by national head office and the reporting structure has changed. (Source: Pierre Nel, WCNP).

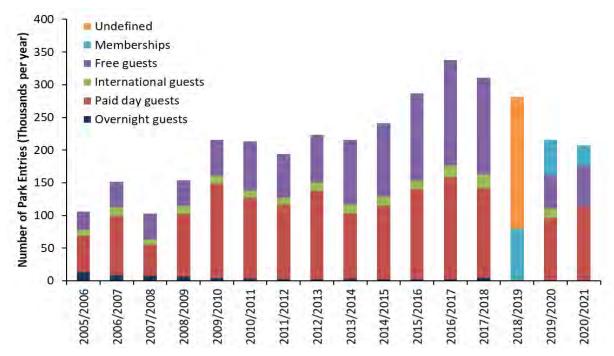


Figure 3-10 Numbers of entries into the West Coast National Park in a rolling 12-month periods from July 2005 until June 2020. Paid day guests include all South African visitors (adults and children) while Overnight guests refer to those staying in SANParks accommodation. International guests include all SADC and non-African day visitors (adults and children) while the category 'Free guests' includes residents, staff, military, school visits, wild cards etc. In 2018/2019 only total number of guests and wild card holders (Memberships) were recorded, however, this has changed with recent data again being categorised. 2019 – 2021 'Free guests' now divided into 'Complimentary' and 'Memberships' (Wild cards) (Source: Pierre Nel, WCNP).

Visitor numbers increased at an average rate of 13% per annum² until 2016/2017 which had a total of over 338 thousand visitors. Since then, the total number of visitors decreased steadily until 2018/2019 and then dropped by 23% in the 2019/2020 rolling year to just under 216 000 visitors, and by an additional 4% in the last rolling year 2020/2021 to under 207 000 visitors (Figure 3-10). This drop in visitor numbers over the last two rolling years in likely due to the COVID-19 Pandemic, patterns of which can be clearly seen when comparing the historical average monthly entries data to that of the last two rolling years (Figure 3-11). South African has been in varying degrees of lock-down since 27th March 2020, with hard lockdown, and the closure of all national parks extending through April and May of 2020, causing visitor numbers to drop to zero in these months (Figure 3-11). Additionally, the second wave of COVID infections within South Africa occurred over the December 2020 holidays, causing numbers at this time to drop to almost half that of the historical values for this period. Interestingly, visitor numbers during the 2020 spring flower season (August – September 2020/2021) were significantly higher than both historical values and those of the preceding year. It is likely due to the fact that national parks, provincial borders and tourism had only recently been re-opened and many people took the opportunity to escape the confines of lockdown. However, the annual total of international visitors to the park dropped to an all-time low in 2020/2021 as the COVID-19 restrictions strongly influenced international travel.

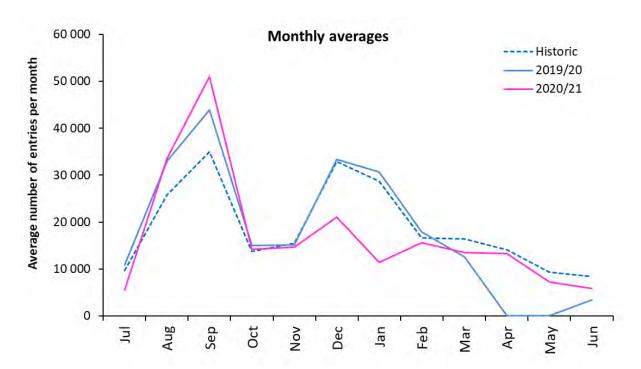


Figure 3-11 Monthly average numbers of entries into the West Coast National Park for the months July to June: historically (2005-June 2019) and for rolling years 2019/2020 and 2020/2021 (Source: Pierre Nel, WCNP).

26

² The average annual growth rate was calculated from the data reflecting the total numbers of tourists entering the West Coast National park in a rolling 12-month period.

In terms of the Municipal Systems Act 2000 (Act 32 of 2000) every local municipality must prepare an Integrated Development Plan (IDP) to guide development, planning and management over the five-year period in which a municipality is in power. A core component of an IDP is the Spatial Development Framework (SDF) which is meant to relate the development priorities and the objectives of geographic areas of the municipality and indicate how the development strategies will be co-ordinated. An SDF aims to guide decision making on an on-going basis such that changes, needs and growth in the area can be managed to the benefit of the environment and its inhabitants. The latest version of the Saldanha Municipality IDP covers the period 2017 – 2022 IDP. The latest SDF for the Saldanha Bay Municipality (SBM) was produced in 2011, reviewed in 2018 and is available on the municipality website. This document advocates a holistic approach to the development of the municipality, ensuring that the municipal spatial planning of the rural and urban areas is integrated for the first time since the establishment of the municipality. The Spatial Development Framework 2020 of the West Coast District Municipality was adopted at a Council meeting held on 27 May 2020.

A study by Van der Merwe *et al.* (2005) assessing the growth potential of towns in the Western Cape (as part of the provincial SDF) identified Langebaan and Saldanha as towns with high growth potential. It was estimated that, given the projected population figures, there would be a future residential demand of 9 132 units in Saldanha and 3 781 units in Langebaan. The SDF proposes addressing these demands by increasing the residential density in specified nodes in both towns and by extending the urban edge of Saldanha in a northerly direction towards Vredenburg, and that of Langebaan inland towards the North-East.

3.2.1 Frontier Power SA Gas to Power

The Risk Mitigation Independent Power Producer Procurement Program (RMIPPPP) was designed by the Department of Mineral Resources and Energy DMRE in order to fulfil the Minister's directive to procure 2,000MW of new generation capacity from a range of energy source technologies. In response to the Request for Proposals under the RMIPPPP sent on 23 August 2020, Frontier Power SA (RF)(Pty) Ltd submitted a bid for a Gas to Power facility on 22 December 2020. They proposed to construct and operate a circa (export capacity no greater than) 315MW Gas to Power Facility located in the Saldanha Bay Industrial Development Zone (IDZ). The Facility will utilise gas engine technology, with Liquid Petroleum Gas (LPG) as the fuel source and was proposed to be located on an historical quarry site on Farm 1238 (now Erf 16001), Saldanha Bay, with a LPG pipeline running from the adjacent existing Sunrise Energy LPG Storage Facility located on Farm 1237 (Erf 16000) to the power plant.

Under this bid the company was required to apply for an Environmental Authorization (EA) in terms of the National Environmental Management Act (NEMA) (Act 107 of 1998, as amended) and the Environmental Impact Assessment Regulations, 2014. Environmental Resources Management Southern Africa (Pty) Ltd (ERM) was appointed to conduct the Environmental Impact Assessment (EIA) for the Project and submitted the final EIA for adjudication to the department of Forestry, Fisheries and the Environment (DFFE) on 18 March 2021. The competent authority granted Environmental Authorisation (EA) for the project on the 5 July 2021. The acceptance is subject to a number of conditions, which, along with the reasons for the decision, are provided in the EA register number 14/12/16/3/3/2/2014.

3.2.2 Karpowership

In response to the Request for Proposals under the RMIPPPP sent on 23 August 2020, Karpowership SA (Pty) Ltd (Karpowership) was selected to provide electricity through three floating power stations in the ports of Richards Bay, Ngqura and Saldanha Bay. This would entail the generation of electricity from a floating mobile Powership moored in each Port and proposed two ships berthing in the Port of Saldanha Bay during the project lifespan, a Floating Storage Regasification Unit (FSRU) and one Powership, a Liquefied Natural Gas Carrier (LNGC).

Prior to the commencement of activities at the Port of Saldanha Bay, Karpowership applied for environmental authorisation and an atmospheric emission licence (AEL), with the final reports, required in terms of the National Environmental Management Act, Act no, 107 of 1998, as amended and the EIA regulations, submitted to the department for decision-making on 26 April 2021.

On June 23, 2021, the competent authority refused the application on the grounds that 1) the minimum requirements, specifically with regards to public participation, were not met, 2) actual and potential impacts on the environment and socio-economic conditions could not be properly evaluated (stating the lack of a proper underwater noise impact study as being a key concern), and 3) the effects of activities on the environment, the effectiveness of potential mitigation measures and whether or not the project would constitute a sustainable development, could not be adequately assessed due to a lack of relevant information.

3.2.3 The Saldanha Bay Industrial Development Zone

Saldanha Bay has long been recognised as a strategically important industrial centre in the Western Cape. This provided a strong foundation for the establishment of an Industrial Development Zone (IDZ) in October 2013. The Saldanha Bay IDZ is the first Special Economic Zone (SEZ) to be located within a port and is the only sector specific SEZ in South Africa catering specifically to the oil and gas, maritime fabrication and repair industries and related support services (Saldanha Bay IDZ 2019). The Saldanha Bay IDZ is managed by the Saldanha Bay IDZ Licensing Company (LiCo). The Saldanha Bay IDZ LiCo is the holder of an Environmental Authorisation (EA) for the development of an oil and gas offshore service complex (EA was granted on 16 November 2015). More information on the on the Saldanha Bay IDZ can be found in previous versions of the State of Saldanha Bay and Langebaan Lagoon report (AEC 2018).

At the time of the initial application for EA, it was not known which future operations and specific industries would be established within the Saldanha Bay IDZ. It was for this reason not possible to account for all possible activities in terms of the NEMA EIA Regulations that might be triggered by future developments or operations within the Saldanha Bay IDZ (SLR 2019). Recently, EA for the storage of dangerous goods/hazardous substances within the IDZ was granted on 2 August 2019. The appeal period was concluded on 26 August 2019.

The Saldanha Bay IDZ has the potential to impact on the marine environment in Saldanha Bay in numerous ways, including increased vessel traffic, which cumulatively contributes to underwater noise and invasive alien species transfer (via ballast water release); increased pollution of the Saldanha Bay through maintenance and repair activities, and storm water runoff. Although a detailed marine

ecological specialist study was not conducted as part of the EIA process, mitigation measures for these direct and indirect marine ecological impacts were included in the Final Environmental Impact Report (SLR 2016). Potential impacts that may occur as a result of the construction and operation of marine infrastructure associated with the Offshore Service Complex (OSC) is to be investigated in a separate EIA process undertaken by the TNPA at a later stage.

3.2.4 The Sishen-Saldanha oreline expansion project

Currently, iron ore is mined in Hotazel, Postmasburg and Sishen before being transported on a freight train 861 km to Saldanha Bay. From the train, it is loaded onto conveyor belts and then placed in stockpiles to be loaded into the holds of cargo ships. Transnet is currently installing a third iron ore tippler to ensure that 60 million tonnes per annum of iron ore can continue to be exported (GIBB 2013b) (refer to the 2014 State of Saldanha Bay and Langebaan Lagoon report for more information on this project).

Transnet in conjunction with six mining companies (Aquila Steel, Assmang, Kumba Iron Ore, PMG, Tshipi é Ntle and UMK) are now proposing an oreline expansion project. This would increase the capacity of the current Sishen-Saldanha railway and port from 60 to 88 million tonnes per annum in order to satisfy the global demand for iron ore (GIBB 2013). The Sishen-Saldanha oreline expansion project has three major components, namely a facility for emerging miners (mine-side ore loading), iron ore rail and a port Iron Ore Terminal (GIBB 2013). The three components of this project are currently still in the planning phase (refer to the 2014 State of Saldanha Bay and Langebaan Lagoon report for more information on this project). Transnet recently

Transnet recently increased the length of the Manganese ore train from 312 to 375 carriages, thereby increasing the volume of manganese transported during individual trips from roughly 19.5 thousand tonnes to roughly 23.5 thousand tonnes.

An increase in rail capacity will result in a greater volume of ore arriving in Saldanha and accordingly an increase in ship traffic will be necessary to transport this product globally. In 2020, 291 iron ore ships arrived and departed from the Iron Ore Terminal in the Port of Saldanha, exporting 56.9 million tonnes of iron ore (Section 3.3). The slight drop in ship numbers and overall export volumes as compared to 2019 (314 ships and 57.2 million tonnes) could be the result of restrictions places on the ports during the country wide COVID 19 lock down, as well as heavy storms and winds experienced during the winter months which resulted in a loss of 182 hours of load time (Mining Weekly August 2020).

3.2.5 Development of liquid petroleum gas facilities in Saldanha Bay

Liquid Petroleum Gas (LPG) is a fuel mix of propane and butane which is in a gaseous form at ambient temperature but is liquefied under increased pressure or by a temperature decrease. The LPG industry is currently expanding to provide an alternative energy source in South Africa and to reduce the pressure on South Africa's electricity grid. In line with the National LPG Strategy (DEA&DP 2014), 1.5 million households are aimed to convert to LPG over the next five years. These new developments will contribute cumulatively to existing impacts in Saldanha Bay such as stormwater runoff and

increased vessel traffic. The offloading of imported LPG in the harbour poses an additional pollution risk to ecosystems in Saldanha Bay.

Sunrise Energy (Pty) Ltd is currently building an LPG import facility in the Saldanha Bay Harbour and was scheduled to be completed in mid-2016 (Sunrise Energy (Pty) Ltd, Janet Barker, pers. comm. 2014). This development aims to supplement current LPG refineries and distributors in the Western Cape and ensure that industries dependant on LPG can remain in operation. An EIA process in terms of section 24 of the NEMA was initiated by ERM Southern Africa in 2012 and EA was granted on 13 May 2013 by the DEA&DP (refer to AEC 2014 for more information). The Draft EMPr for the project required that environmental/sediment monitoring be undertaken prior to and during installation of marine infrastructure to monitor effects on the surrounding environment, and that annual monitoring of environment/sediment in the vicinity of the marine facilities to assess any potential operational impacts on water quality. It was recommended that such monitoring be undertaken as part of the Saldanha Bay Water Quality Forum Trust's monitoring program, and this is currently underway. The bulk earthworks and construction commenced in January 2014, and installation of the marine infrastructure commenced in September 2017 (Sunrise Energy (Pty) Ltd, Janet Barker, pers. comm. 2015). Delays in this project have occurred due to unforeseen difficulties and legal issues with competitors Avedia Energy.

Avedia Energy developed a land based liquid petroleum gas storage facility on Portion 13 of Farm Yzervarkensrug No. 127 in Saldanha. The storage facility was designed to include 16 mounded bullet tanks with a storage capacity of 250 metric tonnes each (Frans Lesch, ILF Consulting Engineers, Project Manager at Avedia Energy Saldanha LPG plant, *Pers. Comm.* 2015) (refer to AEC 2014 for more information). Avedia Energy completed construction of their LPG storage facility in 2017 and upgraded the facilities to support an additional 6000 tonnes of LPG monthly in the second half of 2018.

3.2.6 Liquefied Natural Gas Import Facilities

The proposed Liquefied Natural Gas (LNG) Import Facilities aim to secure gas supplies to supplement land-based gas power plants, other industrial users and FPPs (ERM 2015b). This project constitutes phase two in national efforts to contribute towards meeting South Africa's electricity requirements. Phase two will allow for the development of medium- to long-term gas power plants outside of the port boundaries (Section 3.2.7) (ERM 2015a, 2015b). ERM provided stakeholders with a Background Information Document in October 2015 of which excerpts and illustrations are provided in previous AEC reports (ERM 2015a). The facilities will provide for the importation, storage, regasification and the transmission of natural gas to a distribution hub and will include both land-based (terrestrial) and marine-based components. Both, floating and land-based regasification technologies are currently considered for this project (refer to AEC 2017 and 2018 for more information on the infrastructure). A feasibility study for the Integrated Liquefied Natural Gas Importation and Gas-to-Power Project was completed in 2019 which demonstrated that there is a demand for natural gas for industrial processes as well as a likelihood of the development of new industries in Saldanha that would require natural gas (Delphos International 2019).

3.2.7 Gas fired independent power plant

The International Power Consortium South Africa (Pty) Ltd ("IPCSA") have proposed the construction of a Combined Cycle Gas Turbine (CCGT) power plant (1507 MW net capacity) as a solution to medium to long-term sustainability of Arcelor Mittal's Saldanha Steel and surrounding economy (ERM 2015c). The project is primarily a Liquefied Natural Gas (LNG) power supply project to the Saldanha Steel Plant (ERM 2015c). LNG will be supplied by ship to the Port of Saldanha, where it will be re-gased and then offloaded via a submersible pipeline either from a mooring area located offshore or a berthing location in the Port of Saldanha. ArcelorMittal South Africa obtained Environmental Authorisation (EA) from the National Department of Environmental Affairs (DEA) under the National Environmental Management Act (NEMA) (Act No. 107 of 1998) (as amended) through a Scoping and Environmental Impact Assessment (EIA) process on 24 February 2017.

It is anticipated that this project will connect to the Department of Energy's (DoE's) planned LNG import terminal in the Port of Saldanha (Section 3.2.6). Should this not occur, a separate EIA will be undertaken to permit the marine component of the import of LNG. Given the closure of the ArcelorMittal Steel Plant the marine component of the LNG import facility will likely require a separate EIA.

3.2.8 Crude oil storage facility

The Port of Saldanha reportedly represents an excellent strategic location to receive, store process and distribute crude oil from West Africa and South America (SouthAfrica.info 2013). Oil tanking MOGS Saldanha (RF) (Pty) Ltd (OTMS), a joint venture between MOGS (Pty) Ltd and OTGC Holdings (Pty) Ltd, are in the process of constructing a commercial crude oil blending and storage terminal with a total capacity of 13.2 million barrels, comprising twelve 1.1 million barrel in-ground concrete tanks in Saldanha Bay. The construction phase commenced at the beginning of 2015, but it is currently unknown when this project will be completed (refer to the 2014 State of Saldanha Bay and Langebaan Report for more information).

3.2.9 Elandsfontein phosphate mine

The Elandsfontein phosphate deposit is currently the second biggest known resource in South Africa. The deposit is located on the farm Elandsfontein 349, approximately 12 km to the east of Langebaan (Braaf 2014). The proposed mining area is located on the Elandsfontein Aquifer System (EAS) and in close proximity to the Langebaan Road Aquifer System (LRAS). These aquifer systems are defined by palaeo-channels that have been filled with gravels of the Elandsfontein Formation and represent preferred groundwater flow paths that feed into Langebaan Lagoon and Saldanha Bay, respectively (Braaf 2014). Consequently, the phosphate deposits underlie the groundwater table (i.e., within the saturated zone) (GEOSS, Julian Conrad, pers. comm. 2016).

The dominant application of phosphorus is in fertilisers and the demand in the agricultural sector is growing (Braaf 2014). Kropz Elandsfontein, previously known as Elandsfontein Exploration and Mining (Pty) Ltd. (EEM) commissioned Braaf Environmental Practitioners to facilitate the environmental authorisation process for the proposed Elandsfontein Phosphate project. Environmental

Authorisation (EA) was granted in February 2015 and a water use license in April 2017 (refer to the 2016 State of Saldanha Bay and Langebaan Lagoon Report for details on the project description, potential impacts on Langebaan Lagoon, and ongoing environmental monitoring).

The commissioning of the mine has been halted for an extended period due to a long delay in the issuing of the mine's water use license (Furlong 2017). An environmental non-governmental organisation, the West Coast Environmental Protection Association (WCEPA), lodged an appeal with the Water Tribunal, which found in November 2017 that there was a "prima facie basis" to challenge the licence. In addition, the tribunal found that temporary permission granted by the Department of Water and Sanitation in December 2017 was "questionable". The temporary permission referred to by Kropz as having been granted by the responsible authority appears to be questionable as only a water use licence or general authorisation allows a person to use water according to the National Water Act. The hearing was set for September 2019 and there is still question around the validity of the WUL as well as direct opposition, by local activists, environmental lawyers and the community, to the sustainability of the water use in a water-poor area. The general opinion remains that Kropz requires environmental authorisation under the National Environmental Management Act (NEMA) before any further work can be done.

Additionally, phosphate prices have reached a ten-year low, decreasing by almost 30% since the mining company was issued its mining right in January 2015. This, together with technical problems identified during the commissioning phase, has resulted in the temporary suspension of mining activities in Elandsfontein. Kropz intends to recommence operations in the 4th quarter of 2020 provided their WUL is granted/ re-instated.

Kropz Elandsfontein has adopted a precautionary approach and is carefully monitoring any potential impacts on Langebaan Lagoon in association with the Saldanha Bay Water Quality Forum Trust (SBWQFT). The State of the Bay monitoring activities undertaken by the SBWQFT have therefore been expanded to incorporate monitoring of various biological and physico-chemical variables to establish an appropriate baseline against which any potential future changes in the Lagoon can be benchmarked. This includes monitoring of salinity and biota (benthic macrofauna) at the top of the lagoon. The results are presented in Chapter 5 (Groundwater), Chapter 8 (Aquatic macrophytes) and Chapter 9 (Benthic macrofauna). Additionally, research into the impacts on groundwater are still underway by local hydrology experts, geohydrologists, the CSIR, independent researchers and consultants.

3.2.10 Zandheuvel phosphate mine

Adelaide Ruiters Mining & Exploration intends to develop a new phosphate mine 3 km outside of Louwville and 4.5 km north of Bluewater Bay. The intention is to mine phosphate on the Zandheuvel farm Portions 126 and 124, as well as on Witteklip and Yzervarksrug farms. The Mining Right application also includes apatite, quartz, calcite, feldspar, hematite/goethite, ilmenite, rutile, zircon, monazite, schorl (tourmaline), garnet, titanium oxide, limestone, sandstone, rare Earth elements and aggregates. These minerals are likely to be found on site as they are associated with the phosphate deposit in this area. The proposed mining methods are conventional truck and shovel open pit mining

and will not include blasting. Backfilling and rehabilitation will decrease the overall environmental footprint of the project.

Water requirements will be met by municipal treated wastewater to reduce the impact of the mining activities on availability of potable water in the area. The mine will require approximately 2 ML per day. The proposed project will include the mine itself, offices, a processing plant and an upgrade to the existing access road to the R79.

The Draft Scoping Report was submitted to the Department of Mineral Resources (DMR) in August 2018. Stakeholders had until 19 September 2018 to comment on the proposed development. Mining engineering consultants VBKOM were appointed in 2019 to conduct the feasibility study for the Mine and despite COVID-19 restrictions a drilling campaign for a pilot plant test was successfully conducted in July 2020. VBKOM are also supplying engineering support for the Environmental Impact Assessment which has not yet been published.

It was reported in 2019 that according to an Intergovernmental Task Team the probability of prospecting for this project occurring prior to 2022 was high (as confirmed by the drilling campaign and pilot plant test mentioned above) however, the probability of extraction occurring before 2022 was reported as low (DEA&DP 2019).

3.2.11 Manganese storage expansion

The Port of Saldanha is under the authority of Transnet Port Terminals (TPT). The terminals comprise the Iron Ore Terminal (IOT) and the Multi-purpose Terminal (MPT) and are positioned on a constructed jetty of approximately 4 km long that separates Big and Small Bay. Their main purpose of the IOT is the handling, storage, and export of iron ore and several other heavy minerals, metals and commodities. A maximum of 90 000 tonnes of manganese is currently being stored in two sheds at the MPT, with current annual throughput at around 400 000 t/a. Due to the global increased demand of manganese in addition to the fact that the MPT is currently being underutilised, TPT has decided to expand its operations and increase the storage of manganese in dedicated storage areas at the terminal to 450 000 tonnes. This will increase annual throughput to 8 million tonnes. This expansion is intended to supply in the global demand of manganese and in doing so provide major socioeconomic benefits to the Western Cape and South Africa.

The proposed development triggers several listed activities under Listing Notice 2 in the Environmental Impact Assessment Regulations promulgated in terms of the National Environmental Management Act. The proposed activity therefore requires a Scoping and Environmental Impact Assessment (S&EIA) and Environmental Authorisation (EA) from the competent environmental authority. Transnet Port Terminals is in the process of applying for Environmental authorisation for proposed expansion and a S&EIA is still underway.

3.2.12 TNPA projects under auspices of Operation Phakisa

Due to an increase in offshore activity in South Atlantic and West African waters, and the resulting demand for vessel repair facilities, the National Government and Transnet National Ports Authority (TNPA) proposed the development of new infrastructure at the Port of Saldanha in line with the objectives of Operation Phakisa. The new infrastructure is expected to include the following components:

- 1. A Vessel Repair Facility (VRF) for ships and oil rigs (Berth 205);
- 2. A 500 m long jetty at the Mossgas quay; and
- 3. A floating dry dock for inspection of Offshore Supply Vessels (OSV).

These three projects are described in more detail in Sections 3.2.12.1 – 3.2.12.3. The potential impacts on the marine environment associated with the VRF and the Mossgas Jetty are also summarised in Section 3.2.12.4. The development of Berth 205 and the Mossgas Jetty will require extensive dredging operations to allow large oil and gas vessels access to new berthing infrastructure. The total dredge area during construction for the long-term development scenarios for the Mossgas Jetty and Berth 205 was estimated by TNPA at approximately 2.6 million m³. This equates to the second largest dredge event in the history of Small Bay and is comparable to the dredging which commenced in 1996 for the construction of the MPT (Refer Section 3.3 for more information about dredging in Saldanha Bay).

3.2.12.1 Vessel Repair Facility (VRF) at Berth 205

At present, Vessel Repair Facilities (VRFs) in Saldanha Bay are limited to minor repairs of fishing vessels, although a few offshore rigs have been repaired at Berths 203, 204 and the MPT. In order to harness opportunities that exist in the vessel repair business, dedicated and purpose-built quays with associated bulk services and onshore back of port services are required. The location study identified the site immediately to the south of Berth 204 of the MPT (referred to here as Berth 205) as the preferred location, with the alternative being to the north (ARUP 2014) (Figure 3-12). According to ARUP (2014), the southern location has several engineering and logistical advantages over the other sites considered:

- Berth 205 is adjacent to the navigation channel to the MPT and to the dredge channel to the Iron Ore Expansion berth, which will keep dredging to a minimum.
- The location is within the Port security boundary simplifying access.
- In the event of the market failing to materialise, the facility could be incorporated into the MPT or could serve as an additional bulk export facility.

Possible disadvantages are as follows:

- Future expansion would be prevented if the Iron Ore Expansion Project were to proceed, although it would be possible to expand into the MPT.
- Vessels under repair could be impacted by vessels travelling to and from the MPT.
- High airborne dust concentrations at this site may damage vessels unless regularly washed down.

3.2.12.2 Mossgas Jetty

In 2009, a study was undertaken to identify the options and costs for the extension of the Mossgas yard in order to provide a 500-metre-long quay to form an offshore vessel repair facility (ZLH 2009). More recently, a pre-feasibility study reported an increasing demand for semi-submersibles, Floating Production Storage Offload Vessels (FPSOs) and jack-up platforms (ARUP 2016). This sparked the proposal of a complimentary offshore supply vessel repair facility adjacent to Mossgas Quay.

The pre-feasibility study considered three possible locations for the jetty (Figure 3-12):

- The eastern side of Mossgas Quay (preferred site);
- The western side of Mossgas Quay (alternative site); and
- At the existing Mossgas Quay (not feasible).

The existing Mossgas Quay option was eliminated due to current port operations and existing lease agreements. The western side of the Mossgas Quay was not preferred due to cost limitations and the current location of the marina. As sediment transportation adjacent to Mossgas is predominantly from west to east, more frequent maintenance dredging and a longer groyne would be necessary if the jetty is constructed to the west (ARUP 2016). A jetty positioned to the east is preferable to developers as costs are projected to be lower, while activity will be further away from designated aquaculture areas and the Bluewater Bay residential area (Figure 3-12).

3.2.12.3 Floating dry dock for the inspection of Offshore Supply Vessels

A floating dry dock is essentially a semi-submersible vessel that can adjust its ballasting to increase its draft to allow a vessel to manoeuvre into the main dock barrel. The floating dry dock is then deballasted to raise the vessel out of the water. The floating dry dock may be manoeuvred into deeper water to service larger vessels, therefore reducing the depth of dredging required at the ship maintenance site.

3.2.12.4 Marine Environmental Impact Assessment

The proposed impact sites are already moderately disturbed by shipping, pollution (including iron ore dust) and maintenance dredging. Despite these existing impacts and pressures, Small Bay should not be regarded solely as an industrial port. This area still provides valuable goods and services to the Saldanha Bay-Langebaan Lagoon system as a whole and is essential for the healthy functioning of the area.

Anchor Environmental Consultants (Pty) Ltd. were appointed by CCA Environmental (Pty) Ltd. (CCA) to conduct a marine environmental screening study for the construction of the VRF at Berth 205 and a 500 m long jetty in the vicinity of the existing Mossgas Quay in the Port of Saldanha (Laird & Clark 2016).

The study found that based on data reviewed from the Saldanha State of the Bay Report (Anchor 2015) and from hydrological and sediment modelling (ZAA 2016), impacts from construction at the 'preferred' and 'alternative' sites are unlikely to differ within a development option (i.e., Mossgas Jetty

east no different from Mossgas Jetty west and VRF north no different from VRF south) when viewed from a marine environmental perspective. In contrast, differences in the severity of some impacts are expected between the two projects (i.e., between Mossgas and the VRF at Berth 205).

For example, despite the fact that the proposed construction footprint at the Mossgas Jetty is 150% smaller than that at Berth 205, impacts were rated higher at the Mossgas Jetty due to the ecological importance of the intertidal and shallow subtidal area in the northern part of Small Bay and the relative scarcity of this habitat. Planned annual maintenance dredging at the Mossgas Jetty also elevated significance ratings by increasing the impact duration from short/medium-term to long-term. The shallow intertidal beach area in the northern section of Small Bay is crucially important for fish recruitment. If construction of the Mossgas Jetty is approved, up to 15% of the total nursery area in Small Bay will be lost. Although fish can potentially utilise similar habitat west of the proposed jetty, it is not clear whether this area will be sufficient to sustain increased densities of juvenile fish during a prosperous recruitment year. With the intention of preventing collapse of commercially important fish stocks such as white stumpnose (which are already declining in the Saldanha Bay-Langebaan Lagoon system), it is recommended that no further net loss of shallow intertidal beach habitat in Small Bay should be permitted after the completion of the Mossgas Jetty.

Other impacts that are considered as important include turbidity plumes created by dredging. The effects of increased Total Suspended Solids (TSS) in the water column during dredging can have severe impacts on the marine environment through the mobilisation of fine sediments, contaminants, nutrients and increased turbidity (Refer to Section 3.3 for more information). ZAA reported on the likely severity of an increased concentration of TSS at the dredge sites based on a settling rate of 0.45 mm/s (ZAA 2016). Due to the combination of mud and fine calcrete dust (which creates extensive white plumes when removed) known to be present in Small Bay, previous modelling studies applied settling rates of 0.1 and 0.2 mm/s for very fine (< 2 µm) and fine material, respectively (Anderson 2008). The substantially higher settling rate applied for the Berth 205 and Mossgas project is likely to result in an underestimation of the extent of the turbidity plume. Although modelled dredge volume was elevated to anticipated 'worst case scenario' by ZAA, the settling rate may not have been conservative enough considering the presence of the calcrete layer between 3 and 17 m in subsurface marine substrata in the construction footprint (ARUP 2014, 2016). Although deep sediments are unlikely to contain toxic levels of trace metals, excess fine sediments will intensify the impacts of smothering and increased turbidity. The study by Anchor Environmental therefore recommended that the sediment particle size included in the model is revised to take the estimated dredge volume of calcrete into account. For the construction phase, standard mitigation measures (i.e., real-time monitoring and installation of a silt curtain) for minimising the impact of turbidity plumes were recommended.

Figure 3-12 The Iron Ore Terminal (IOT), the multi-purpose terminal (MPT), the Dry Bulk Terminal (DBT) and the Liquid Bulk Terminal (LBT) separating Big Bay and Small Bay. The preferred (green) and alternative (orange) position of the Berth 205 VRF and the preferred (yellow) and alternative (blue) options for the proposed Mossgas Jetty are indicated (Adapted from: ARUP 2016).

3.3 Export of metal ores from the Port of Saldanha

Metal ores exported from the Port of Saldanha Bay include iron, lead, copper, zinc, and manganese. Most of the iron ore is exported from the Iron Ore Terminal (IOT) (Figure 3-13), while more recently a very small proportion has been exported from the *Multi-Purpose Terminal* (MPT) (Figure 3-14). The Port of Saldanha currently has the capacity to export up to 60 million tonnes of iron ore per year but is in the process of upgrading the infrastructure to support an annual export of 80 million tonnes (Section 3.2.4). Iron ore exports increased steadily from 20.7 to 53.7 million tonnes between 2003 and 2013, after which the rate on increase slowed and values fluctuated around 55 million, peaking at 57.2 million tonnes in 2019, and dropping to 53.2 million tonnes in 2021 (Figure 3-13, note that annual metal export is calculated based on the fiscal year, i.e., April – March).

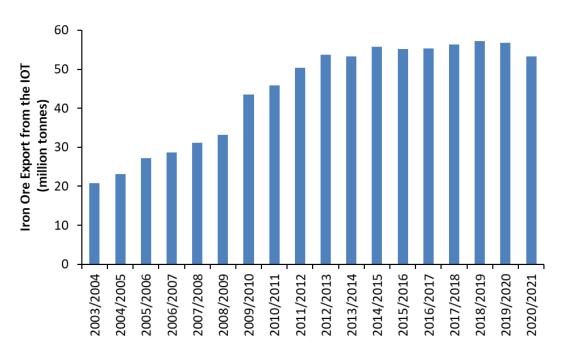


Figure 3-13 Annual exports of iron ore from the Iron Ore Terminal at the Port of Saldanha between April 2003 and March 2021 (Data provided by Transnet National Ports Authority 2021).

South Africa accounts for approximately 78% of the world's identified manganese resources, with Ukraine accounting for 10%, in second place. South Africa's manganese production increased from 4.2 million tonnes in 2004 to 13.7 million tonnes in 2016. Most of the locally produced manganese is exported (Chamber of Mines 2017). Manganese exports started in the 2013/14 fiscal year with a mass of 95 thousand tonnes exported (roughly 17.3% of the total MPT exports for that year), export masses increased substantially (by more than one third of the previous year) until 2017/18 after which they stabilised, averaging roughly 4270 thousand tonnes in the past 4 years. Despite a decline in the amount of manganese exported in 2020/2021 (Figure 3-14) this commodity still comprised approximately 81% of the total exports from the MPT in that fiscal year.

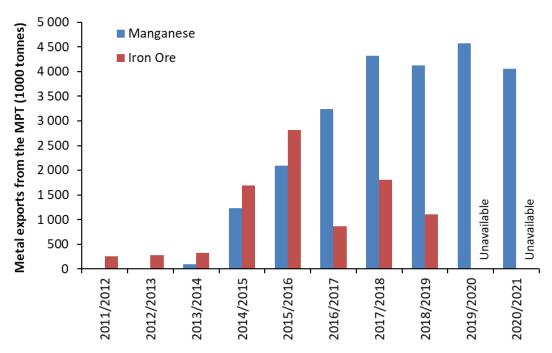


Figure 3-14 Annual exports (April 2011 – March 2021) of manganese and iron ore from the *multi-purpose terminal* at the Port of Saldanha Bay (Data provided by Transnet National Ports Authority 2021).

Lead, copper and zinc metal exports from the MPT increased steadily from 2007/8, peaking in 2012/13 before stabilising at an average of roughly 138.1 million tonnes between 2013/14 and 2018/19. In the 2019/20 fiscal year the copper and lead exports appear similar to previous years, however, the mass of Zinc exported increased dramatically to roughly 4.2 times that of previous years (Figure 3-15). In 2020/2021, the mass of copper and lead exports drop to approximately 80 and 57% of the previous year, respectively, while zinc exports increased to 127% of the previous year's export value. The increase in zinc exports is due to the fact that Vedanta Resources Limited, a natural resources company, opened a new Gamsberg opencast zinc mine in conjunction with the old underground mine. As a result, the volume of zinc export is expected to increase further in the next two years once phase two of the project is complete, pushing the zinc export volumes to roughly 1 million tonnes per annum (pers. comm. Pieter Venter, September 2021).

Initially only lead, copper and zinc were exported from the MPT, with lead and zinc exported in similar quantities, and copper the smallest proportion of the exported material until in 2019/20 when zinc export proportion increased dramatically (Figure 3-15). The export of combined lead, copper and zinc increased from 74 thousand tonnes in 2007/8 to 183 thousand tonnes in March 2013, after which it fluctuated around 141 thousand tonnes until the inclusion of the opencast Zinc concentrated in 2019/2020 (Figure 3-15). Individual annual export volumes for lead, copper and zinc are only available since 2010/11 (Figure 3-15). Lead exports remained stable around 80 thousand tonnes between 2010 and 2013 before dropping by nearly half in 2014 – 2016. Lead exports then recovered to approximately 60 thousand tonnes per annum by March 2020, however, dropped significantly it the last fiscal year to only 36 thousand tonnes by March 2021. Copper is exported in small quantities compared to other metal ores with exports averaging 22.7 thousand tonnes in the last 5 years. In 2011, Transnet started the export of iron from the MTP. Up until 2016, iron ore comprised on average 58% of the total exports from the MPT, although thereafter the MPT has been primarily used for

Manganese exports, with not Iron export data available for the MPT in the last two rolling years (Figure 3-14).

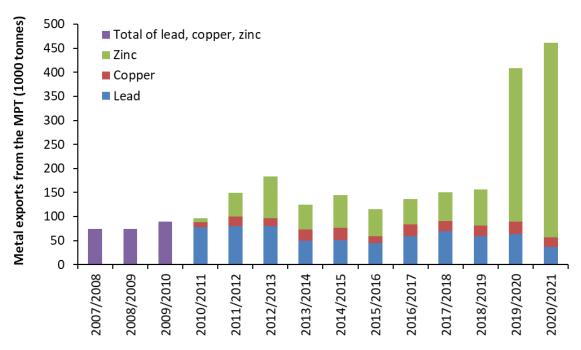


Figure 3-15 Annual exports (April 2007 – March 2021) of lead, copper, and zinc from the Multi-Purpose Terminal at the Port of Saldanha Bay. Note that separate data for these commodities was only available for April 2010-March 2021 (Data provided by Transnet National Ports Authority 2021).

3.3.1 Air quality management in Saldanha Bay

Suspended particles in the atmosphere eventually settle and result in pollution of the marine environment of Saldanha Bay and Langebaan Lagoon (direct settlement and stormwater runoff). Chemical processes in the water column facilitate the uptake of metals into the tissue of mariculture organisms destined for human consumption. Effective air quality management in Saldanha Bay is therefore considered an important component of water quality management in the study area.

The West Coast District Municipality acknowledged and accepted its responsibility in terms of Chapter 5 of the National Environmental Management: Air Quality Act, 2004 (Act 39 of 2004) (NEM: AQA) and fulfils the function of licensing authority in the area of jurisdiction of the West Coast District. Since the promulgation of NEM: AQA on 01 April 2010 the majority of atmospheric emission licences were issued within the Saldanha Bay Municipality.

Listing notice GN No. 893 of 22 November 2013 (as amended) published in terms of section 21 of NEM: AQA identifies certain categories of activities requiring an atmospheric emission licence and which must be compliant with minimum emission standards in terms of Part 3 of the Regulations. The storing, processing and handling of minerals is listed as a Category 5 activity and includes the storage of handling of ore and coal not situated on the premises of a mine or works as defined in the Mines Health and Safety Act 29 of 1996 (Subcategory 5.1). Licensing is, however, only required if the location is designed to hold more than 100 000 tonnes.

The main atmospheric emissions originate from the Iron Ore Terminal and the TPT currently holds a license for the storage and handling of 60 million tonnes of iron ore per annum which was issued on 5 February 2016. In line with the planned expansions of the iron ore export business, the TPT submitted an application for a variation to the existing AEL to increase the throughput from 60 to 67 million tonnes on 12 June 2018. As part of this application, TPT was required to submit an Air Quality Assessment Report (dated February 2018) and to conduct a public participation process. The application was denied by the competent authority on 12 September 2018 for a number of reasons. Most importantly, the impact assessment report demonstrated that during the monitoring period, National Dust Control Regulations for residential and non-residential fallout dust rates of 600 and 1200 mg/m² per day, respectively were exceeded. It was concluded that cumulative impacts going forward would be unacceptable considering the current impact of dust emissions. Furthermore, a total of approximately 400 complaints relating to property staining and 11 complaints regarding spillages were lodged between 2016 and 2018.

A Provisional Air Emissions Licence (PAEL) for the storage and handling of ore and coal, specifically Manganese (MN), at the Multi-Purpose Terminal (MPT) was issued by the air quality officer of the Department of Environmental Affairs on 26 September 2018 (Reference: AEL/WCP/TPT/26/06/2018-2387). The air quality impact assessment for the MPT conducted by WSP in December 2017 indicated that the annual average and 99th percentile of PM₁₀ (coarse particles smaller than 10 micrometres in diameter) and PM₂₅ concentrations associated with the storage of manganese were well below the relevant National Ambient Air Quality Standard in Saldanha Bay. However, the study also found that annual average manganese concentrations are predicted to exceed the annual World Health Organisation manganese guidelines at Bluewater Bay and the Saldanha Caravan Park, with annual average concentrations remaining below the guideline for other sites in the Bay. The PAEL was appealed in November 2018 by 15 appellants, the main concern being the "Harmful and health effects of manganese to people, water, aqua farms, tourism and businesses including the efforts to develop Saldanha Bay as a Green City and that a EIA should have been conducted'. In her appeal decision, dated January 2020 (Reference LSA 177442), the Minister of Environment, Forestry and Fisheries (Ms BD Creecy) decided that the appeal should be upheld and therefore the PAEL for the storage of Manganese ore should be set aside. Ms Creecy indicated that the activities required for the storage of Manganese in the port, specifically the need for the expansion of current storage facilities, should have triggered an EIA prior to the issuing of the PAEL. Given this, the quantity of Manganese being stored at the MPT has been significantly reduced.

The establishment of several small operations not requiring an Atmospheric Emissions License in the Saldanha Bay Municipality resulted in significant cumulative impacts on air quality. Users of the Bay and regulating authorities raised concerns, including but not limited to the uncovered transportation of materials through residential areas by rail or road.

To protect the consumers of mariculture organisms and the industry itself, the transportation, storage, handling and exporting of ore (more specifically, manganese ore) were investigated and discussed with role players in July 2016 at the Greater Saldanha Bay (GSB) Intergovernmental Task Team (IGTT). It was concluded that a guideline document be compiled in fulfilment of duty of care obligations specified in NEMA section 28.

The draft guideline document requires that all operators storing and handling ore below the 100 000-tonne threshold should inform authorities of the (i) transport mode (ii) frequency of incoming ore/coal and how much, (iii) average offloading frequency and (iv) storage capacities per month. The operator should also inform the authorities of increases in handling capacities or relevant infrastructural changes. The guideline further specifies that transportation, loading and offloading, storage and further distribution of ores, coal, concentrates and other dusty materials must be done in such a manner to avoid the spread of particulate matter:

- Transportation: Material transported by rail or road must be suitably covered to prevent the spread of windblown dust. The use of alternative methods to effectively contain material whilst in transit may be considered, on condition that the transporter provides documentation confirming that the alternative method ensures reliable and equivalent containment of the material to prevent windblown dust. In many instances existing transport corridors i.e., railway lines run through residential developments with the effect that the environment and human health and wellbeing are impacted on. The transportation of material through these corridors must be discouraged and if unavoidable, more stringent conditions such as containerisation should be considered. A suitably designed road vehicle washing facility to effectively remove particulate matter from wheels, wheel arches, mud flaps and undercarriages must be provided on the storage and handling site. Effluent from washing facility must be drained to a sump for re-use or safe disposal;
- Storage: Manganese and other potentially hazardous ores, and concentrates must be stored
 within an enclosed building on a hard, impervious surface graded and drained to a sump from
 where the effluent will be re-used or safely disposed of;
- Handling: Loading and offloading of materials can also be a significant source of dust emissions. Materials can be reclaimed by underfeed conveyor, grab crane or front-end loader with totally enclosed conveyors used to transport dust-forming material. Transfer by pneumatic, dense phase systems may also be used. The loading and offloading of material must as far as practically possible be done inside the enclosed storage facility. In instances where this is not practically possible, material must be offloaded into containers or onto trucks for direct transportation into the enclosed storage facility. The double handling of material must be avoided. The storage of potentially hazardous material (concentrates e.g., manganese and zinc) in open air stockpiles is not allowed. Approved dust suppression methods that result in zero visible emissions must be applied and the area used for this purpose must be provided with a suitably drained, hard and impervious surface such as concrete. Material spillages must be removed immediately and contained for re-use or safe disposal. Emergency spillage incidents must be reported to the relevant authorities in terms of section 30 of the National Environmental Management Act, 1998 (Act 107 of 1998). Excess contaminated water used for dust suppression must be drained to a sump from where it is collected for re-use or safe disposal.

The guideline also requires that dust fallout monitoring be conducted at the storage and handling location, the transport corridor, as well as within residential areas that are in close proximity to the transport corridor. Dust monitoring must be conducted as prescribed in the National Dust Control Regulations No. R. 827 of 1 November 2013 (as amended).

The draft guideline was presented on 5 April 2017 and stakeholders were given until the 18th April 2017 to provide written comment. The WCDM intends to promulgate the guideline as a policy

document under Section 30 of the WCDM Bylaw. The WCDM will be the competent authority once the guideline has been promulgated as a policy. The adoption and successful implementation of this guideline document will hopefully reduce metal contamination of the Saldanha Bay and Langebaan Lagoon marine environment with a positive impact on the existing and future mariculture sector. The 2nd generation West Coast District Municipality air quality management plan was published in June 2019 and is available on their website.

3.4 Dredging and port expansion

Dredging of the seabed is performed worldwide in order to expand and deepen existing harbours/ports or to maintain navigation channels and harbour entrances (Erftemeijer & Lewis 2006) and has therefore been touted as one of the most common anthropogenic disturbance of the marine environment (Bonvicini Pagliai *et al.* 1985). The potential impacts of dredging on the marine environment can stem from both the removal of substratum from the seafloor and the disposal of dredged sediments, and include:

- Direct destruction of benthic fauna populations due to substrate removal;
- Burial of organisms due to disposal of dredged sediments;
- Alterations in sediment composition which changes nature and diversity of benthic communities (e.g., decline in species density, abundance and biomass);
- Enhanced sedimentation;
- Changes in bathymetry which alters current velocities and wave action; and
- Increase in concentration of suspended matter and turbidity due to suspension of sediments. The re-suspension of sediments may give rise to:
 - o Decrease in water transparency
 - o Release in nutrients and hence eutrophication
 - Release of toxic metals and hydrocarbons due to changes in physical/chemical equilibria
 - o Decrease in oxygen concentrations in the water column
 - o Bioaccumulation of toxic pollutants
 - o Transport of fine sediments to adjacent areas, and hence transport of pollutants
 - Decreased primary production due to decreased light penetration to water column

Aside from dredging itself, dredged material may be suspended during transport to the surface, overflow from barges or leaking pipelines, during transport to dump sites and during disposal of dredged material (Jensen & Mogensen 2000 in Erftemeijer & Lewis 2006).

Saldanha Bay is South Africa's largest and deepest natural port and as a result has undergone extensive harbour development and has been subjected to several bouts of dredging and marine blasting as listed below (refer to AEC 2014 for more detailed information on the dredging events):

- 1974 1976: 25 million m³ of sediment was dredged during the establishment of the ore terminal;
- 1996 1997: 2 million m³ of sediment was removed for the expansion of the multi-purpose terminal;

- 2005 2007: 380 000 m³ sediment removed from Big Bay for the nourishment of Langebaan Beach;
- 2007 2008: 50 000 m³ of sediment was removed for maintenance of the Mossgas quay and multi-purpose terminal;
- 2009 2010: 7300 m³ of sediment was removed to allow for the establishment of a new ore-loading berth;
- 2009 2010: Maintenance dredging (unknown quantity) conducted by the South African National Defence Force (SANDF) at the Salamander Bay boatyard;
- 2015 2016: 25 000 m³ Expansion of the General Maintenance Quay;
- 2019: 14 265 m³ of sediment was removed for maintenance of the OSSB quay;
- 2019 2020: 6403 m³ of sediment was removed for maintenance of the Mossgas channel; and
- 2020: 13 433 m³ of sediment was removed for maintenance of the OSSB channel.

The most recent dredging occurred in September and October 2019 and February 2020, 20 668 m³ of sediment was dredged for the upkeep and maintenance of the OSSB quay and channel and the Mossgas channel. No additional dredging has occurred since February 2020.

3.5 Shipping, ballast water discharges, and oil spills

Shipping traffic comes with a number of associated risks, especially in a port environment, where the risks of collisions and breakdowns increase owing to the fact that shipping traffic is concentrated, vessels are required to perform difficult manoeuvres, and are required to discharge or take up ballast water in lieu of cargo that has been loaded or unloaded. Saldanha Bay is home to the Port of Saldanha, which is one of the largest ports in South Africa receiving more than 500 ships per annum. The Port is comprised of an Iron Ore Terminal for export of iron ore, an oil terminal for import of crude oil, a multi-purpose terminal dedicated mostly for export of lead, copper, zinc and manganese concentrates, and the Sea Harvest/Cold Store terminal that is dedicated to frozen fish products (Figure 3-4). There are also facilities for small vessels within the Port of Saldanha including the Government jetty used mostly by fishing vessels, the Transnet-NPA small boat harbour used mainly for the berthing and maintenance of Transnet-NPA workboats and tugs, and the Mossgas quay. Discharge of ballast by vessels visiting the Iron Ore Terminal in particular poses a significant risk to the health of Saldanha Bay and Langebaan Lagoon.

3.5.1 Shipping and ballast water

Ships carrying ballast water have been recorded since the late nineteenth century and by the 1950s had completely phased out the older practice of carrying dry ballast. Ballast is essential for the efficient handling and stability of ships during ocean crossings and when entering a port. Ballast water is either freshwater or seawater taken up at ports of departure and discharged on arrival where new water can be pumped aboard, the volume dependant on the cargo load. The conversion to ballast water caused a new wave of marine invasions, as species with a larval or planktonic phase in their life cycle were now able to be transported long distances between ports on board ships. Furthermore,

because ballast water is usually loaded in shallow and often turbid port areas, sediment is also loaded along with the water and this can support a host of infaunal species (Hewitt et al. 2009). The global nature of the shipping industry makes it inevitable that many ships must load ballast water in one area and discharge it in another, which has an increasing potential to transport non-indigenous species to new areas. It has been estimated that major cargo vessels annually transport nearly 10 billion tonnes of ballast water worldwide, indicating the global dimension of the problem (Gollasch et al. 2002). It is estimated that on average, 3 000 - 4 000 species are transported between continents by ships each day (Carlton & Geller 1993). Once released into ports, these non-indigenous species have the potential to establish in a new environment which is potentially free of predators, parasites and diseases, and thereby out compete and impact on native species and ecosystem functions, fishing and aquaculture industries, as well as public health (Gollasch et al. 2002). Invasive species include planktonic dinoflagellates and copepods, nektonic Scyphozoa, Ctenophora, Mysidacea, benthos such as annelid oligochaeta and polychaeta, crustacean, brachyura and molluscan bivalves, and fish (Carlton & Geller 1993). Carlton & Geller (1993) record 45 'invasions' attributable to ballast water discharges in various coastal states around the world. In view of the recorded negative effects of alien species transfers, the International Maritime Organisation (IMO) considers the introduction of harmful aquatic organisms and pathogens to new environments via ships ballast water as one of the four greatest threats to the world's oceans (Awad et al. 2003). In addition, it has been emphasised that the link between marine alien species and harbours (just over half of the alien species in South African marine waters are located in harbours) highlights the role of shipping as a method by which these alien species are introduced (Robinson et al. 2020).

A recent update on the number of alien marine species present in South Africa lists 95 alien species as being present in this country, of which 56 species have spread outside of their original point of introduction and are considered invasive i.e., population are expanding and are consequently displacing indigenous species (Robinson *et al.* 2020). The West Coast of South Africa is the most invaded region with 67 recorded alien species. The presence of five new alien species — the barnacle *Perforatus*, the Japanese skeleton shrimp *Caprella mutica*, the North West African porcelain crab *Porcellana africana*, the Chilean stone crab *Homalaspis plana* and the South American sunstar *Heliaster helianthus* — have been confirmed in Saldanha Bay and Langebaan Lagoon since 2014. With these recent additions, the list of alien species present in Saldanha Bay and/or Langebaan Lagoon, is updated to a total of 29. All of these except three are considered to be invasive. It should be noted that *P. africana* was previously misidentified as the European porcelain crab, *P. platycheles*. Other noteworthy invasive alien species that are present in Saldanha Bay include the Mediterranean mussel *Mytilus galloprovincialis*, the barnacle *Balanus glandula*, the Pacific mussel *Semimytilus algosus* and the *Western pea crab Rathbunixa occidentalis*, formerly *Pinnixa occidentalis*.

Recently, Peters *et al.* (2014) established that the brachiopod *Discinisca tenuis*, previously only known to occur in aquaculture facilities, has spread into the port of Saldanha and on the leeward side of Schaapen Island (Peters *et al.* 2014). Most of the introduced species are found in sheltered areas such as harbours and because ballast water is normally loaded in sheltered harbours, the species that are transported also originate from these habitats and thus have a difficult time adapting to South Africa's exposed coast. This might, in part, explain the low number of introduced species that have become invasive along the coast (Griffiths *et al.* 2008). Most introduced species in South Africa occur along the west and south coasts, very few having been recorded east of Port Elizabeth. This corresponds with the predominant trade routes being between South Africa and the cooler temperate regions of

Europe, from where most of the marine introductions in South Africa originate (Awad *et al.* 2003). More detail on alien invasive species in Saldanha Bay is provided in Chapter 13.

Other potential negative effects of ballast water discharges are contaminants that may be transported with the water. Carter (1996) reported on concentrations of trace metals such as cadmium, copper, zinc and lead amongst others that have been detected in ballast water and ballast tank sediments from ships deballasting in Saldanha Bay. All parameters measured in 1996 exceeded the current South African Water Quality Guidelines for the Marine Environment (DEA 2018) (Table 3.2). These discharges are almost certainly contributing to trace metal loading in the water column and are indicated by their concentration in filter-feeding organisms in the Bay (refer to Chapter 6).

Table 3.2 Mean trace metal concentrations in ballast water (μg/l) and ballast tank sediments from ships deballasting in Saldanha Bay (Source: Carter 1996) and SA Water Quality Guideline limits (DEA 2018). Those measurements in red denote exceedance of these guidelines.

	Water (μg/L)	SA WQ Guideline limit (µg/L)	Sediment	ERL Guideline (mg/kg)
Cd	5	0.12	0.040	1.2
Cu	5	3	0.057	34
Zn	130	20	0.800	150
Pb	15	2	0.003	46.7
Cr	25	2	0.056	-
Ni	10	5	0.160	20.9

To address the above environmental impacts and risks, the International Convention for the Control and Management of Ship's Ballast Water and Sediments of 2004 (BWM Convention) was ratified by 30 states representing 35% of the world merchant shipping tonnage (IMO 2015). The BWM Convention provides for standards and procedures for the management and control of ballast water and sediments carried by ships, which are aimed at preventing the spread of harmful aquatic organisms from one region to another.

Under the BWM Convention all vessels travelling in international waters must manage their ballast water and sediment in accordance with a ship-specific ballast water management plan. It is required that every ship maintains a ballast water record book and holds an international ballast water management certificate. Ballast water management standards and treatment technology are slowly being implemented, but in the interim ships are required to exchange ballast water mid-ocean. Parties to the BWM Convention are given the option to take additional measures to those described above and which are subject to criteria set out in the BWM Convention and to the guidelines that have been developed to facilitate implementation of the Convention.

South Africa ratified to this Convention, but it took almost a decade until the Draft Ballast Water Management Bill was published in the *Government Gazette* in April 2013 (Notice 340 of 2013) aimed to implement the BWM Convention. The public comments period for the bill was extended in February 2017 (Notice 111 of 2017), however, the Draft Bill has not yet been promulgated. The Department of Transport is the authority responsible for administration of this Act. Detailed

information on the Draft Bill can be found in previous versions of the State of Saldanha Bay and Langebaan Lagoon report (AEC 2018).

A study examining the status of ballast water management in South African ports discovered that there was a lack of publicly accessible documentation which detailed the requirements for ballast water management in numerous South African ports with the exception of Saldanha Bay (Calitz 2012). This documentation was prepared for the Port of Saldanha during a 2002 pilot study called GloBallast (Global Ballast Water Management Programme, Calitz 2012).

In the absence of domestic legislation regulating ballast water discharge, the Transnet National Port Authority in Saldanha Bay implements the following measures to control the release of alien species into the harbour:

Procedure to follow when granting permission for international vessels to enter the Port of Saldanha:

- 1. The agent shall request, 72 hours in advance, permission for de-ballasting operations.
- 2. The TNPA Pollution Officer or the Marine Safety Specialist shall grant or declined permission after scrutinizing the Ballast Water Reporting Form, Ship Particulars & Port of Call list.
- 3. The TNPA must confirm the ballast water intake location.
- 4. The Pollution Officer shall board the vessel and check the relevant documentation and seal all overboard valves with a unique TNPA seal.
- TNPA may board the vessel and check the running hours of the ballast water pump against
 the ballast water logbook should there be any concern regarding the ballast water of the
 vessel.
- 6. Should the vessel not comply with the Harbour Master's written Instructions or the IMO requirements, the TNPA shall request the Captain of the vessel to comply before permission is granted to conduct de-ballasting operations at the Port of Saldanha.

Ballast water carried by ships visiting the Port of Saldanha is released in two stages - a first release is made upon entering Saldanha Bay (i.e., Big Bay) and the second once the ship is berthed and loading (Awad *et al.* 2003). As a result, as much as 50% of the ballast water is released in the vicinity of the iron ore quay on either the Small Bay side or Big Bay side of the quay depending on which side the ship is berthed.

The total number of ships entering the Port of Saldanha nearly doubled between 1994 and 2011 from 261 to 487 vessels, after which ship numbers remained fairly constant until 2017/18 when numbers increased by 25% from 474 to 591 vessels per annum (Figure 3-16). While vessel numbers in 2018/19 increased further to 616, the total number of ships dropped slightly to 571 & 572 vessels in 2019/20 and 2020/21, respectively. It is possible that this decline in numbers is as a result of the global COVID 19 pandemic. Overall, iron ore tankers contributed 51% to the observed vessel traffic in 2020/21 and 91% to the total water discharged between July 2018 and June 2019 (specific vessel discharge volumes are not available for 2019/20 and beyond, see Figure 3-16 and Figure 3-17). Iron ore tankers are large vessels and hold the highest quantities of ballast water.

Average vessel size increased over the years and as a result, the volume of ballast water discharged annually almost tripled between 1994/5 and 2010/11 from 8.2 to 21.1 million tonnes (Figure 3-17). Since 2011, ballast water discharge has remained fairly stable averaging around 23 million tonnes per

annum, peaking in 2017/18 (25.1 million tonnes) and then declining in the two subsequent years to 24.2 million tonnes in 2019/20 (Figure 3-17).

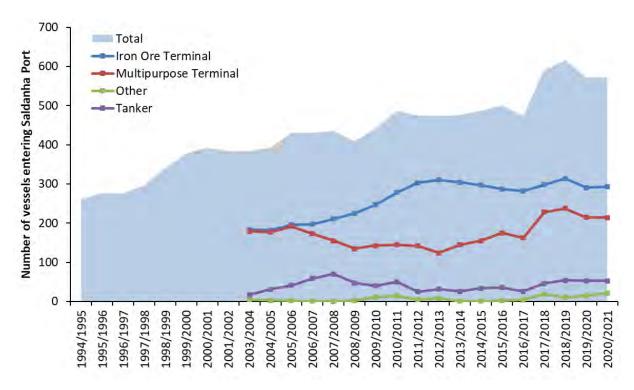


Figure 3-16 The numbers and types of vessels entering Saldanha Port per year. The total number of vessels entering Saldanha Port between July 1994 and June 2021 is shown as the blue area. The numbers of vessels docking at the Iron Ore Terminal, the *multi-purpose terminal*, tankers and other vessels are shown in blue, red, green and purple, respectively. Data for the different types of vessels is only available from 2003 onward (Sources: Marangoni 1998, Awad *et al.* 2003, Transnet-NPA unpublished data 2003 – 2021).

Data provided by Transnet indicate that the total volume of Ballast water in the 2020/21 rolling year dropped to 9.8 million tonnes, or to 40% of the previous year's total volume of Ballast discharged. This value was queried, given that the number of vessels did not change significantly between the two years (Figure 3-16). However, it is reported that there has been no change in the 2020/21 discharge process (Pers. Comm. Deidre Isaacs, Marine Safety Specialist, TNPA), leading us to believe that this value is erroneous. Vessels docking at the Iron Ore Terminal have a higher average volume of ballast water discharge than other vessel types, with volumes increasing from 54.4 thousand tonnes per vessel in 2003/4, peaking at 78.6 thousand tonnes in 2015/16 and dropping to 71.2 thousand tonnes in 2018/19 (Figure 3-18). While discharge volumes for Tankers fluctuates irregularly ranging between zero and 21.8 thousand tonnes, vessels docking at the Multipurpose Terminal showed low average ballast discharge volumes between 2003/4 and 2010/11 (less than three thousand tonnes) before increasing in size until 2016/2017 (12.6 thousand tonnes) and dropped in the two subsequent years to 9.6 thousand tonnes in 2018/19 (Figure 3-18). Only total ballast water volumes for the entire port were available for 2019/20. When comparing the average discharge for all vessels combined in 2019/20 to similar data for the period 1994/5 to 2001/2, we see that volumes have increased by more than one third of historic volumes before dropping off significantly to well below historical average values in 2020/21 due to the lower overall ballast (Figure 3-18).

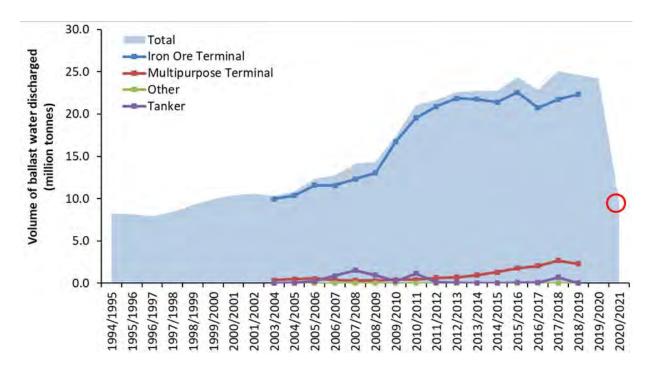


Figure 3-17 Volumes of ballast water discharged into Saldanha Port per rolling year. The total amount of ballast water discharged in Saldanha Port between the years 1994 and June 2021 is shown as the blue area. Ballast water discharged by vessels docking at the Iron Ore Terminal, the *multi-purpose terminal*, tankers and other vessels are shown in blue, red, green and purple, respectively. Data for the different types of vessels is only available from 2003 to June 2019 (Sources: Marangoni 1998, Awad *et al.* 2003, Transnet-NPA unpublished data 2003 – 2021).

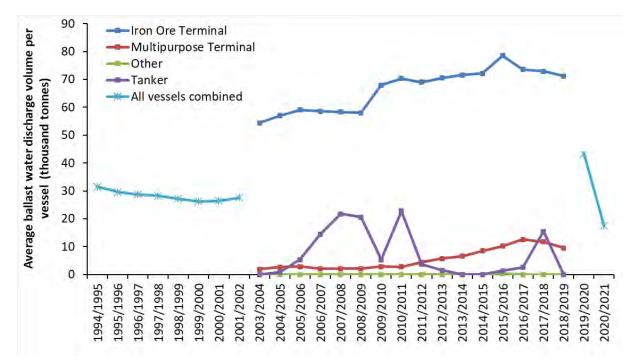


Figure 3-18 Average ballast water volumes discharged per vessel into Saldanha Port per year. The total amount of ballast water discharged in Saldanha Port between the years 1994 and June 2002, and for 2019 – 21 is shown as the blue line. Ballast water discharged by vessels docking at the Iron Ore Terminal, the *multi-purpose terminal*, tankers and other vessels are shown in blue, red, green and purple, respectively. Data for the different types of vessels is only available from 2003 to 2019, (Sources: Marangoni 1998, Awad *et al.* 2003, Transnet-NPA unpublished data 2003 – 2021).

3.5.2 Oil spills

Also associated with this increase in shipping traffic, is an increase in the incidence and risk of oil spills. In South Africa there have been a total of five major oil spills, two off Cape Town (1983 and 2000), one in the vicinity of Dassen Island (1994), one close to the St. Lucia estuary in KwaZulu-Natal (2002) and one in the Goukamma Nature Reserve (2013). No comparable oil spills have occurred in Saldanha Bay to date (SAMSA, Martin Slabber *pers. comm.*). Minor spills do occur however, which have the potential to severely impact the surrounding environment. In April 2002, about 10 tonnes of oil spilled into the sea in Saldanha Bay when a relief valve malfunctioned on a super-tanker. Booms were immediately placed around the tanker and the spill was contained. More recently in July 2007, a Sea Harvest ship spilled oil into the harbour while re-fuelling, the spill was managed but left oil on rocks and probably affected small invertebrates living on the rocks and in the surrounding sand.

In 2007 Transnet National Ports Authority and Oil Pollution Control South Africa (OPC), a subsidiary of CEF (Central Energy Fund) signed an agreement which substantially improved procedures in the event of oil spills and put in place measures to effectively help prevent spills in the Port of Saldanha. These are laid out in detail in the "Port of Saldanha oil spill contingency plan" (Transnet National Ports Authority 2007). The plan is intended to ensure a rapid response to oil spills within the port itself and by approaching vessels. The plan interfaces with the "National oil spill contingency plan" and with the "Terminal oil spill contingency plan" and has a three-tiered response to oils spills:

Tier 1: Spill of less than approximately 7 tonnes

Response where the containment, clean up and rescue of contaminated fauna can be dealt with within the boundaries of the vessel, berth or a small geographical area. The incident has no impact outside the operational area but poses a potential emergency condition.

Tier 2: Spill between 7 – 300 tonnes

Response where the nature of the incident puts it beyond the containment, clean up and rescue of contaminated fauna capabilities of the ship or terminal operator. The containment of clean up requires the use of some of or the government and industry resources.

Tier 3: Spill in excess of 300 tonnes.

Response where the nature of the incident puts it beyond containment, clean up and rescue of contaminated fauna capabilities of a national or regional response. This is a large spill which has the probability of causing severe environmental and human health problems.

Upon entry to the port, all vessels undergo an inspection by the Pollution Control Officer to minimise risks of pollution in the port through checking overboard valves and ensuring the master and crew of the vessel are familiar with the Port's environmental requirements. Every tanker is contained by booms while oil is being pumped. Immediate containment of any minor spills is thereby ensured (SAMSA, Martin Sabber, *pers. comm.*). The OPC has facilities and equipment to effectively secure an oil spill as well as for the handling of shore contamination including oiled sea birds and beach-cleaning equipment. However, given the environmental sensitivity of the Saldanha Bay area, particularly Langebaan Lagoon, prevention is the most important focus (CEF 2008). The implementation of Floating Power Plants (FPPs) (Section 3.2.7) will increase the risk of oil spills (frequency and magnitude) unless the Environmental Management Programme contains effective mitigation measures and implementation is ensured.

Pollution incident at government jetty slipway reported by Sea Harvest

In early July of 2020 is was reported that a pollution incident had occurred on the Government jetty slipway. According to reports, high tidal intrusion caused an over-full bin (located adjacent to the ship repair facility) to be knocked over. As a result, the contents of the bin which included pieces of sponge and domestic waste were observed floating in the adjacent water. In addition, an oily-fatty solution coated the slipway, and was seen running down into the water of the Bay and forming an oily slick on the water surface towards the quay side of the Sea Harvest Operations plant. Although the harbour master sent out a small boat to retrieve the sponges and domestic waste, the presence of the oily slick on the water surface reduces water quality and can prevent the abstraction of water from the Bay for use in the Sea Harvest Desalination plant.

Incidents such as this are not uncommon and poor operational management practices at the ship repair facility (based on the slipway next to Sea Harvest) have previously been reported. The facility appears to lack appropriate structures or procedures to contain waste and other materials (fouling material, paint, oil etc.) generated during ship maintenance operations. This is of great concern as continuous or repetitive pollution input at the slipway could threaten the quality of the oysters and mussels in adjacent aquaculture farms as well as having negative impacts for the Sea Harvest desalination plant. Therefore, it is strongly suggested that this matter be investigated, and that the facility is better managed in future. Potential mitigation measures include: 1) the retention and storage of oily/contaminated runoff from the vessels on the slipway in steel drums in an appropriate storage facility with retaining bund walls and 2) the installation of separate bins for domestic waste located at a suitable distance from the water to prevent tidal disruption and with lids to prevent the distribution of waste via wind.

3.5.3 **Noise**

A variety of noises are produced in the coastal underwater world, including short and high intensity sounds that are generated by underwater construction activities (for example pile driving) (Popper & Hastings 2009) as well as noise produced by shipping vessels which is characterised in wide spread and prolonged low frequency noise (Slabberkorn *et al.* in press).

Impacts of noises in the coastal environment on fish behaviour and physiology have received a good deal of attention in recent years. For example, Bregman (1990) described the 'auditory scene' of fishes which provides information from great distances or information at night for navigation, predator avoidance and prey detection. Consequences of a disturbance in the 'auditory scene' of fishes have been shown in captive three-spined sticklebacks (*Gasterosteus aculeatusI*) (Purser & Radford 2011). Foraging efficiency was significantly reduced when subjected to brief as well as prolonged noise, as more time was spent on attacking their prey due to a shift in attention. Several published studies have demonstrated the importance of sound in predator avoidance and prey detection (Knudsen *et al.* 1997, Konings 2001). Reproductive efficiency can also be affected as more than 800 fish species are known to produce sounds when spawning (Aalbers 2008) and during courtship (McKibben & Bass 1998). It has been suggested that entire fish assemblages in very noisy environments might be impacted by noise through reduced reproductive efficiency, thereby affecting number of individuals. For example, roach (*Rutilus rutilus*) and rudd (*Scardinius erythrophthalmus*) showed an interruption

of spawning in the presence of noise produced by speed boats (Boussard 1981). Impacts of sound waves on fish physiology were investigated in controlled experiments where pile driving was lethal to some fish species (Caltrans 2001) but not for others (Abbott *et al.* 2005). The examination of dead and fatally injured fish revealed damaged and bleeding swim bladders (Caltrans 2001).

It appears that not all fish species respond to noise in the same way (Voellmy *et al.* 2014) and current research is insufficient to successfully predict the effects of noise on fish in the marine environment. It is recommended that a precautionary approach be adopted and that impacts of sound, especially future construction of infrastructure in the Port of Saldanha are mitigated. An air bubble curtain around piling operations is commonly cited as an effective mitigation measure to reduce the sound transmission (Abbott & Bing-Sawyer 2002, Bellmann & Remmers 2013). Producing bubbles around the noise source prevents transmission of sound due to the reflection and absorption of sound waves (Würsig *et al.* 2000).

3.6 Effluent discharges into the Bay

Contemporary coastal water management strategies around the world focus on maintaining or achieving receiving water quality such that the water body remains or becomes fit for other designated uses. Designated uses of the marine environment include aquaculture, recreational use, industrial use, as well as the protection of biodiversity and ecosystem functioning. This goal oriented management approach arose from the recognition that enforcing end of the pipe effluent limits in the absence of an established context, i.e., not recognising the assimilative capacity and requirements of receiving environments, would reach a point where water bodies would only be marginally fit for their recognised uses. This management approach is referred to as the receiving water quality (RWQ) framework (AEC 2015) and it appears that most countries have adopted this framework and have developed water quality guidelines for a variety of uses, which include target values for a range of contaminants that must be met in the receiving environment. Furthermore, in most countries water quality guidelines are legislated standards and are thus a legal requirement to be met by every user/outfall. Although the importance of managing water quality through the RWQ framework is undisputed, the degree to which this is implemented differs widely between countries.

There are a wide variety of legal instruments that are utilised by countries to maintain and/or achieve water quality guidelines in the receiving environment. These include setting appropriate contaminant limits, the banning or restricting of certain types of discharges in specified areas, prohibiting or restricting discharge of certain substances, as well as providing financial incentives to reduce pollution at the source alongside the implementation of cleaner treatment technology. The only effective method however, that ensures compliance of an effluent with water quality guidelines/standards is to determine site-specific effluent limits which are calculated based on the water quality guidelines/standards of a given water body, the effluent volume and concentration, as well as the site-specific assimilative capacity of the receiving environment. This method is also identified as the water quality-based effluent limits (WQBEL) approach (AEC 2015) and recognises that effluent (and its associated contaminants) is rapidly diluted by the receiving waters as it enters the environment. In order to take advantage of this beneficial effect, allowance is generally made for a "mixing zone" which extends a short distance from the outfall point (or pipe end) and is an area in which contaminant levels are "allowed" to exceed the established water quality standards (or guidelines) for the receiving

environment. The magnitude of the "mixing zone" should, in theory, vary in accordance with the sensitivity and significance of the receiving environment and the location of the outfall point in the environment, but in practice is usually set at a distance of around 100 m from the pipe end for marine systems. The WQBEL approach differs from the Uniform Effluent Standard (UES) approach in which fixed maximum concentrations or loads are applicable for contaminants in wastewater discharges for all users or outfalls, irrespective of where they are located (AEC 2015).

3.6.1 Legislative context for pollution control in South Africa

South Africa has adopted the RWQ framework for the management of water quality in both inland (freshwater) and marine water bodies and uses both, the WQBEL and the UES approaches to implement the framework. Receiving water quality guidelines were thus published in 1995 for the full range of beneficial uses for inland water (human consumption, aquaculture, irrigation, recreational use, industrial use, and protection of biodiversity and ecosystem functioning) and also for the marine environment (natural environment, recreational use, industrial use and mariculture). Revised Water Quality Guidelines for the Natural Environment and Mariculture Use were recently published by the former DEA: O&C (DEA 2018), replacing Volumes 1 (Natural Environment) and 4 (Mariculture) of the 1995 Guidelines.

The 2018 Water Quality Guidelines for Coastal Marine Waters contain narrative statements and guideline values along with relevant background information (e.g., description, source, fate in the environment, occurrence in South African marine waters etc.) for seawater properties (temperature, salinity, dissolved oxygen etc.) and constituents (nutrients, toxic substances, pathogens).

In the case of Saldanha Bay, which is extremely important for biodiversity conservation (there are several Marine Protected Areas (MPAs) in the Bay), is also an important regional centre for aquaculture (mussels, oysters, finfish), is important for recreation (swimming, kite surfing, windsurfing, etc.), and an area from where water is abstracted for industrial purposes (cooling water and desalination), the most stringent receiving environment water quality guidelines should be applicable (see Chapter 6 for more details on this).

Effluent discharges into the coastal waters were previously regulated in terms of the National Water Act (Act No 36 of 1998) (NWA). The NWA categorised the discharging of waste or water containing waste into a "water resource through a sea outfall or other conduit" as a "water use" for which a "licence" was required, unless such use was authorised through a "general authorisation" indicated by a notice published in the *Government Gazette*.

With the promulgation of the National Environmental Management: Integrated Coastal Management Act (No. 24 of 2008) (ICMA) (as amended³), responsibility for regulating land-derived effluent discharges into coastal waters was transferred to the Department of Environmental Affairs (DEA). In terms of Section 69 of ICMA, no person is permitted to discharge effluent originating from a source on land into coastal waters except in terms of a General Discharge Authorisation (GDA) or a Coastal

³ ICMA was amended by the National Environmental Management: Integrated Coastal Management Amendment Act, 2014 (Act No. 36 of 2014) (ICMAA).

Waters Discharge Permit (CWDP). Exemptions were issued to proponents who, at the time of promulgation, were discharging effluent into coastal waters in terms of permits issued under the NWA, provided that the effluent was treated to meet the *General and Special Standard* (Government Gazette No. 20526, 8 October 1999⁴), and required that they applied for a CWDP within three years of promulgation of the ICMA. In practice though, not all operations that discharge wastewater into the Bay have applied for a CWDPs even though many years have elapsed since the promulgation of the ICMA. New operators wishing to discharge effluent to coastal waters are required to apply for a CWDP before commencing and are also required to comply with the applicable water quality guidelines for the receiving environment. Applications for CWDP are expected to include data on contaminant levels in the effluent to be discharged, as well as results of dilution and dispersion model studies indicated maximum expected levels for the same contaminants at the edge of the defined mixing zone. These levels are of course expected to comply with published guideline levels as defined by other existing, or potential, beneficial uses of the receiving environment.

The DEA is currently in the process of implementing a permitting system for such effluent discharges. The Assessment Framework for the Management of Effluent from Land Based Sources Discharged to the Marine Environment (AEC 2015) provided a road map for the development of regulations for the permitting system. This framework recognises that discharges differ in effluent characteristics (volume and quality) and discharge locality (i.e., biophysical conditions, use of the receiving environment), which ultimately determines the risk a discharge poses to the receiving environment. It was recommended that the potential scope of a General Discharge Authorisation, the level of assessment during the application process for a CWDP, as well as licensing conditions should be based entirely on the environmental risk posed by an effluent. Accordingly, the guidelines provide a framework within which an effluent can be characterised (effluent components and properties) and its potential impacts be assessed within the context of the receiving environment (i.e., sensitive versus robust receiving environments).

In March 2019 the DEA:O&C published the Coastal Waters Discharge Permit Regulations (GNR. 382, *Government Gazette* 42304). The new regulations seek to provide an administrative framework to implement Section 69 of the ICMA and stipulate timeframes, renewal application processes, applicable fees and information to be submitted as part of an application for a CWDP. The DEA:O&C are still in the process of finalising regulations for General Discharge Authorisations discussed above.

To date, seven CWDPs have been issued to companies discharging effluent into Saldanha Bay and two applications are currently pending. A list of these and other relevant information has been included in Table 3.3.

_

⁴ The latest revision of the General Authorisation was promulgated on 6 September 2013 (Government Gazette No. 36820).

Table 3.3 Pending applications for Coastal Waters Discharge Permit and issued permits for effluent discharges into Saldanha Bay (Source: Former Department of Environmental Affairs, Branch: Oceans and Coasts).

Applicant/permit holder	Status	Type of discharge	Impact level	Compliance
OTMS Mogs Saldanha	Permit granted	Hydrostatic testing	Low	N/A
ArcelorMittal Saldanha Steel	Permit granted	Reverse Osmosis	Low	Quarterly monitoring
Sea Harvest Corporation (Pty) Ltd	Permit granted	Fish processing effluent and brine	Medium	Quarterly monitoring
Sunrise Energy (Pty) Ltd	Permit granted	Once off discharge	Low	Monitoring occurred after discharge
Transnet State Owned Company (SOC) Ltd	Permit granted	Desalination (brine)	Medium	Quarterly monitoring
Transnet Port Terminals	Permit granted	Industrial Storm Water	Medium	Quarterly monitoring
Saldanha Oyster	Decision pending	Holding facility	Low	N/A
Saldanha Lobster	Decision pending	Unknown (processing/holding facility?)	Unknown	N/A

Table 3.4 General Limit as specified in the revised general limit for general authorisation (6 September 2013) under the National Water Act (No. 36 of 1998).

Substance/parameter	General limit as specified in the Revision of General Authorisations in terms of Section 39 of the National Water Act (Government Gazette No. 36820, 6 September 2013)		
Temperature	-		
Faecal coliforms (per 100 ml)	1000		
Electrical conductivity measured in milliSiemens per meter (mS/m)	70 above intake to a maximum of 150*		
pH	5.5 – 9.5		
Chemical oxygen demand (mg/L)	75 (after removal of algae)		
Suspended solids (mg/L)	25		
Soap, oil or grease (mg/L)	2.5		
Ortho-Phosphate as P (mg/L)	10		
Nitrate/nitrite as nitrogen (mg/L)	15		
Ammonia (ionised and un-ionised) as N (mg/L)	6		
Fluoride (mg/L)	1		
Chlorine as free chlorine (mg/L)	0.25		
Dissolved cyanide (mg/L)	0.02		
Dissolved arsenic (mg/L)	0.02		
Dissolved cadmium(mg/L)	0.005		
Dissolved chromium (VI) (mg/L)	0.05		
Dissolved copper (mg/L)	0.01		
Dissolved iron (mg/L)	0.3		
Dissolved lead (mg/L)	0.01		
Dissolved manganese (mg/L)	0.1		
Mercury and its compounds (mg/L)	0.005		
Dissolved Selenium (mg/L)	0.02		
Dissolved zinc (mg/L)	0.1		
Boron (mg/L)	1		
Phenolic compounds as phenol (mg/L)	-		

^{*}Electrical conductivity is only applicable to wastewater discharges into freshwater.

3.6.2 Reverse osmosis plants

Reverse Osmosis is used to re-claim potable water from fresh, brackish or saline water. Desalination specifically refers to a water treatment process whereby salts are removed from saline water to produce fresh water. Reverse Osmosis involves forcing water through a semi-permeable membrane under high pressure, leaving the dissolved salts and other solutes behind on the surface of the membrane. Water is relatively scarce in the West Coast District Municipality (WCDM) and the rapidly developing industry in Saldanha Bay requires vast quantities of potable water for their operations. Construction of reverse osmosis desalination plants has been identified as a potential solution to reduce dependency of industry on municipal water supplies.

RO plants can have severe impacts on the receiving marine environment if potable water is reclaimed from seawater due to the highly saline and negatively buoyant brine water that is discharged by these plants, which often contains biocides that serve to limit marine growth in their intake pipe work. Potential environmental impacts associated with the operation of RO plants are listed below:

- Altered flows at the discharge resulting in ecological impacts (e.g., flow distortion/changes at the discharge, and effects on natural sediment dynamics);
- The effect of elevated salinities in the brine water discharged to the Bay;
- Biocidal action of non-oxidising biocides such as dibromonitrilopropionamide in the effluent;
- The effects of co-discharged wastewater constituents, including possible tainting effects affecting both mariculture activities and fish factory processing in the Bay;
- The effect of the discharged effluent having a higher temperature than the receiving environment;
- Direct changes in dissolved oxygen content due to the difference between the ambient dissolved oxygen concentrations and those in the discharged effluent; and
- Indirect changes in dissolved oxygen content of the water column and sediments due to changes in phytoplankton production as a result of altered nutrient dynamics (both in terms of changes in nutrient inflows and vertical mixing of nutrients) and altered remineralisation rates (with related changes in nutrient concentrations in near bottom waters) associated with near bottom changes in seawater temperature due to the brine discharge plume.

3.6.2.1 Transnet NPA Desalination Plant

Transnet NPA recently built a RO plant in Saldanha Bay to produce freshwater for dust mitigation during the loading and offloading of iron ore. The RO plant has been operational since obtaining a water use license from the DWA and subsequent performance tests in 2012 (Membrane Technology 2013) (refer to AEC 2014 for more details on the project design and EIA). The RO plant was recently granted a CWDP in terms of ICMA (DEA: O&C, pers. comm., 2017).

A marine baseline monitoring study was conducted by Anchor Environmental Consultants prior to the commissioning of the RO plant to ensure that impacts in the marine environment are such that the beneficial uses of the potentially impacted area are considered (Hutchings & Clark 2011). Monitoring of the physical and chemical characteristics of the receiving environment were also conducted during

the period June 2010 to March 2011 in order to establish a baseline prior to the RO plant coming into operation (van Ballegooyen *et al.* 2012).

The monitoring requirements as specified by the Water Use License and the Record of Decision issued by the Department of Environmental Affairs for the RO plant (these are also reflected in the Transnet Specification No. 1243487-SP-0001) were as follows:

- (a) Monthly monitoring of temperature, salinity, dissolved oxygen, turbidity, concentrations in the brine basin;
- (b) Continuous (hourly) monitoring of temperature, salinity, dissolved oxygen, and turbidity at representative outfall monitoring station and a reference station for at least 1 year; and
- (c) Surveys of trace metals and benthic macrofauna to be conducted bi-annually for an unspecified period.

The monitoring of the marine environment in fulfilment of the Environmental Monitoring Programme was being conducted by the Council for Scientific and Industrial Research (CSIR) (Refer to the 2016 State of Saldanha Bay and Langebaan Lagoon Report for details on the methods and results of the first two surveys conducted in 2014 and 2015) but this has since passed on to Cellozyme Environmental in 2018.

3.6.2.2 West Coast District Municipality Desalination Plant

The West Coast District Municipality (WCDM) has proposed the construction of an additional RO plant in the Saldanha Bay area, intended as a long-term sustainable alternative water source. The WCDM has limited water resources (semi-arid climate) and yet is required to supply 22 towns and 876 farms across the region with potable water. Currently water is supplied by the Voëlvlei and Misverstand dams on the Berg River, and the Langebaan road aquifer, however, the volume allocated from these sources for this is close to the maximum possible. In the financial year 2012/2013, abstractions for the WCDM exceeded allocation by 3.6 million m³ (DWA 2013). A feasibility study conducted in 2007 to assess the most viable solution to the water scarcity issue in the WCDM identified the following potential additional water resources:

- The Twenty-four Rivers Scheme;
- Lowlift pumps at the Misverstand Dam;
- The Michel's pass Diversion;
- Groundwater potential;
- Water Quality Management; and
- Alien vegetation clearing.

The most cost-effective solution was identified as a 25 500 m³/day sea water desalination plant. EA was granted on 13 August 2013 for the preferred location for the RO plant, which will be situated on the farm Klipdrift at Danger Bay on a portion of municipal owned land (Please refer to the 2013/2014 State of Saldanha Bay and Langebaan Lagoon Report for SOB report more information). Subsequent costs estimates suggest, however, that the proposed desalination plant and bulk infrastructure will cost R500 million, which is more than double the initial estimated cost. As a result, funding is currently a major challenge for the WCDM as they did not receive Grant funding for the construction of the

desalination plant and therefore the project has been put on hold (SBM, David Wright, *pers. comm.* 2020). Should funds become available, construction of this RO plant is planned to be executed in three phases, with an initial capacity of 8.5 million litres later building up to a final capacity of 25.5 million litres. Alternatively, an application for additional allocation of water sourced from the Berg River was submitted by the WCDM. In October 2017, SBM received an increased allocation of 20 427 000 m³ per annum from the WCWSS which equates to 56 ML/day and in higher than the current water demand. This in conjunction with the Langebaan Road Well field and Hopefield Well field development has reduced the need for the Desalination plant at this stage, however, SMB with retain the project in their future augmentation projects planning (SBM, David Wright, *pers. comm.* 2020).

3.6.2.3 ArcelorMittal RO plant

ArcelorMittal was a largely export-focussed steel plant, producing high quality ultra-thin Hot Rolled Coil (UTHRC) and located close to the deep-sea port of Saldanha. It was announced in November 2019 that due to financial losses the plant would be closed, with the immediate winding down of operations and ultimate closure of the plant in the first quarter of 2020. Prior to this, ArcelorMittal Saldanha operations required approximately 6 500 m³/day of freshwater to operate, which represented approximately 25% of Saldanha Bay municipality's potable water total usage. ArcelorMittal Saldanha modified its water treatment infrastructure to partially replace its fresh water supply with treated municipal sewage wastewater (from the Saldanha Wastewater Treatment Works (WWTW). Please refer to AEC 2019 for details on the initiation of the RO plant).

Since the closure of the ArcelorMittal Saldanha Works, all operations have stopped which include the operations of the RO plant and therefore no industrial effluent is sent to the Saldanha WWTW and no treated effluent is being pumped from Saldanha WWTW to ArcelorMittal for use in the RO Plant.

3.6.3 Sewage and associated wastewaters

3.6.3.1 Environmental impacts

Sewage is by far the most important waste product discharged into rivers, estuaries and coastal waters worldwide. However, sewage is not the only organic constituent of wastewater, received by sewage treatment plants, other degradable organic wastes, which can result in nutrient loading, include:

- Agricultural waste;
- Food processing wastes (e.g., from fish factories and slaughterhouses);
- Brewing and distillery wastes;
- Paper pulp mill wastes;
- Chemical industry wastes; and
- Oil spillages.

Our present knowledge of the impacts of wastewaters on water systems has, until recently, largely been based on lake-river eutrophication studies. However, recent focus on how anthropogenic nutrient enrichment is affecting near-shore coastal ecosystems is emerging (for a review see Cloern 2001, Howarth *et al.* 2011). In general, the primarily organic discharge in wastewater effluents contains high concentrations of nutrients such as nitrates and phosphates (essentially the ingredients

in fertilizers). Existing records provide compelling evidence of a rapid increase in the availability of nitrogen and phosphorus to coastal ecosystems since the mid-1950s (Cloern 2001). These nutrients stimulate the growth and primary production of fast-growing algae such as phytoplankton and ephemeral macroalgae, at the expense of slower-growing vascular plants and perennial macroalgae (seagrasses) which are better adapted to low-nutrient environments. This process requires oxygen, and with high nutrient inputs, oxygen concentrations in the water can become reduced which can lead to deoxygenation or hypoxia in the receiving water (Cloern 2001).

When phytoplankton die and settle to the bottom, aerobic and anaerobic bacteria continue the process of degradation. However, if the supply rate of organic material continues for an extended period, sediments can become depleted of oxygen leaving only anaerobic bacteria to process the organic matter. This then generates chemical by-products such as hydrogen sulphide and methane, which are toxic to most marine organisms (Clark 1986). The sediments and the benthic communities they support are thus amongst the most sensitive components of coastal ecosystems to hypoxia and eutrophication (Cloern 2001). The ecological responses associated with decreasing oxygen saturation in shallow coastal systems include the initial escape of sensitive demersal fish, followed by mortality of bivalves and crustaceans, and finally mortality of other molluscs, with extreme loss of benthic diversity (Vaquer-Sunyer & Duarte 2008, Howarth *et al.* 2011). Vaquer-Sunyer & Duarte (2008) propose a precautionary limit for oxygen concentrations at 4.6 mg O₂/litre equivalent to the 90th percentile of mean lethal concentrations, to avoid catastrophic mortality events, except for the most sensitive crab species, and effectively conserve marine biodiversity.

Some of the indirect consequences of an increase in phytoplankton biomass and high levels of nutrient loading are a decrease in water transparency and an increase in epiphyte growth, both of which have been shown to limit the habitat of benthic plants such as seagrasses (Orth & Moore 1983). Furthermore, there are several studies documenting the effects that shifts in natural marine concentrations and ratios of nitrates, phosphates and elements such ammonia and silica, have on marine organisms (Herman *et al.* 1996, van Katwijk *et al.* 1997, Hodgkiss & Ho 1997, Howarth *et al.* 2011). For instance, the depletion of dissolved Silica in coastal systems, as a result of nutrient enrichment, water management and the building of dams, is believed to be linked to worldwide increases in flagellate/ dinoflagellate species which are associated with harmful algal blooms, and are toxic to other biota (Hodgkiss & Ho 1997, Howarth *et al.* 2011). The toxic effect that elevated concentrations of ammonia have on plants has been documented for *Zostera marina* and shows that plants held for two weeks in concentrations as low as 125 µmol start to become necrotic and die (van Katwijk *et al.* 1997).

The effects of organic enrichment, on benthic macrofauna in Saldanha Bay, have been well documented (Jackson & McGibbon 1991, Stenton-Dozey et al. 2001, Kruger 2002, Kruger et al. 2005). Tourism and mariculture are both important growth industries in and around Saldanha Bay, and both are dependent on good water quality (Jackson & McGibbon 1991). The growth of attached algae such as *Ulva* sp. and *Enteromorpha* sp. on beaches is a common sign of sewage pollution (Clark 1986). Nitrogen loading in Langebaan Lagoon associated with leakage of conservancy/septic tanks and storm water runoff has resulted in localised blooms of *Ulva* sp. in the past. In the summer 1993 – 94, a bloom of *Ulva lactuca* in Saldanha Bay was linked to discharge of nitrogen from pelagic fish processing plants (Monteiro et al. 1997). Dense patches of *Ulva* sp. are also occasionally found in the shallow embayment of Oudepos (CSIR 2002). Organic loading is a particular problem in Small Bay due to

reduced wave action and water movement in this part of the Bay caused by harbour structures such as the Iron Ore Terminal and the Causeway, as well as the multitude of organic pollution sources within this area (e.g., fish factories, mariculture farms, sewage outfalls, sewage overflow from pump stations, and storm water runoff). Langebaan Lagoon is also sheltered from wave action, but strong tidal action and the shallow nature of the lagoon make it less susceptible to the long-term deposition of pollutants and organic matter (Monteiro & Largier 1999).

Treatment of effluent is pivotal in reducing the environmental impacts described above. However, the side effects of treating effluent with chlorine have been well established in the literature. Chlorine gas, generated through a process of electrolysis, is toxic to most organisms and is used to sterilise the final effluent (i.e., kill bacteria and other pathogens present in the effluent) before it is released into settling ponds or the environment. Chlorine breaks down naturally through reaction with organic matter and in the presence of sunlight but should not exceed a concentration 0.25 mg/L at the end of pipe terms of the revised General and Special Standard (Government Notice No. 36820 — 6 September 2013) promulgated under the NWA (Table 3.4). Furthermore, chlorine, while disinfecting the effluent, produces a range of toxic disinfection by-products (DBPs) through its reactions with organic compounds (Richardson *et al.* 2007, la Farré *et al.* 2008, Sedlak & von Gunten, 2011).

3.6.3.2 Management of treated effluent in Saldanha Bay and Langebaan

There are two wastewater treatment works (WWTW) that produce treated effluent which used to enter the Saldanha/Langebaan marine environment, namely the Saldanha WWTW and the Langebaan WWTW. Twenty-seven sewage pump stations in Langebaan are situated throughout the town, many of which are near the edge of the lagoon and 16 sewage pump stations are located in Saldanha Bay (Figure 3-19). To prevent raw sewage being released directly into Saldanha Bay due to malfunction or during power failures, mechanical and electrical equipment upgrades to the pump stations in Saldanha and Langebaan were undertaken in 2012 and implementation of upgrades will continue as and when required. Fifteen million Rand was made available on the 2016 – 2017 Capital Budget for the implementation of various interventions that prevent overflow of raw sewage that were completed in 2017 (SBM, Gavin Williams, *pers. comm.* 2016) (Figure 3-20). It is hoped that all these interventions will prevent future spills such as the one experienced in September 2016 (Refer to 2016 State of Saldanha Bay and Langebaan Lagoon Report).

There are approximately 200 conservancy tanks in Langebaan, east of Club Mykonos (SBM, Elmi Pretorius, *pers. comm.* 2014). Overflow of these tanks is considered an unlikely event today, as the municipality empties these tanks on a regular basis (SBM, Gavin Williams, *pers. comm.* 2014).

Details on the two WWTW are provided in Sections 3.6.3.3 and 3.6.3.4, which present data on monthly trends in the effluent produced by the WWTWs. Data was provided by the SBM and water quality parameters recorded as "trace", "less than" or "greater than" was adjusted in accordance with the following standard international convention:

- "trace" = half the detection limit;
- "less than" = half the detection limit; and
- "greater than" = detection limit multiplied by a factor of three.

In the case of the Saldanha Bay WWTW, concentrations of contaminants in the effluent are compared with the General Discharge Limits of the revised General and Special Standard (Government Notice No. 36820 — 6 September 2013) promulgated under the NWA (Table 3.4).

Figure 3-19 Location of wastewater treatment works, sewage pump stations and sewer pipes in the Saldanha and Langebaan area in 2014 (Source: Saldanha Bay Municipality, Elmi Pretorius 2014).

Figure 3-20 Emergency generators that have been installed at various pump stations in Saldanha Bay and Langebaan Lagoon (Source: SBM, Gavin Williams 2016).

As the global climate pattern termed El Niño Southern Oscillation⁵ weakens, most of the country has been able to recover from the worst drought since 1904. The Western Cape, however, continued to struggle to meet water demands in the province. Water shortages will be a reality for many years to come, as several years of above-average rainfall conditions and continued conservative use of drinking water are required to fill the dams to pre-drought levels. As of 14 September 2020 the overall dam water levels for the Western Cape Water Supply System (WCWSS) were at 96.4%, while this is significantly higher than at the same time during the peak of the drought (roughly 37.4% in September 2017), it is still less than the > 100% seen in winter of 2012 – 2014 despite a drop in average water use within the province of over 30% (https://www.capetown.gov.za). Additionally, long-term climate models predict that global warming will result in drier conditions in the Western Cape and it is very well possible that water shortages must be understood as the 'new normal'. Not only climate patterns must be considered in this scenario, but also the growing demand by industry, especially in the Saldanha Bay Municipality (SBM). This critical situation brought industry and local municipalities

* ANCHOR environmental

63

El Niño is the warm phase of the El Niño Southern Oscillation (commonly called ENSO) and is associated with a band of warm ocean water that develops in the central and east-central equatorial Pacific (between approximately the International Date Line and 120°W), including off the Pacific coast of South America. El Niño Southern Oscillation refers to the cycle of warm and cold temperatures, as measured by sea surface temperature, SST, of the tropical central and eastern Pacific Ocean. El Niño is accompanied by high air pressure in the western Pacific and low air pressure in the eastern Pacific. The cool phase of ENSO is called "La Niña" with SST in the eastern Pacific below average and air pressures high in the eastern and low in western Pacific. The ENSO cycle, both El Niño and La Niña, cause global changes of both temperatures and rainfall.

together to investigate the feasibility of re-using treated wastewater and/or reclaiming industrial grade or even potable freshwater from treated sewage by means of further treatment. Initially wastewater was supplied without further treatment to be used for dust suppression at various construction sites (total allocation of 540 m³/day), the Blouwaterbaai Lodge (60 m³ per day), and Saldanha Sports Grounds (300 m³ per day).

Industry in Saldanha Bay also expressed the need for high quality recycled water and motivated for the supply of free treated wastewater by the SBM, which would then be treated by means of Reverse Osmosis to suit the needs of industry. Similar projects implemented elsewhere in South Africa demonstrated that major infrastructural changes were required for the re-cycling of treated sewage and were associated with significant initial as well as ongoing fiscal investments (Refer to AEC 2017 for more detail on the water reclamation project implemented by Veola Water Services in Durban). Local municipalities experience significant budgetary constraints, and a public-private partnership has been the key for successful implementation in Saldanha Bay. Considering the water shortage and the environmental impacts associated with the discharge of WWTW effluent, this was conceived as an attractive opportunity.

3.6.3.3 Saldanha Wastewater Treatment Works

The Saldanha Bay WWTW treats raw sewage by means of activated sludge with mechanical aeration and drying beds. In addition to sewage waste, the WWTW in Saldanha also receives and treats industrial wastewater from a range of industries in Saldanha:

- Sea Harvest;
- Hoedjiesbaai Hotel;
- Protea Hotel;
- Bongolethu Fishing Enterprises;
- SA Lobster;
- Transnet Port Authority;
- Arcelor Mittal (until its closure in the first quarter of 2020);
- Abattoir; and
- Duferco.

The effective functioning of WWTW is largely dependent on the quality of contributor effluent and sewage that is directed into the plant. Local by-laws control to which extent industries must treat their effluent before it is directed into municipal wastewater treatment works. New by-laws have been put in place, which require contributors to agree on the amount and quality of effluent to be discharged into the municipal stream. Strict monitoring of effluent volumes and quality has been implemented and penalties are levied for transgression of the signed agreement (Gavin Williams *pers. comm.* 2018).

The capacity of the Saldanha Bay WWTW was increased to 5 ML to accommodate the projected increase wastewater production, especially with the establishment of the Saldanha Bay Industrial Development Zone (IDZ). Various other improvements to the plant were also implemented to ensure

that the treated wastewater is of acceptable quality (refer to AEC 2017 for more details). The IDZ funded and managed this project.

The plant now requires an updated Water Use License (WUL) to ensure compliance with the NWA. Originally, the Saldanha WWTW was issued an exemption under the NWA section 21(f) and (g), provided that the effluent volume does not exceed 958 000 m³ per year and that the water quality of the treated effluent is compliant with the General Discharge Limits of the revised General and Special Standard (Government Notice No. 36820 — 6 September 2013) promulgated under the NWA (Table 3.4). The SBM has applied for a new Water Use License for the upgrades required to accommodate the Industrial Development Zone. A decision is pending as a delineation study by DWS is still outstanding (Quintin Williams, SBM, pers. comm. 2020).

The WWTW in Saldanha originally disposed of all their treated effluent into the Bok River which drains into Small Bay adjacent to the Blouwaterbaai Resort and has been dry for at least the last ten years. However, in response to the serious drought that the Western Cape has been experiencing since 2014, the SBM has made the treated wastewater available for irrigation, dust suppression, water features, and industrial cooling processes.

Before 2008, the average daily volume discharged never exceeded the average daily limit of 2625 m³, but volumes of effluent released increased steadily over time (Figure 3-21). Between the years 2008 – 2012, the Saldanha WWTW was non-compliant only during the winter months. Between January 2013 and June 2021 however, the average daily limit was exceeded 63% of the time, reaching unprecedented levels of 6317 m³ effluent in November 2019. It is important to note though that the WWTW plant capacity was 5000 m³ or above (for a short period), which means that the effluent quality was not compromised despite regular exceedances of the legal limit. Additionally, during this time frame the plant capacity limit was only exceeded twice. Finally, wastewater volumes treated at the Saldanha Bay WWTW decreased in 2017/2018 due to the water restrictions implemented by the SBM, however, these have increased with the lessoning on restrictions. Despite this the flow volumes in the last year and a half have, since Jan 2020, have fluctuated either side of the legal effluent discharge limit with the plant compliance at 60%.

The annual State of the Bay Report normally reports on the amount of effluent produced and therefore discharged into the Bay. Together with the effluent volumes, the report also shows a long-term trend in effluent quality and compliance with the GA. However, SBM allocates treated effluent to multiple different users for re-use, thereby dramatically reducing the amount of effluent that is discharged into the otherwise dry Bok River. Since the closure of the ArcelorMittal Saldanha Steel Works and subsequent cessation of the RO plant operations no treated effluent is being pumped from Saldanha WWTW to ArcelorMittal. However, the closure of all Steel Works operations also means that the Saldanha WWTW no longer receives any industrial effluent from ArcelorMittal. The current water users receiving treated effluent from the WWTW include: the Weskus School, Saldanha Sports Ground (Stadium and practise field) and Blue Bay Lodge (Quintin Williams, SBM, pers. comm.). The balance of treated effluent not used is currently discharged into the Bok river and ultimately ends up in the ocean, however, SMB has identified a future user for the treated effluent and an allocation has been made available to them. In addition, a flow meter has been installed at the Bok River discharge point; although, it is not known whether the discharge volume is recorded (this would likely be a requirement of the new water use license if it is issued).

The Bok River has been dry for over a decade and as a result any effluent discharged would reach the shore undiluted. However, it is noteworthy that with the new wastewater management scheme, the amount of wastewater entering the marine environment is likely to be negligible (Gavin Williams, SBM, pers. comm.) and that contribution to pollution would likely be insignificant. The changes implemented by the SBM are therefore significantly positive and future interpretation of water quality results must consider the volume of effluent entering the marine environment via the Bok river.

The annual State of the Bay report will continue to report on the effluent quality of the WWTW over time. This year's results in relation to historic data are shown in the graphs below. All data was provided by the Saldanha Bay Municipality.

Concentrations of faecal coliforms in the effluent from the WWTW exceeded the allowable limit of 1000 org/100 ml on 43 occasions since 2003 (20% of the time) (Figure 3-22). The frequency of noncompliance increased dramatically in 2008, although at a lower concentration (3000 org/100 ml) than previously recorded. Allowable limits for faecal coliforms in the effluent were exceeded on 26 occasions since January 2013, frequently reaching the maximum detectable limit (the maximum detectable limit = 2419 org/100 ml, which is multiplied by a safety factor of three = 7257 org/100 ml). A strong improvement is visible from Dec 2018 after which point the faecal coliform counts did not exceed the limit once. Making the 2019/20 and 2020/21 compliance 100%, an improvement from 2018/19 where compliance was 60% (Figure 3-22).

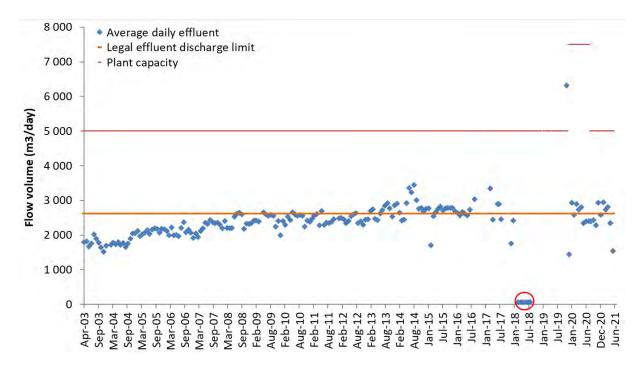


Figure 3-21 Trend in average daily effluent (m³/month) released from the Saldanha Wastewater Treatment Works, April 2003 – June 2021. Allowable discharge limits in terms of the exemption issued by DWS under the National Water Act (No. 36 of 1998) are represented by the dashed orange line and the design capacity of the plant by the red line. The data points circled in red represent the estimated effluent discharged into the Bok River (60 m³ per day) (pers. comm. Gavin Williams 2018).

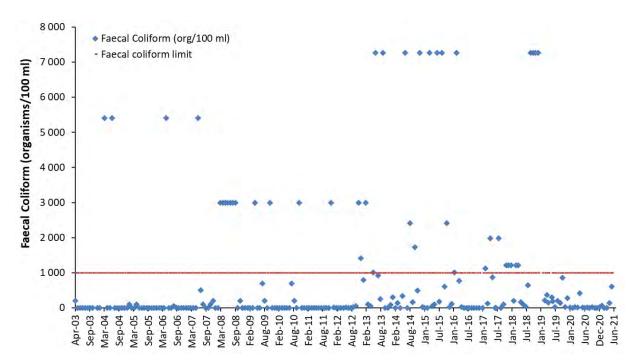


Figure 3-22 Monthly trend in Faecal Coliforms (org/100 ml) in effluent released from the Saldanha Wastewater Treatment Works, April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

Allowable limits for total suspended solids (TSS) of 25 mg/L have been exceeded 17% of the time since April 2003 (Figure 3-23). While compliance clearly improved between 2008 and 2014, the allowable limit has been exceeded 33% of the time since December 2014. However, it is positive to note that TSS has only exceeded the limit once (35 mg/L in May 2021) since May 2019, which shows a significant improvement to previous years.

Chemical oxygen demand (COD) in filtered effluent exceeded the allowable limit of 75 mg/L 23% of the time since April 2003 (Figure 3-24). COD is commonly used to indirectly measure the amount of organic material in water. COD was highest from June — October 2008 peaking at 260 mg/L in July 2008. This trend coincided with the high faecal coliform counts in the effluent over the same period. Overall, compliance improved substantially between January 2009 and June 2017 where the allowable limit was only exceeded on ten occasions at a much lower magnitude than in 2008. However, the COD was consistently above the legal limit between November 2017 and May 2019, achieving only 17% compliance. These observations are congruent with high ammonia nitrogen, faecal coliform and free chlorine levels during the same period. It is therefore positive to note that the COD limit was only exceeded twice (89 and 127 mg/L in November 2019 and May 2021, respectively) between June 2019 and June 2021.

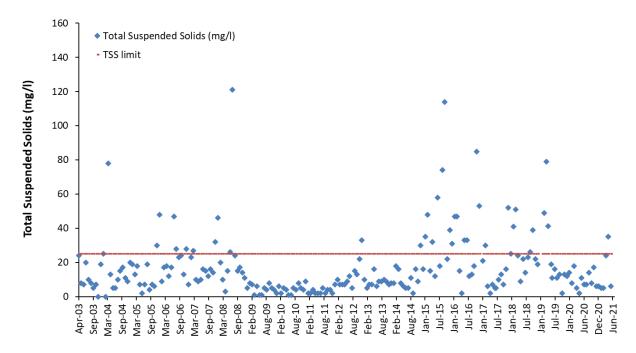


Figure 3-23 Monthly trend in total suspended solids (mg/L) in effluent released from the Saldanha Wastewater Treatment Works, April 2003 – June 2021. Allowable limits as specified in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

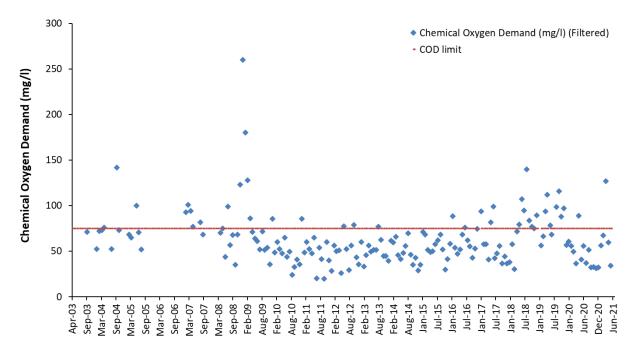


Figure 3-24. Monthly trends in chemical oxygen demand (mg/L filtered) in effluent released from the Saldanha Wastewater Treatment Works, April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

Levels of Ammonia-Nitrogen (mg/L as N) are of great concern in the treated wastewater of the Saldanha WWTW as readings have exceed the allowable limit of 6 mg/L, 78% of the time since April 2003 (Figure 3-25). Ammonia levels in the effluent measured 91.5 mg/L in October 2018, the highest

concentration ever recorded. Although only very little effluent is released, ammonia is toxic to aquatic organisms and such high concentrations should not be permitted to be released into the Bok River. However, ammonia levels have improved significantly in recent years as while the average concentration during the period June 2018 to June 2019 was 58.2 ± 28.4 mg/L, concentrations have markedly dropped in the last two years, with an average of 10.0 ± 3.4 mg/L in 2019/20 and 2.76 ± 2.4 mg/L in 2020/21.

The Nitrate-nitrogen limit of 15 mg/L was exceeded 14% of time since 2003. Nitrate-nitrogen levels have been fluctuating over time, reaching levels exceeding the legal limit in 2005, 2009/2010, 2013, and 2016/2017 (Figure 3-26). It is possible that generally higher Nitrate-nitrogen levels in 2017 can be attributed to more effective treatment of effluent in the new aeration basins, where more ammonia-nitrogen is converted into non-toxic nitrate-nitrogen by means of bacterial treatment processes. Conversely, low nitrate-nitrogen levels (< 0.3 mg/L) between November 2017 and April 2019 complement extremely high levels of ammonia nitrogen indicating the lack of bacterial treatment. In 2020/21 the average nitrate-nitrogen concentration of 9.5 \pm 5.5 mg/L had increased compared to the 2019/20 average of 2.5 \pm 3.5 mg/L. On a positive note, the nitrate limit was only exceeded twice (22.7 and 15.7 mg/L in May – June 2021) since June 2017.

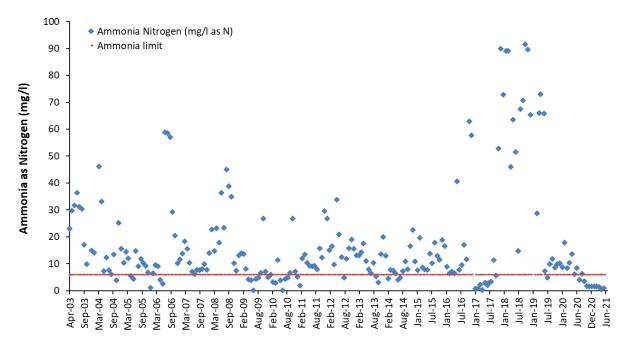


Figure 3-25 Monthly trends in Ammonia Nitrogen (mg/L as N) in effluent released from the Saldanha Wastewater Treatment Works April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

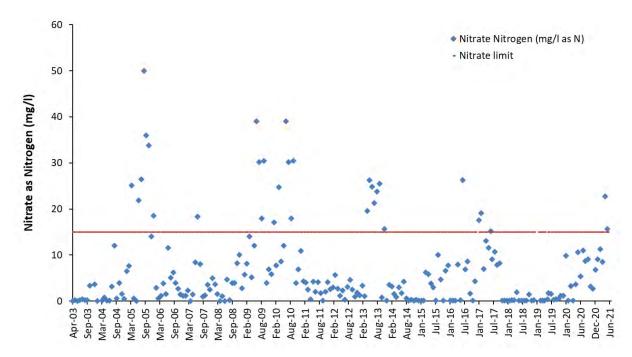


Figure 3-26 Monthly trends in Nitrate Nitrogen (mg/L as N) in effluent released from the Saldanha Wastewater Treatment Works April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

The concentration of orthophosphate in the effluent has only been measured since October 2007 showing a relatively low level of exceedance of 20%. Orthophosphate levels remained below the limit between July 2013 and October 2016 however, since then the limit has been exceeded on 17 occasions, 7 of which have been in the 2020/21 rolling year. In addition, the highest reading on record to date (18.9 mg/L) occurred in February 2021 (Figure 3-27).

Permissible chlorine levels of 0.25 mg/L have been exceeded 61% of the time (Figure 3-28) since 2003. In 2018/2019, chlorine levels improved dramatically compared to previous years, with legal limits only exceeded on three occasions (70% compliance) and concentrations were generally low with an average of 0.25 \pm 0.4 mg/L (Figure 3-28). However, since July 2019, compliance dropped to only 29% with an average of 0.55 \pm 0.5 mg/L.

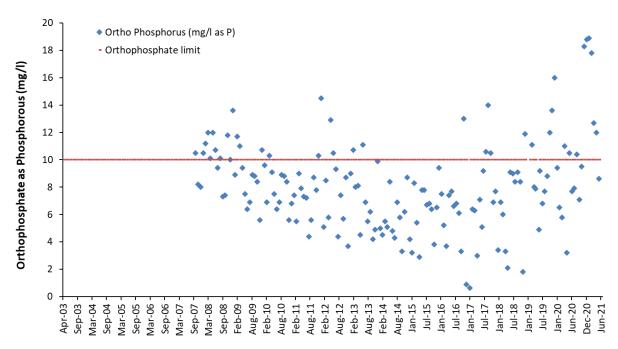


Figure 3-27 Monthly trends in Orthophosphate (mg/L as P) in effluent released from the Saldanha Wastewater Treatment Works April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line.

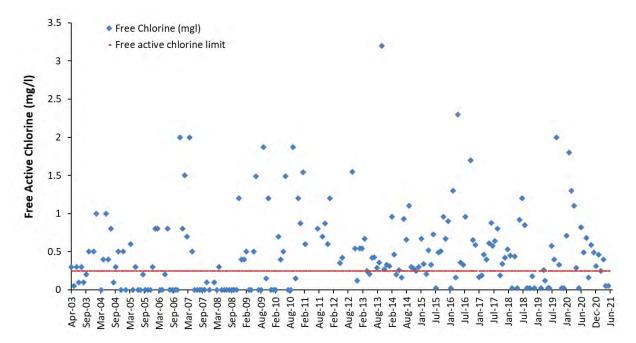


Figure 3-28 Monthly trends in Free Active Chlorine (mg/L) in effluent released from the Saldanha Wastewater Treatment Works April 2003 – June 2021. Allowable limits in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line. An outlier of 12 mg/L measured for January 2008 was removed to show the trend more clearly.

3.6.3.4 Langebaan Wastewater Treatment Works

The Langebaan WWTW treats sewage by means of activated sludge with BNR and drying ponds. However, as is the case with effluent from the Saldanha WWTW, SBM has for quite some time been favouring alternative uses of wastewater from the Langebaan WWTW over discharge to the marine environment. Most recently, the SBM obtained permission from the Department of Water and Sanitation (DWS) to use a maximum of 200 m³ for the irrigation of lawn on the WWTW premises as well as the flower beds along Oostewal Rd leading into Langebaan. Furthermore, the majority of wastewater produced by the Langebaan WWTW is diverted to the Langebaan Country Estate for the irrigation of the golf course. Prior to irrigation, the wastewater is further treated by means of 11 polishing ponds. Wastewater is exposed to UV radiation in these ponds, reducing harmful pathogen populations.

While at first all the wastewater was used for irrigation, increasing volumes of effluent received by the Langebaan WWTW was yielding more water than required for irrigation of the golf course, especially during winter. Consequently, more and more excess wastewater was discharged into the Langebaan Lagoon Marine Protected Area (MPA). However, with the implementation of water restrictions, wastewater produced by the Langebaan WWTW has been decreasing considerably, which means that only very small quantities of wastewater overflowed into the MPA during the winter months in 2018 (SBM, *pers. comm.* 2018). In addition, SBM has undergone an agreement with Langebaan Country estate to irrigate effluent within its boundaries during the Winter months. Subsequently, it is believed that through this agreement all discharge of effluent into the MPA has been eliminated (Quintin Williams, SBM, *pers. comm.* 2020).

The overflow from the storage dams was noticed by the former Department of Environmental Affairs: Branch Oceans & Coasts, which identified this as an illegal activity in terms of the National Environmental Management: Protected Areas Amendment (Act No 21 of 2014) (NEMPAA).

Section 48A (d) prohibits the discharging or depositing of waste or any other polluting matter into an MPA, unless a CWDP is granted by the Minister of Environmental Affairs in terms of the ICMA. A directive was issued to the SBM to stop releasing effluent into the Langebaan Lagoon MPA. The DEA: O&C made it clear to the SBM that a CWDP would not be issued for this discharge and that alternative measures should be implemented instead to prevent overflow. The SBM is experiencing a high demand for wastewater, especially during summer for irrigation purposes. The SBM therefore conducted a comprehensive study regarding the re-use of treated effluent from the Langebaan WWTW and other WWTW. Options that emerged from this study included storage of surplus effluent during the winter months for use in summer, supply of wastewater to industry throughout the year and reclamation of potable water by means of reverse osmosis. Alternative options will be investigated for their feasibility and implemented once upgrades to the Langebaan WWTW have been completed (see more detail below).

While the SBM is responsible for ensuring that an appropriate amount of treated sewage is supplied to the Langebaan Country Estate to prevent non-compliance with the ICMA, the Langebaan Country Estate must ensure compliance with the National Water Act (Act 36 of 1998 as amended) NWA in terms of the storage and irrigation of wastewater. The Langebaan Country Estate is currently in the process of registering as a water user for these very water uses.

Legislative requirements applicable to the Saldanha Bay Municipality

The Department of Water and Sanitation (DWS) confirmed in January 2018 that the SBM was successfully registered as a water user in terms of Section 22(1)(a)(iii), which prescribes that "A person may only use water without a licence if that water use is permissible in terms of a general authorisation issued under Section 39." (Refer to AEC 2017 for more information on previous authorisations/exemptions).

The Langebaan WWTW is permitted to irrigate up to 73 000 m³ (daily maximum of 200 m³ per day) of wastewater per annum on 12.68 ha (water use as prescribed in NWA Section 21(e)). Furthermore, the SBM is permitted to store treated effluent for irrigation purposes in ponds with a maximum storage capacity of 4 485 m³ (water use as prescribed in NWA Section 21(g): "disposing of waste in a manner which may detrimentally impact on a water resource."). The conditions of the General Authorisation applicable to the above described water uses are prescribed in Regulations 1 and 3 of the *GN 665 Government Gazette 36820* dated 6 September 2013. Regulation 1 prescribes that specific wastewater quality limit values are applicable depending on the volume of wastewater irrigated. The SBM intends to irrigate more than 50 m³ but less than 500 m³ per day. The applicable limits are shown in Table 3.5. The General Authorisation also specifies that:

- 1) Water user must follow acceptable construction, maintenance and operational practices to ensure the consistent, effective and safe performance of the wastewater irrigation system, including the prevention of
 - a. waterlogging of the soil and pooling of wastewater on the surface of the soil;
 - b. nuisance conditions such as flies or mosquitoes, odour or secondary pollution;
 - c. waste, wastewater or contaminated stormwater entering into a water resource;
 - d. the contamination of runoff water or stormwater;
 - e. the unreasonable chemical or physical deterioration of, or any other damage to, the soil of the irrigation site;
 - f. the unauthorised use of the wastewater by members of the public; and
 - g. people being exposed to the mist originating from the irrigation of the wastewater.
- 2) Suspended solids must be removed from any wastewater, and the resulting sludge disposed of according to the requirements of any relevant law or regulation, including the document Guidelines for the Utilisation and Disposal of Wastewater Sludge, Volumes 1-5, Water Research Commission Reports TT 261/06, 262/06, 349/09, 350/09, 351/09, as amended from time to time (obtainable from the responsible authority upon written request).
- 3) All reasonable measures must be taken to provide for mechanical, electrical, operational, or process failures and malfunctions of the wastewater irrigation system.
- 4) All reasonable measures must be taken for storage of the wastewater used for irrigation when irrigation cannot be undertaken, of which the storage must be in accordance with general authorisation in section 3 of this Notice.
- 5) All reasonable measures must be taken to collect contaminated stormwater or runoff emanating from the area under irrigation and to retain it for disposal of which the disposal must be in accordance with general authorisation in section 3 of this Notice.
- 6) Upon the written request of the responsible authority the registered user must ensure the implementation of any additional construction, maintenance and operational practices that

may be required in the opinion of the responsible authority to ensure the consistent, effective, safe and sustainable performance of the wastewater irrigation system.

The SBM is also obligated to establish monitoring programmes for the quantity and quality of wastewater to be used for irrigation prior to commencement and thereafter, in the following manner:

- a. The quantity must be metered and the total recorded weekly; and
- b. the quality of water irrigated must be monitored once every month by taking a grab sample at the point at which the wastewater enters the irrigation system for all parameters listed in paragraph 1.7(1)(i), (ii) and (iii) and results submitted to the responsible authority.

More detailed information can be requested by the DWS from the SBM.

Table 3.5 Wastewater limit values applicable to the irrigation of any land or property up to 500 cubic metres (National Water Act 36 of 1998, *GN 665 Government Gazette 36820* dated 6 September 2013).

Variables	Limits
рН	Not less than 6 of more than 9 pH units
Electrical conductivity	Not exceed 200 milliSiemens per metre (mS/m)
Chemical Oxygen Demand (COD)	Does not exceed 400 mg/L after removal of algae
Faecal coliforms	Do not exceed 100 000 per 100 mL
Sodium Adsorption Ratio (SAR)	Does not exceed 5 for biodegradable industrial wastewater

Regulation 3.14 prescribes the conditions applicable with regards to record-keeping and disclosure of information for the storage of wastewater. The SBM is required to conduct monthly monitoring of water quantity and quality. Water quality parameters are not specified in Regulation 3 and it is therefore assumed that the parameters as specified in Table 3.5 are applicable (the wastewater is not discharged into a water resource and those limits are therefore not applicable in terms of the GA).

Regulation 3 of the General Authorisation also specifies that:

- 1) The water user must follow acceptable design, construction, maintenance and operational practices to ensure the consistent, effective and safe performance of the wastewater discharge system, including the prevention of
 - h. nuisance conditions such as flies or mosquitoes, odour or secondary pollution;
 - i. the contamination of runoff water or stormwater;
 - j. contaminated stormwater entering into a water resource; and
 - k. the unauthorised use of the wastewater by members of the public.
- 2) Suspended solids must be removed from any wastewater, and the resulting sludge disposed of according to the requirements of any relevant law or regulation.
- 3) All reasonable measures must be taken to prevent wastewater overflowing from any wastewater disposal system or wastewater storage dam.
- 4) All reasonable measures must be taken to provide for mechanical, electrical, or operational failures and malfunctions of any wastewater disposal system or wastewater storage dam.

- 5) Sewage sludge must be removed from any wastewater and the resulting sludge disposed of according to the requirements of any relevant law and regulation, including
 - a. Guidelines for the Utilisation and Disposal of Wastewater Sludge, Volumes 1-5, Water Research Commission Reports TT 261/06, 262/06, 349/09, 350/09, 351/09, as amended from time to time; and
 - b. "Guide: Permissible utilisation and disposal of treated sewage effluent", 1978, Department of National Health and Population Development Report No. 11/2/5/3, as amended from time to time (obtainable from the Department upon written request).

Planned upgrades to the Langebaan WWTW

Various upgrades are required to improve the overall performance of the treatment plant (SBM, Gavin Williams, pers. comm. 2016) and have been ongoing in the form of a phased approach. The first phase included the construction of a new reactor basin, installation of new aeration equipment and new sludge drying beds and was completed in 2017/18 financial year. These upgrades increased the plant capacity to 3.5 ML and included an additional aeration basin, a new clarifier and drying beds as well as new inlet works and screens with a total budget of R17 million (SBM, Gavin Williams, pers. comm. 2019). The ongoing phased approach and installation of new infrastructure will increase the capacity of the plant to 5-7 ML. Phase 2 of these upgrades is in the final stages and is set to be completed by the end of September 2020 and tender processes for phase 3 are currently being implemented. This phase will include the refurbishment of the old bio reactor, mechanical dewatering facility and power supply to the works (SBM, Quintin Williams, pers. comm. 2020). An aerial view of the Langebaan WWTW is shown in Figure 3-29.

Figure 3-29 Construction activities for the upgrade of the Langebaan Waste Water Treatment Plant to increase treatment capacity and improve treatment processes.

Over time more effluent than currently absorbed by the Langebaan Country Club will be produced. The SBM intends to appoint a consultant to design proposals on how to use or discharge excess effluent (SBM, Gavin Williams, pers. comm. 2019). For example, the municipality is planning to use excess effluent to irrigate the lawn at the Langebaan Sports Complex. It appears that the demand for wastewater is high enough to absorb the excess effluent. Most importantly, however, water users would have to be identified prior to the expansion of the plant to prevent non-compliance with the ICMA as described above.

Treated wastewater quality monitoring

The annual State of the Bay Report has been reporting water quality parameters measured prior to the transfer of the effluent to the Langebaan Country Club. It is noteworthy that the effluent is further treated prior to irrigation by means of 11 polishing ponds. However, water quality is currently not monitored prior to irrigation and although, according to SBM no effluent has entered the MPA in over a year, the actual water quality of the treated wastewater that could enter the MPA via the illegal overflow is currently unknown. This report therefore continues to describe the water quality trend over time as measured at the end of pipe at the Langebaan WWTW. Note that the legal water quality limits as per GA in terms of Section 21(f): "Discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit" are no longer applicable as the sea outfall is now regulated by the ICMA by means of CWDPs. Accordingly, the GA of 2013 (GN 665 Government Gazette 36820 dated 6 September 2013) specified that the GA is no longer applicable to sea outfalls.

Trends of water quality parameters in the effluent released into the Langebaan Lagoon MPA between 2009 and 2019 are therefore no longer compared to the GA limits for **wastewater discharge**. Instead, where monitoring information is available, the results have been compared to GA limits for **irrigation** as shown in Table 3.5. These parameters include pH, electrical conductivity, Chemical Oxygen Demand, and Faecal Coliforms. No data is currently available for Sodium Adsorption Ratio (SAR).

In addition to the above, due to occasional discharges of effluent into the MPA, the effluent monitoring results will be compared to a limit that is more relevant to the inshore marine environment. As part of the Assessment Framework for the Management of Effluent from Land Based Sources Discharged to the Marine Environment that was recently developed by Anchor for the DEA: O&C (AEC 2015), recommendations were made regarding the applicability of General Discharge Authorisations and what type of effluents should qualify. The overflow into the MPA would not be considered to fall under a GDA (and the DEA: O&C indicated that a CWDP would not be issued for a new outfall in an MPA), however, the GDA special limits as recommended in the Assessment Framework are more applicable to the marine environment than limits derived for irrigation or wastewater discharges into freshwater resources. Wastewater monitoring results have therefore been compared to the recommended special limits purely to provide context.

Long-term trends in water quality are shown in Figure 3-30 – Figure 3-40. It is noteworthy that for quite some time, the amount of wastewater entering the marine environment has been very low and is unlikely to have contributed significantly to pollution of the receiving environment (although due to the lack of water quality and quantity data this is impossible to say with confidence). The changes implemented by the SBM are therefore mainly positive and interpretation of water quality results

must consider that volumes are likely to be low and of better quality than indicated in the graphs below.

The previous exemption permitted the irrigation of the local golf course with 1 611 m³ treated effluent per day, which was exceeded 92% of the time between 2009 and December 2017 (Figure 3-30). Overall, effluent volumes peak over the December holidays when plant capacity is often reached or exceeded (e.g., December 2016, average daily effluent volumes were 2 840 m³ with a maximum daily flow of 5 545 m³) (Figure 3-31). The legal limit for effluent production increased to 4 485 m³/day in January 2018 when the SBM was issued with a new General Authorisation permission. Shortly thereafter, plant capacity was increased to 3 500 m³. Since then the Langebaan WWTW has been compliant in terms of the legal effluent volume limit. Hydraulic design capacity (3500 m³) was exceeded in January 2019 with an average daily flow of 4167 m³ per day (i.e., 119% capacity) and marginally in March 2020 (3529 m³ per day or 100.8%); along with no evidence of exceedance between November 2020 and June 2021.

The pH monitoring data shows that the wastewater always falls within the pH range to be met in terms of the GA for the irrigation of $< 500 \text{ m}^3$ wastewater (i.e., between pH of 6 and 9,Figure 3-32). Values of pH recommended for the protection of the inshore marine environment range between 7.3 and 8.2 (AEC 2015). Since 2009 the pH of the wastewater effluent has fallen outside of these limits 41% of the time, with more basic (pH > 8.2) values recorded four times and more acidic (pH < 7.3) values recorded on 59 occasions. However, in the last two years, pH levels have been more consistent, only dropping slightly below recommended values for the marine environment on four occasions in August 2019 (7.25), May 2020 (7.29), July 2020 (6.86) and June 2021 (7.19).

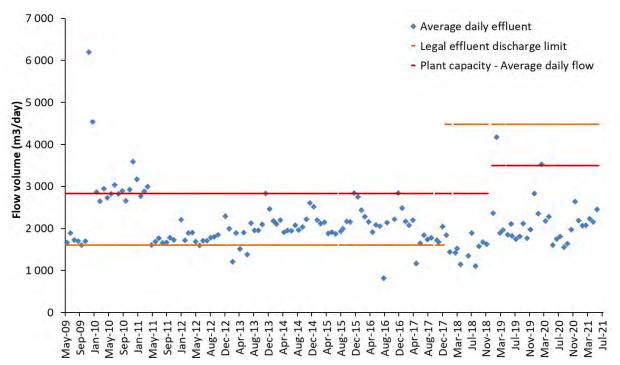


Figure 3-30 Trends in average daily effluent volume (m³/month) released from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. Allowable discharge limits in terms of the exemption issued by DWAF under the National Water Act (No. 36 of 1998) are represented by the dashed orange line and the design capacity of the plant by the red line.

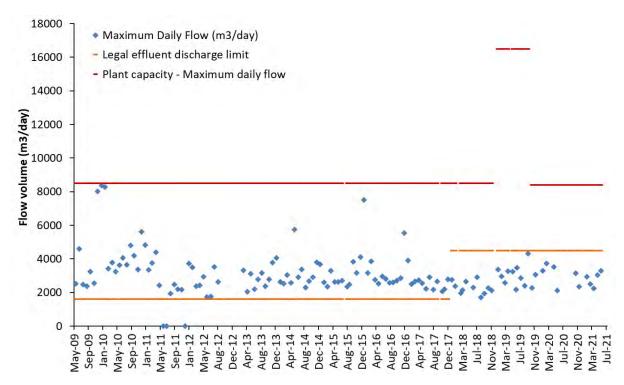


Figure 3-31 Trends in maximum daily effluent volume (m³/month) released from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. Allowable discharge limits in terms of the exemption issued by DWAF under the National Water Act (No. 36 of 1998) are represented by the dashed orange line and the design capacity of the plant by the red line.

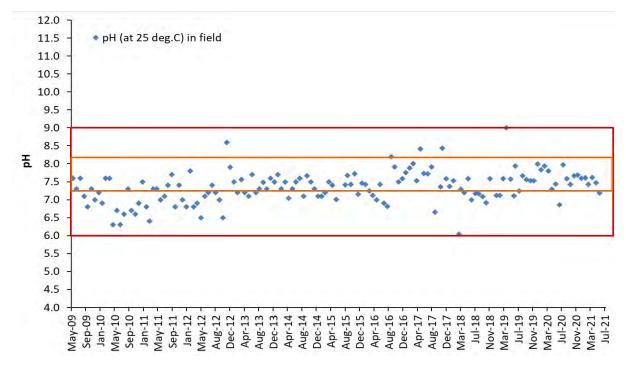


Figure 3-32. Monthly trends in pH of effluent from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. The allowable range in terms of the General Authorisation for irrigation purposes under the National Water Act (No. 36 of 1998) is 6 – 9 and is depicted by the red square. The recommended range to protect marine inshore environments is 7.3 – 8.2 and is depicted by the orange square (AEC 2015).

In the 12 years since electrical conductivity (in mS/m) was first recorded at Langebaan WWTW, conductivity has been declining steadily (Figure 3-33). With a peak reading of 625 mS/m recorded in September 2011 and the lowest recording occurring in April 2020 (22 mS/m). Values have been fluctuating around the prescribed limit (200 mS/m) since December 2014, with this limit exceeded on 18 occasions (23% of the time). Exceeding the limit only twice in the past year.

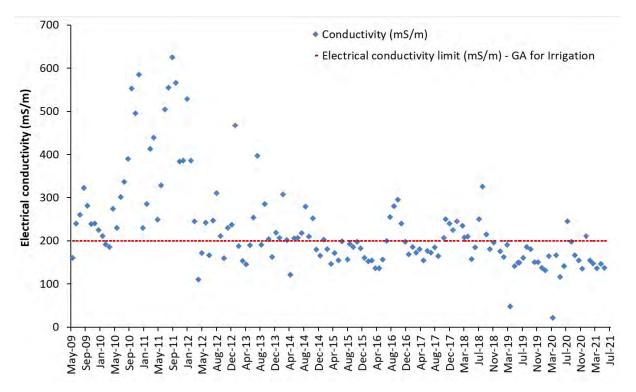


Figure 3-33 Monthly trends in conductivity of effluent from the Langebaan Wastewater Treatment Works, June 2009

– June 2021. The allowable limit in terms of the General Authorisation for irrigation purposes under the National Water Act (No. 36 of 1998) is 200 mS/m and is depicted by the red line.

COD in filtered effluent exceeded the allowable limit for the protection of marine organisms of 75 mg/L 28% of the time since June 2009, reaching an all-time maximum of 235 mg/L in January 2018 (Figure 3-34). However, it appears that there has been an improvement in recent years with the limit for the protection of the marine environment only being exceeded four times since June 2018 (11% of the time). In terms of the limit imposed by the GA applicable for irrigation, the SBM is compliant as COD is always lower than 400 mg/L (Figure 3-34).

To date, concentrations of faecal coliforms in the effluent from the Langebaan WWTW have not exceeded the limit of 100 000 organisms per 100 mL imposed by the GA applicable to irrigation (Figure 3-35). In terms of recreational and mariculture concerns, 100 000 org/100 mL in the overflow would be unacceptable. The wastewater has stayed well below this limit however, the frequency of readings greater than the detection limit, and therefore multiplied by 3 to reach the conservative maximum value of 7258 org/100 mL, has increased in the last few years. In 2019/20 as many as eight of the 12 readings recorded were greater than the detection limit. However, in the recent year only two readings were above the detection limit. Furthermore, nine of the 12 readings were below the

desirable faecal coliform readings of 1 000 org/100 mL as prescribed in the GA applicable to the discharge of wastewater into freshwater resources.

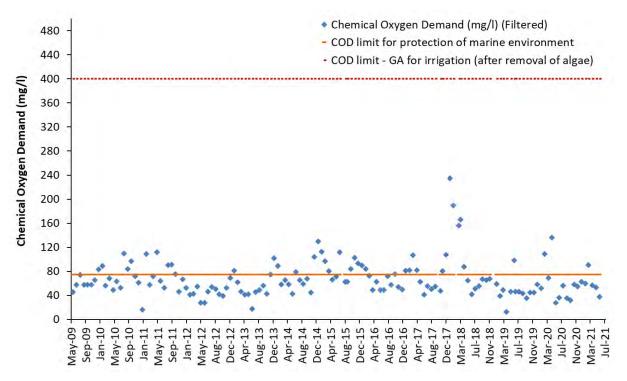


Figure 3-34 Monthly trends in chemical oxygen demand (mg/L filtered) in effluent released from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. Allowable limits as specified in terms of a General Authorisation under the National Water Act (No. 36 of 1998) are represented by the dashed red line. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

No Total Suspended Solids (TSS) limit is prescribed by the GA applicable to irrigation of wastewater. Overall, the water user is required to remove all suspended solids prior to irrigation of the wastewater. Therefore, the SBM will be required to remove TSS prior to the irrigation of their own premises and the flower beds on Oostewal Road. The polishing ponds on the Langebaan Country Estate are likely to act as settlement ponds and TSS is likely to be lower than shown here. TSS values exceeded the recommended special limit for the protection of the inshore marine environment of 10 mg/L on 87 occasions since 2009 (60% of the time) (Figure 3-36). Overall, TSS levels appear to be steadily increasing since December 2014 with the majority of readings exceeding the recommended limit, the maximum TSS value of 198 mg/L occurred in March 2015. Similarly, annual peaks in the concentration occur at the end of the summer or early autumn each year with readings of 50 mg/L recorded in March 2017, 93 mg/L in April 2018, 55 mg/L in April 2019, 101 mg/L in March 2020 and down to 66 mg/L in January 2021.

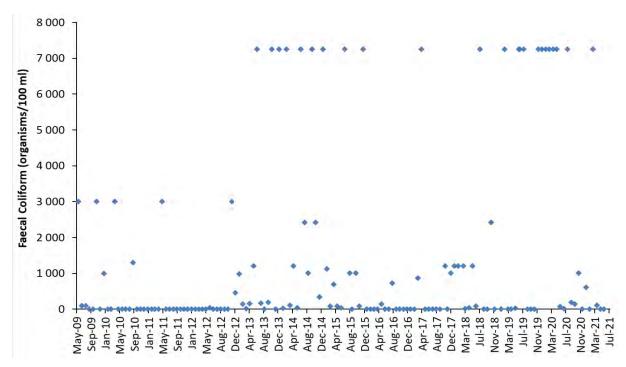


Figure 3-35 Monthly trends in Faecal Coliforms (org/100 ml) in effluent released from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. The allowable limit in terms of a General Authorisation for irrigation purposes under the National Water Act (No. 36 of 1998) is 100 000 organisms per 100 mL.

No ammonia nitrogen limit is prescribed by the GA applicable to irrigation of wastewater, however, ammonia is very toxic to marine life as it acts as a biocide. The recommended ammonia nitrogen limit for the inshore marine environment is 3 mg/L (Figure 3-37). The water quality guidelines for the coastal environment specify a target of 0.6 mg/L to prevent chronic toxicity. Ammonia levels increased steeply between November 2012 and March 2018 from < 10 mg/L to nearly 100 mg/L. Subsequent to that the ammonia nitrogen concentrations dropped significantly but were, however, still grossly exceeding the recommended limit for the protection of the marine environment (3 mg/L). Readings have again started to increase with all but one measuring below the limit in 2020/2021. Considering the above, the levels of ammonia in the Langebaan WWTW effluent is alarming and any amount of effluent released into the nearshore marine environment is likely to have a significant negative effect on marine biota.

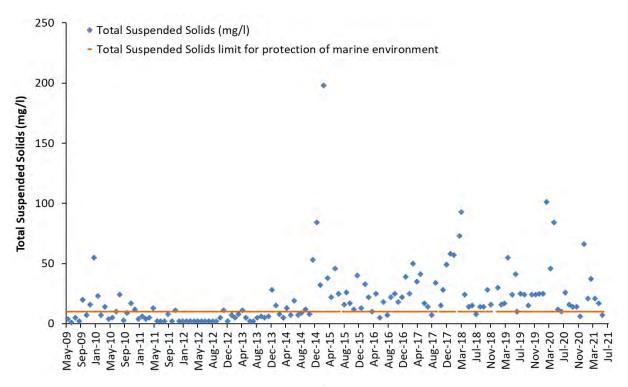


Figure 3-36 Monthly trends in total suspended solids (mg/L) in effluent released from the Langebaan Wastewater Treatment Works, June 2009 – June 2021. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

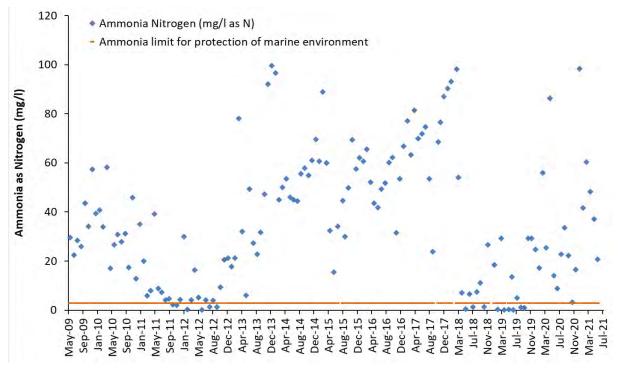


Figure 3-37 Monthly trends in Ammonia Nitrogen (mg/L as N) in effluent released from the Langebaan Wastewater Treatment Works June 2009 – June 2021. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

Nitrate-nitrogen is not toxic to marine life but is a primary nutrient (usually marine systems are nitrogen limited) and could stimulate nuisance algae growth near the outfall point and its surrounds. No nitrate-nitrogen limit is prescribed by the GA applicable to irrigation of wastewater. The recommended nitrate-nitrogen limit for the inshore marine environment is 1.5 mg/L. This limit has been exceeded on 65 occasions since June 2009 (45% of the time) (Figure 3-38). Lower concentrations were recorded between April 2016 and March 2018 with all values less than the limit. In 2019/20 eight of the 12 readings fell below the limit. However, this did not follow through to 2020/21, as only four readings were below the limit. Toxic ammonia nitrogen is converted to non-toxic nitrate nitrogen by means of bacterial treatment in WWTWs. It is likely that the 2018/2019 observed higher levels are congruent with lower ammonia levels in the effluent, although this was not evident in the recent year 2020/21. In light of the latter, it appears the effectiveness of bacterial treatment in WWTWs is highly variable.

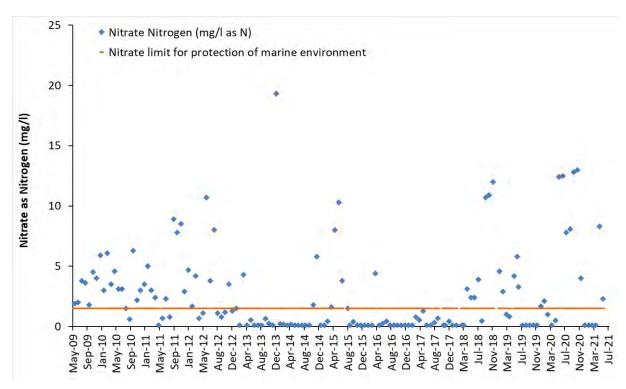


Figure 3-38 Monthly trends in Nitrate Nitrogen (mg/L as N) in effluent released from the Langebaan Wastewater Treatment Works June 2009 – June 2021. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

Orthophosphate is usually not the limiting nutrient for primary production in the marine environment. The recommended limit applicable for discharges into the inshore marine environment is 1 mg/L. No orthophosphate limit is prescribed by the GA applicable to irrigation of wastewater. Orthophosphate levels have steadily increased since 2013, with relatively high readings of 19 mg/L in May 2018. Levels have dropped significantly and remained fairly low (< 4 mg/L) until April - June 2020. Thereafter, readings remained low until reaching the highest value recorded to date at 51.1 mg/L in January 2021 (Figure 3-39). Overall, the orthophosphate concentration in the Langebaan WWTW effluent is considerably higher than 1 mg/L (87% exceedance). However, as observed with several other effluent

parameters, orthophosphate levels improved significantly since November 2018, (except for exorbitant reading in January 2021) with an average of 5.8 ± 10.0 mg/L (44% of readings < 1 mg/L).

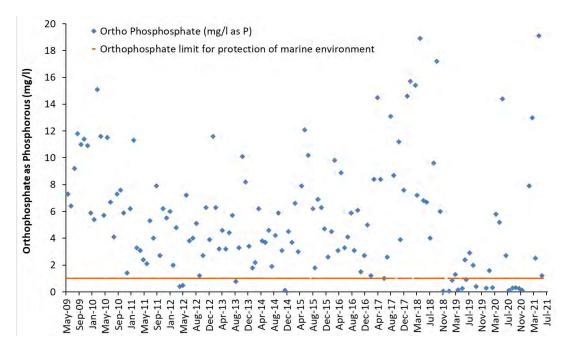


Figure 3-39 Monthly trends in Orthophosphate (mg/L as P) in effluent released from the Langebaan Wastewater Treatment Works June 2009 – June 2021. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

No free active chlorine limit is prescribed by the GA applicable to irrigation of wastewater, however, free active chlorine is highly toxic to marine life as it acts as a biocide. The recommended limit to protect the inshore marine environment is 0.5 mg/L. Concentrations have exceeded this limit 43% of the time since 2009 and fluctuated around $1.2 \pm 1.2 \text{ mg/L}$ between July 2016 and June 2019 (Figure 3-40. Concentrations have exceeded this limit 43% of the time since 2009 and fluctuated around $1.2 \pm 1.2 \text{ mg/L}$ between July 2016 and June 2019 (Figure 3-40). Monthly values for 2019/20 appeared to improve with most values below 1.2 mg/L and six of the 12 readings not exceeding the limit, however, two high exceptions exist, recorded in February and March 2020, where both readings are above the measurable detection limit. The latter patterns appeared to follow in the current year, with three high readings recorded in July 2020, January and June 2021 exceeding the detection limit; along with only four readings below desirable limit. These levels are significantly higher than what would be considered acceptable if discharged into the nearshore environment and more careful dosing of chlorine should be implemented.

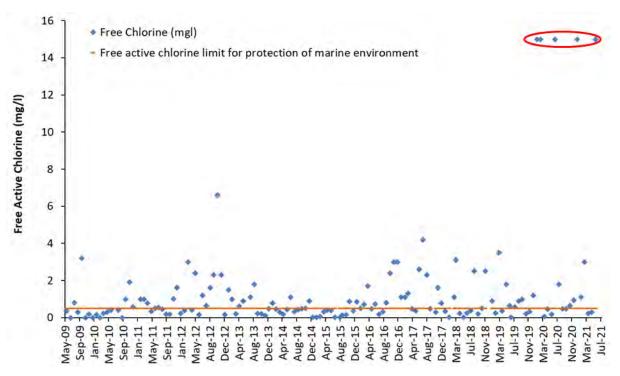


Figure 3-40 Monthly trends in Free Active Chlorine (mg/L) in effluent released from the Langebaan Wastewater Treatment Works June 2009 – June 2021. The recommended limit to protect marine inshore environments is shown by the orange dashed line (AEC 2015).

3.6.3.5 Summary

The Saldanha Bay Municipality (SBM) has made a considerable effort over the last few years to re-use treated wastewater to save precious potable water where possible. Treated wastewater has been supplied for irrigation, industrial use (e.g., cooling processes) and dust suppression at construction sites. Overall, it appears that, especially in summer, the demand for treated wastewater is very high and the SBM is unable to meet the demand at current wastewater treatment capacity. Very small volumes of effluent have entered the marine environment from both WWTWs since early 2018, which is expected to continue in the foreseeable future. Despite this new effluent discharge pattern, effluent quality monitoring results will continue to be compared to relevant legal and/or recommended limits. When interpreting these results, the reader must remain cognisant of the fact that very small volumes are entering the marine environment and impacts are likely to be limited (over time, extent and magnitude).

Overall, the data shows that the majority of Saldanha Bay WWTW water quality parameters have improved in the past year although they are not always within allowable limits and conditions as set out in the NWA (Government Gazette No. 36820, 6 September 2013). In 2020/21 the nitrate-nitrogen concentration averaged 9.5 ± 5.5 mg/L and the limit has not been exceeded since June 2017. Similarly, Faecal coliform had a 100% compliance rate and the limit for COD and TSS was only exceeded once in 2020/21. On a positive note, the average levels of Ammonia Nitrate in 2020/21 reduced by 3-fold compared to those in 2019/20 and were below the allowable limit. The current average Orthophosphate levels increased compared to 2019/20 and were above the limit. Seven out of 12 readings exceeded the limit, and it is somewhat concerning that the highest reading on record to date (1.9 times the limit) occurred in February 2021. In addition, the permissible chlorine limit was

exceeded 67% of the time in 2020/21. Therefore, while many parameters showed an improvement there are still some that need to be better managed, especially because since the closure of ArcelorMittal a portion of effluent is being discharged into the Bok which ultimately exits into the Bay.

Improved effluent quality was recorded at the Langebaan WWTW for some parameters. Orthophosphate levels have improved significantly since November 2018, with 44% of readings being below the recommended limit. Conductivity has also been consistently decreasing and has been compliant with the General Authorisation for irrigation since November 2018. Additionally, the Chemical Oxygen Demand compliance improved with levels only exceeding the recommended limit for the protection of the marine environments on four occasions in the past two years. Faecal coliforms in the effluent from the Langebaan WWTW have not exceeded the limit imposed by the GA applicable to irrigation values, and appear to be decreasing with nine of the 12 readings below the desirable limit (i.e.,1 000 org/100 mL). In contrast, TSS levels appear to be steadily increasing since December 2014 with the vast majority of readings exceeding the recommended limit for the protection of marine environments, values appear to peak at the end of summer or early autumn. The ammonia Nitrogen levels have increased in the last year with the majority above the recommended limit for the protection of marine environments. Despite this, it is important to remember that according to SBM no effluent is reaching the marine environment as it is all been allocated for reuse.

The data shows that the Saldanha WWTW is receiving greater volumes of effluent for treatment than permitted, despite the cessation of industrial effluent from ArcelorMittal. However, it should be noted that the SBM is currently in the process of amending their Water Use License and that effluent volumes rarely exceed the plant capacity (nearly double that of the legal limit). The Langebaan WWTW was recently upgraded to 3 500 m³ and was issued permission to store 4 485 m³ in January 2018. The legal limit has not been exceeded since and plant capacity has only been exceeded twice.

3.6.4 Storm water

Storm water runoff, which occurs when rain flows over impervious surfaces into waterways, is one of the major non-point sources of pollution in Saldanha Bay (CSIR 2002). Sealed surfaces such as driveways, streets and pavements prevent rainwater from soaking into the ground and the runoff typically flows directly into rivers, estuaries or coastal waters. Storm water running over these surfaces accumulates debris and chemical contaminants, which then enters water bodies untreated and may eventually lead to environmental degradation. Contaminants that are commonly introduced into coastal areas via storm water runoff include metals (Lead and Zinc in particular), fertilizers, hydrocarbons (oil and petrol from motor vehicles), debris (especially plastics), bacteria and pathogens and hazardous household wastes such as insecticides, pesticides and solvents (EPA 2003).

It is very difficult to characterise and treat storm water runoff prior to discharge, and this is due to the varying composition of the discharge as well as the large number of discharge points. The best way of dealing with contaminants in storm water runoff is to target the source of the problem by finding ways that prevent contaminants from entering storm water systems. This involves public education as well as effort from town planning and municipalities to implement storm water management programmes.

The volume of storm water runoff entering waterways is directly related to the catchment characteristics and rainfall. The larger the urban footprint and the higher rainfall, the greater the runoff will be. At the beginning of a storm a "first flush effect" is observed, in which accumulated contaminants are washed from surfaces resulting in a peak in the concentrations of contaminants in the waterways (CSIR 2002). Several studies have shown degradation in aquatic environments in response to an increase in the volume of storm water runoff (Booth & Jackson 1997, Bay *et al.* 2003).

Typical concentrations of various storm water constituents (metals, nutrients, bacteriological) for industrial and residential storm water from South Africa and elsewhere were extracted from the literature by the CSIR in 2002 (Table 3.6). These values are rough estimates as site specific activities will have a strong influence on storm water composition and ideally more accurate data should be acquired by monitoring of contaminants in the storm water systems of Saldanha and Langebaan. It is clear that the estimated concentrations of many of the potentially toxic compounds are above the South African 1998 water quality guidelines for coastal and marine waters (values indicated in red). It is likely that introduction of contaminants via storm water runoff negatively impact the health of the marine environment, especially during the "first flush" period as winter rains arrive.

Table 3.6 Typical concentrations of water quality constituents in storm water runoff (residential and Industrial) (from CSIR 2002) and South Africa 1998 Water Quality Guidelines for the Natural Environment (*) and Recreational Use (**). Values that exceed guideline limits are indicated in red.

Parameter	Residential	Industrial	Water Quality Guidelines
Total suspended solids (mg/L)	500	600	-
Chemical oxygen demand (mg/L)	60	170	-
Nitrate-N (mg/L)	1.2	1.4	0.015*
Total Ammonia-N (mg/L)	0.3	0.4	0.6*
Orthophosphate-P (mg/L)	0.07	0.1	-
Cadmium (mg/L)	0.006	0.005	0.004*
Copper (mg/L)	0.05	0.05	0.005*
Lead (mg/L)	0.3	0.1	0.012*
Zinc (mg/L)	0.4	1.1	0.025*
Faecal coliform counts (counts/100 ml)	48 000	48 000	100**

Storm water runoff that could potentially impact the marine environment in Saldanha and Langebaan originates from industrial areas (490 ha), the Saldanha Bay residential area (475 ha), industrial sites surrounding the Port of Saldanha (281 ha), and Langebaan to Club Mykonos (827 ha) (Figure 3-41). All residential and industrial storm water outlets drain into the sea.

The CSIR (2002) estimated the monthly flow of storm water entering Saldanha Bay and Langebaan Lagoon using rainfall data and runoff coefficients for residential and industrial areas. In this report, these estimates have been updated by obtaining more recent area estimates of industrial and residential developments surrounding Saldanha Bay and Langebaan Lagoon using Google Earth and by acquiring longer term rainfall data (Figure 3-41 and Table 3.7). Runoff coefficients used to calculate storm water runoff from rainfall data were 0.3 for residential areas and 0.45 for industrial areas (CSIR

2002). Note that runoff from the Port of Saldanha and ore terminal have been excluded from these calculations. Storm water runoff is highly seasonal and peaks in the wet months of May to August. Due to the rapid pace of holiday and retail development in the area, Langebaan residential area produces the greatest volumes of storm water runoff, followed by the industrial areas, with lower volumes arising from the Saldanha residential area. The actual load of pollutants entering the Bay and Lagoon via this storm water can only be accurately estimated when measurements of storm water contaminants in the storm water systems of these areas are made.

Figure 3-41 Spatial extent of residential and industrial areas surrounding Saldanha Bay and Langebaan Lagoon from which storm water runoff is likely to enter the sea (areas outlined in white). Note that runoff from the Port of Saldanha and ore terminal have been excluded as this is now reportedly all diverted to storm water evaporation ponds.

Table 3.7 Monthly rainfall data (mm) for Saldanha Bay over the period 1895 – 1999 (source Visser *et al.* 2007). MAP = mean annual precipitation.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
MAP	6	8	11	25	47	61	64	46	25	18	13	8	332
Ave. rain days	1.4	1.4	2.2	3.8	6.2	7.1	7.5	6.4	4.8	3.0	1.9	1.8	47.5
Ave./day	4.1	5.5	5.1	6.6	7.6	8.5	8.5	7.3	5.2	6.0	6.6	4.6	7.0

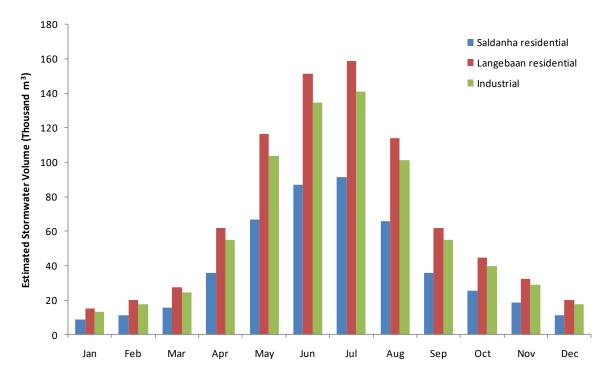


Figure 3-42 Monthly estimated storm water volume (m³) for Saldanha and Langebaan residential areas and industrial area. Note that runoff from the Port of Saldanha and ore terminal have been excluded as this is now reportedly all diverted to storm water evaporation ponds.

3.6.4.1 Stormwater management in Saldanha

There are approximately 15 outlets in the Saldanha Bay residential area. Historically, storm water from the Port of Saldanha and ore terminal was allowed to overflow into the Bay but most of this is now diverted to storm water evaporation ponds and any material settling in these ponds is trucked to a landfill site. The Saldanha Bay Municipality (SBM) intends to upgrade the existing stormwater infrastructure in the operational and non-operational areas within the boundaries of the Port of Saldanha. These upgrades include:

- Development of three new storm water retention ponds;
- Expansion and reshaping of existing storm water retention ponds;
- Development of a wastewater treatment facility;
- Upgrade of the storm water management infrastructure as well as maintenance of existing ones; and
- Associated activities.

These upgrades require Environmental Authorisation from the Western Cape Department of Environmental Affairs and Development Planning and the SBM commissioned NSOVO Environmental Consulting to conduct the Basic Assessment Process (NSOVO Environmental Consulting 2017). The draft BAR was published in January 2019 and the process is still ongoing.

Despite the efforts by the iron ore industry to reduce dust emission (refer to Section 3.3.1) and to divert and store stormwater in evaporation ponds, Saldanha Bay experiences frequent and considerable pollution, especially when the terminals are washed down with hosepipes (Figure 3-43).

A report on the impacts of iron on the marine environment in Saldanha Bay was produced by Anchor Environmental Consultants in 2012 (AEC 2012c). This report distinguished between the impacts of iron on the marine environment in its solid and hydrated state. Iron in the solid state affects organism by either smothering or through physical damage, thereby reducing the survival fitness of the affected organism. For example, high concentration of iron dust is known to inhibit photosynthesis in primary producers (Woolsey & Wilkinson 2007) and reduce fitness of intertidal organisms by changing the rate of heat absorption and reflective properties of their shells (Erasmus & De Villiers 1982). If iron is dissolved through chemical reactions with organic matter and oxygen, it becomes available to organisms in the marine environment. Dissolved iron is a micronutrient and shortage of this element can limit primary productivity in certain areas, while excess dissolved iron can result in unusual phytoplankton blooms. It has been shown that toxin levels in phytoplankton responsible for red tides also increase as a response to enhanced dissolved iron levels (He *et al.* 2009). Furthermore, accumulation of iron in tissue of bivalves can be harmful to humans when ingested and high levels of iron in tissue is recognised as an indicator for readily bioavailable iron (Rainbow 2002).

Figure 3-43 Pollution of Saldanha Bay by particulate iron carried by stormwater runoff (Source: Jaco Kotze, September 2014, Langebaan Rate Payers Association).

3.6.4.2 Stormwater management in Langebaan

Concerns and complaints have been publicly raised by the residents of Langebaan with regard to the poor stormwater management in Langebaan. Some parts of Langebaan are situated below the sea level and in the winter months, water becomes trapped on the roads in these areas. As a result, residents struggle to access their properties and to commute on flooded roads (Saldanha Bay Municipality 2014). Furthermore, the following concerns have been registered by the SBM:

- Deterioration/destructions of wetlands as well as canalisation of streams and rivers reduce the assimilative and dissipative capacity of the natural environment.
- Inadequate capacity of stormwater retention facilities east of Oostewal Street.

- Impact of stormwater effluent containing pollutants from roads, private properties and businesses discharging into the Langebaan Lagoon.
- Lack of maintenance of conveyance systems with large sediment deposits.
- Impact on tourism market due to deteriorating aesthetic value.

As a result of these concerns, a Stormwater Management Master Plan was drafted and is amended as new issues arise (living document) (Saldanha Bay Municipality 2014). A Stormwater Management Plan is a necessary precursor to an action plan for improving stormwater management in Saldanha. However, the importance of drafting and implementing a policy for the maintenance of existing and future stormwater management structures has also been recognised. Langebaan currently has approximately 30 existing ponds of various sizes for the collection of stormwater and three additional large ponds are proposed (Note that these numbers may change as the Stormwater Master Plan is amended). There are about 20 outlets for stormwater that drain directly into the Langebaan Lagoon. Three types of structural stormwater controls are proposed for Langebaan, namely stormwater wet extended detention ponds, enhanced swale and litter/silt traps. The former will control the volume and quality of stormwater to be released into the Lagoon. The enhanced swale will encourage groundwater recharge and litter/silt traps will enable separation of refuse and larger debris at the entrance to chosen stormwater structures.

Stormwater litter traps

A collaboration between Sea Harvest and Saldanha Bay Municipality (SBM) saw the installation of a pilot stormwater litter trap in Saldanha Bay. This net, attached to the end of a stormwater outlet, traps any litter and debris suspended in the stormwater thereby preventing it from entering and polluting the Bay. The example shown in Figure 3-44 was the first installation of its type in within the Bay and unfortunately due to COVID 19 restrictions the project has not yet been expanded although, Sea Harvest and SBM hope to resume the initiative in the future (Sea Harvest Group Sustainability Manager, Kirshni Naidoo, *pers. comm.* 2020).

Figure 3-44 A stormwater litter trap installed in Saldanha Bay to prevent litter entering the Bay (Source: SADSTIA annual report 2019).

3.6.5 Fish processing plants

Three fishing companies currently discharge land-derived wastewater into Saldanha Bay: SA Lobster Exporters (Marine Products), Live Fish Tanks (West Coast) — Lusitania (CSIR 2002) and Sea Harvest. The latter is dealt with in more detail in below. The locations of the fish factory intake and discharge points are shown in Figure 3-45 Premier Fishing is currently in the process of re-commissioning and upgrading their fish processing plant.

SA Lobster Exporters (Oceana Lobster Saldanha) discharges seawater from their operations into Pepper Bay. The average monthly effluent volumes range from 40 to 60 000 m³, and this water cycles through tanks where live lobsters are kept prior to packing (CSIR 2002). It was not possible to obtain more updated information or data for effluent volume and quality. No CWDP has been issued (Source: DEA: OC) and it is unknown whether this organisation is compliant with the revised General Discharge Limit.

Live Fish Tanks (West Coast)-Lusitania take up and release wash water from Pepper Bay. Neither discharge volume nor water quality is being monitored on a routine basis (CSIR 2002), but it is reported to be not markedly different from ambient seawater, as it basically cycles through tanks where live lobsters are kept prior to packaging (CSIR 2002). It is therefore unknown if this organisation is compliant with the revised General Discharge Limit and no CWDP has been issued (Source: DEA: OC). Furthermore, municipal water is released on a regular basis into the sea after cleaning of concrete slabs without cleaning agents (Live Fish Tanks, *pers. comm.* 2014). It must be determined how much freshwater is released into Small Bay by Live Fish Tanks (West Coast)-Lusitania in order to assess whether it significantly impacts the receiving environment.

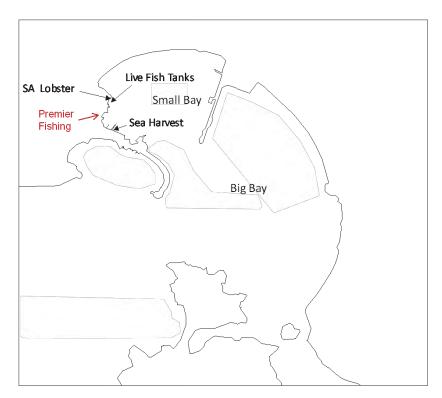


Figure 3-45 Location of seawater intakes and discharges for current and proposed seafood processing factories in Saldanha Bay. Current factories are indicated in black while the proposed Premier Fishing Fish Processing Plant is indicated in red.

3.6.5.1 Sea Harvest Fish Processing Plant

Sea Harvest is a predominantly demersal trawl fishing company which was established in 1964. The fish processing factory is situated near the base of the causeway to Marcus Island in Saldanha Bay and processes mostly hake (*Merlucius paradoxus* and *M. capensis*) into a variety of primary fish products including fillets, cutlets, steaks and loins.

Sea Harvest discharges large volumes of brackish effluent from the fish processing plant (FFP) into the sea. This includes seawater that has been used as wash-water as well as freshwater effluent originating from the fish processing. The effluent contains sea water, potable water, brine, food safe hygiene chemicals, annatto food dyes, sanitizers and fish particles smaller than 200 microns. In 2014, the plant was upgraded to ensure continuous operation and better solids handling capabilities (Sea Harvest, Site Engineer Nico Van Houwelingen, *pers. comm.* 2014) (Refer to AEC 2017 for a detailed description of the improvements made). The plant underwent further upgrading towards the end of 2018 in which the Offcuts and Trimmings plant was upgraded.

Sea Harvest requires high volumes of potable water for the processing of fish. With the implementation of water restrictions, Sea Harvest implemented a Reverse Osmosis (RO) plant (commissioned in April 2018) for the reclamation of potable water from seawater and potentially fish processing wastewater. The RO plant is expected to produce 42 m³ per hour of potable water. The effluent consisting of RO brine, FFP factory effluent (i.e., process seawater is used to keep the floor drains flowing, to save potable water, to rinse ice off fish and to hose down floors etc.) and Added Value factory effluent from the DAF plant (10 m³/h) will be diluted with sea water before discharge. The RO plant also requires Sea Harvest to abstract more seawater than before, thus the current abstraction quantity reported is approximately 6000 m³.

Coastal Waters Discharge Permit

Sea Harvest Corporation (Pty) Ltd was issued with a Coastal Waters Discharge Permit (CWDP) in terms of Section 69 of the Integrated Coastal Management Act (2009) for discharge of effluent into Saldanha Bay on 26 June 2017. The effluent from the RO plant as described above was incorporated into the CWDP by means of an amendment issued by the DEA: O&C on 9 March 2018.

This amended CWDP authorised the disposal of industrial effluent into the Saldanha Bay harbour through an existing marine outfall and authorised Sea Harvest to dispose a maximum quantity of 420 480 m³ per annum at a maximum daily discharge volume of 1152 m³. Unfortunately, the Saldanha Bay Municipal Water Treatment Works does not have the capacity to process the effluent volume and type generated by this operation and therefore the effluent is disposed directly into the sea. Additionally, the CWDP stipulates that an independent external auditor should conduct sampling of the effluent bi-annually to verify the results obtained (measured at the end of pipe).

Anchor Environmental Consultants Pty (Ltd) was appointed by Sea Harvest to undertake scientific assessments required to meet the requirements of the permit conditions in 2018. The marine specialist study covered the following aspects:

- 1. Design of a monitoring programme to address the requirements of the CWDP;
- 2. Water column profile sampling;

- 3. Collection of sediment and macrofauna samples from all monitoring stations plus one control station (n = 8) and analysis of these samples for grain size, composition, percentage organic carbon and nitrogen, macrofauna species composition, abundance and biomass;
- 4. Dispersion modelling to establish the plume behaviour, assimilative capacity of the receiving environment and confirm a reasonable mixing zone;
- 5. Assessment of potential impact resulting from the effluent discharges on the receiving environment, the effectiveness of management strategies and actions to ensure compliance with the permit conditions, trends, status and changes in the environment related to the ecological health and designated beneficial uses of the system and whether the environmental quality limits are complied with in the area from the end of the mixing zone; and
- 6. Provision of recommendations on an effluent improvement plan to reduce the impacts of effluent in the marine environment.

The dispersion modelling study was completed by Anchor Environmental Consultants (Pty) in November 2018. It was discovered that the RO plant, was unexpectedly unable to process effluent from the Fish Processing Plant. Consequently, the CWDP needed to be amended to include the discharge of three effluent streams from the fish processing plant, the RO plant and added value factory. Sea Harvest Submitted an application for the amended CWDP in July 2018. The dispersion modelling study recommended that the effluent outfall be moved further offshore along the Government Jetty to facilitate effective mixing of the effluent (Figure 3-46).

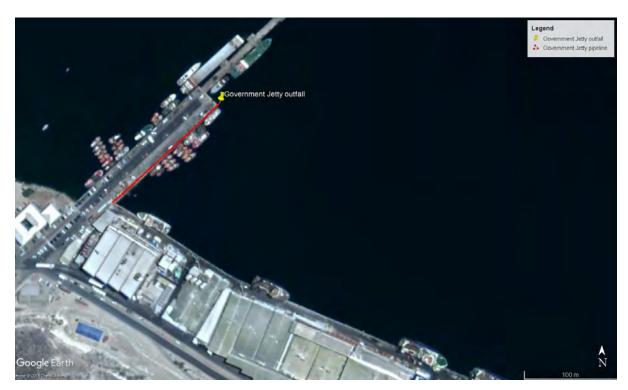


Figure 3-46 Proposed outfall position at the end of the Government Jetty (33° 1'17.00"S; 17°57'6.76"E) for effluent originating at the fish processing plant, the reverse osmosis plant and the added value factory of Sea Harvest in Saldanha Bay.

On 11 June 2019 the Department of Public Works authorised Sea Harvest to proceed with the installation of the outfall pipeline on the Government Jetty and commenced with the installation of the pipeline on 15 August 2019. Sea Harvest received a draft Permit from the DEA in respect of the amendment applications made in 2018 on 16 August 2019 and the final amended permit was granted on 7 November 2019. The permit required that a new monitoring plan be developed and implemented for the new outfall location. Anchor Environmental launched monitoring equipment, a Aqua TROLL 200 Conductivity-Temperature-Depth (CTD) instrument in the Bay on 24 January 2020, to commence 12-month continuous monitoring at the edge of the recommended Mixing Zone (RMZ). Please refer to the 2018 annual monitoring report (AEC 2018) for details on the effluent quality and monitoring requirements of the 2017 CWDP, the outcomes of the preliminary environmental monitoring study as described above and recommendations of the dispersion modelling study.

The conditions of the amended 2019 authorisation include a daily discharge volume of 6000 m³ per day and maximum prescribed limits of effluent constituents are given in Table 3.8. in addition, effluent discharge quantity must be metered by a continuous recording device or pump capacity prior to the discharge of effluent into the Bay. On 18 March 2020, on behalf of Sea Harvest, an Environmental Monitoring Programme and a Standard Operating Procedure for composite sampling was submitted to DEA by Anchor Environmental.

Table 3.8 Effluent Emissions Limits for constituents and Physico-Chemical Properties and the frequency of monitoring prior to discharge of into coastal waters.

Substance/Parameter	Limits from the date of issue of this permit	Limits from 1 December 2022 until expiry date of this permit	Frequency		
Temperature	38°C	38°C	Weekly		
рН	5.5 – 9.5	5.5 – 9.5	Weekly		
Salinity	47 PSU	47 PSU	Weekly		
Chemical Oxygen Demand	250 mg/L	250 mg/L	Monthly		
Total Suspended solids	230 mg/L	63 mg/L	Monthly		
Ammonia Nitrogen	100 mg/L	20 mg/L	Monthly		

Effluent quantity and quality monitoring results

Effluent is discharged seven days a week with the exception of weekends extended by a public holiday on Monday and/or Friday. Effluent is also released on public holidays that fall on a Tuesday, Wednesday or Thursday in the early morning hours and after 8pm for sanitation purposes. No effluent volume monitoring data is available between January 2008 and 14 July 2013. Prior to 2015 effluent meter readings were not taken on public holidays and weekends. Although meter readings are now supposed to be taken daily, effluent volumes are most commonly not recorded on weekends. Furthermore, the flow metre malfunctioned relatively frequently and as a result fewer measurements were taken prior to the meter replacement in December 2018 (Table 3.9). Sea Harvest had 2066 operational days since 15 July 2013 and effluent readings were only taken 42% of the time. Between July 2018 and June 2019 effluent meter readings were recorded 48% of the time due to upgrades to the plant and occasionally faulty meter (Table 3.9).

In the previous year 2019/20, the effluent reading percentage showed a marked improvement increasing to 67% of the time, although, this declined rapidly to 38% in the most recent year. A higher compliance level would be desirable to ensure accurate monitoring of effluent volumes discharge. Sea Harvest discharge volumes did not exceed the allowable limit between July 2020 and June 2021, this is a significant improvement from the 70% and 22% exceedance that occurred in 2018/19 and 2019/20, respectively (Table 3.9)⁶. This high percentage of exceedance was anticipated due to the inability of the RO plant to process fish processing plant effluent upon installation. The reduced percentage of exceedance can be attributed to the change in daily effluent flow limit from 1152 m³ per day to 6000 m³ per day in the amended CWDP (7 November 2019).

It is noteworthy that DEA has issued a Draft CWDP to accommodate the changes that have occurred as a result of the severe drought in the region.

Table 3.9 Effluent volume monitoring efforts by Sea Harvest for various periods between 2004 and 2021. Note that no data is available for January 2008 – 14 July 2013 and this time period has been omitted from the calculations.

	Jan 2004 – Dec 2007	Since 15 Jul 2013	Since 26 Jun 2017	Jul 2018 – Jun 2019	Jul 2019 – Jun 2020	Jul 2020 – Jun 2021
Number of operational days	1424	2066	659	321	342	355
Number of readings	704	859	316	153	229	136
Readings taken relative to number of operational days (%)	49%	42%	48%	48%	67%	38%
Number of days where effluent volume was calculated $^{\!\! A}$	571	780	305	146	227	135
Effluent volume calculated relative to number of operational days (%)	40%	38%	46%	45%	66%	38%
Legal daily effluent volume limit (m³) ^B	2000	3546	1152	1152	1152/6000	6000
Exceedance of legal effluent volume limit (count)	225	137	134	102	49	0
Exceedance of legal effluent volume limit relative to number of operational days (%)	39%	18%	44%	70%	22%	0%

A Note that effluent volume is calculated by subtracting the previous day's reading. This means that whenever there is a larger gap between readings or the meter has been malfunctioning, the effluent volume cannot be calculated.

B Note the amended CWDP was finalised on 7 November 2019 and therefore there are 2 legal limits for the 2019/2020 time period.

Effluent volume is calculated by subtracting the previous day's continuous meter reading. The first reading after a gap (public holiday or weekend) cannot be used to calculate an effluent volume for the day as the volume represents several days of effluent discharge. These data gaps do not occur in a reliable pattern throughout the dataset and are therefore not conducive for automated data processing. Average values for these gaps could therefore not be calculated. Non-compliance with the maximum daily discharge limit of 1152 m³ may therefore be over-estimated. The compliance rating would become more reliable if meter reading is conducted over the weekends.

The highest calculated average daily effluent discharge volume⁷ reached was 5 108 m³ in 2006/7, the lowest average daily volume recorded was 248 m³ in 2016/17, however, it is also noteworthy that the latter time period had the lowest percentage of operational days for which effluent volumes were monitored. Due to the additional effluent produced by the RO plant, average daily discharge volume increased to be slightly above the legal limit (1162 m³) for 2018/19. The daily average of 605 m³ for 2020/21 was lower compared to the previous year and is well below the daily maximum volume for both the old (1152 m³/day) and the newly amended CWDP (6000 m³/day, Figure 3-47).

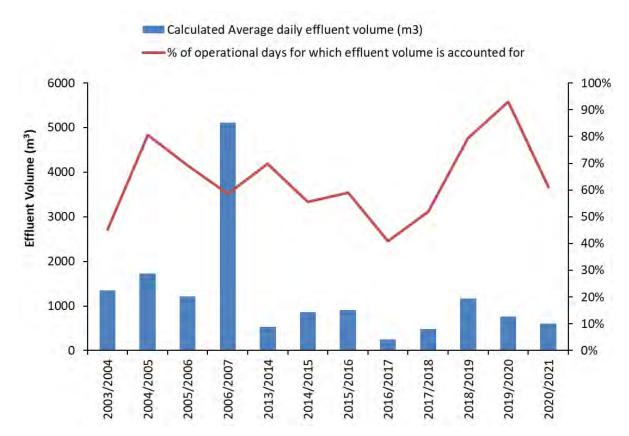


Figure 3-47 Calculated average daily effluent volumes discharged into Small Bay per year by Sea Harvest from July 2004

– June 2021 and the percentage of operational days for which effluent volume is monitored. Data was not available for the period May 2007 – August 2013. (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

Estimated annual fish processing effluent volumes discharged into Small Bay between July 2003 and June 2021 by Sea Harvest is shown in Figure 3-48 and is compared to the prescribed annual effluent limits over time. No data is available for the period April 2007 to December 2012. Overall, measurements show that effluent volumes discharged into Small Bay have fluctuated substantially since 2004. During the period of August 2006 to November 2007, the volume of effluent disposed by Sea Harvest increased peaking at unusually high levels. It is not clear why this increase occurred, but

⁷ Average daily effluent volume was calculated by dividing the measured annual volume by the number of measurements taken, with a correction applied to account for weekends.

data reporting and environmental monitoring at Sea Harvest had suffered irregularities at the time due to high staff turnover (Sea Harvest, F. Hickley *pers. comm.*). It can be concluded with reasonable confidence that the annual effluent volume has not exceeded the prescribed limit since 2013. Prior to the issuance of the first CWDP (June 2017) effluent quality at the pipe end was compared to the General Discharge Limits of the General and Special Standard (most recent amendment constitutes Government Notice No. 36820 — 6 September 2013) promulgated under the NWA. The 2018/2019 data shows that Sea Harvest was able to meet the annual limit of 420 480 m³ as specified in the CWDP conditions, despite exceedance of the daily limit of 1152 m³ 70% of the time. Similarly, data from 2020/21 show that the annual effluent readings are well below the prescribed limit⁸ of 2 190 000 m³ per year (Figure 3-48).

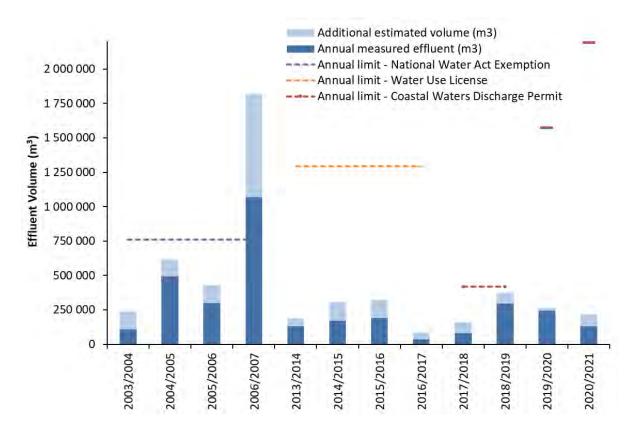


Figure 3-48 Estimated Fresh fish processing effluent volume discharged into Small Bay per year by Sea Harvest from July 2004 – June 2021. Data was not available for the period May 2007 – August 2013. The legal annual effluent limits are indicated as dashed lines (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

Trends in TSS since 2010 suggest that concentrations fluctuate over time, although it appears that peak concentrations are decreasing in magnitude with the exception of one extreme value in June 2018 (870 mg/L, Figure 3-49). Prior to the issuance of the first CWDP, TSS concentrations were significantly higher than the limit prescribed by the revised General Discharge Limit of 25 mg/L, with

⁸ This value is a combination of the number of days during which daily discharge limit was at 1152 m³ and the number of days at the newly amended daily limit (6000 m³)

compliance only reached once in October 2013 (14 mg/L, Figure 3-49) however, the CWDP issued on 26 June 2017, and subsequent amendments, specifies a legal limit of 230 mg/L. Since then, TSS concentration in the effluent only exceeded the legal limit eight times, which means that Sea Harvest is compliant 79% of the time. The average TSS levels for 2020/21 were 39.7 \pm 52.9 mg/L an improvement over the previous year (2019/20) during which the average was 56.5 \pm 96.8 mg/L, with no exceedance since August 2019, despite the relative high reading of 201 mg/L in November 2020.

Sea Harvest was required to comply with the revised General Discharge Limit for ammonia nitrogen of 6 mg/L until the CWDP was issued on 26 June 2017. This limit was very conservative considering that the water quality guidelines for the coastal environment specified a target of the same value (note that since then revised guidelines for the marine environment have been published by DEA, refer to Section 3.6.1 for more details). This limit was therefore exceeded 95% of the time (Figure 3-50). Notwithstanding, ammonia levels have been unacceptably high in the past, reaching a maximum of 474 mg/L in September 2012. Overall, ammonia nitrogen has been decreasing since then due to a change in sanitising protocols. The CWDP, and subsequent amendments, specifies a legal limit of 100 mg/L, which has not been exceeded since the permit was issued.

Ammonia nitrogen concentration averaged 17.4 ± 18.4 mg/L in 2020/21, similar to the average readings recorded two years prior (2018/19); but has markedly increased from 2019/2020 (7 ± 8 mg/L). Changes in cleaning protocols at the fish processing facility were implemented in 2018/19 where screens are sprayed every 30 minutes to ensure that no rotting occurs on the screens. This improved effluent management practice at the FFP Offcuts and Trimmings Plant could have contributed to the decreased ammonia nitrogen levels observed in 2019/2020, yet this did not follow through in the most recent year.

Fish processing involves the use of freshwater and sea water and therefore effluent salinity (ppt) is lower than what is expected in the receiving environment as seen prior to July 2017 (Figure 3-51). It is, however, evident that salinity increased between January 2015 and June 2017 (see the 2015 State of Saldanha Bay and Langebaan Lagoon for conductivity (mS/m) trends prior to January 2015), approaching levels expected in the marine receiving environment (35 ppt). This is likely due to the increasing use of seawater for fish processing over time. Since the implementation of the RO plant in April 2018, and the subsequent addition of brine to the discharge effluent, salinity readings exceeded the limit specified in the CWDP (37 ppt) 56% of the time. The average salinity was 40 ± 17 ppt with a maximum salinity of 93.8 ppt measured on 27 August 2019. Since the revision of the salinity limit to 47 ppt in the amended CWDP of 7 November 2019, the salinity readings have improved substantially and have only been non-compliant on three occasions to date (5% of the time), with an average of 35 ± 10 ppt for 2020/21 and a maximum of 54.2 ppt recorded on 28 April 2021.

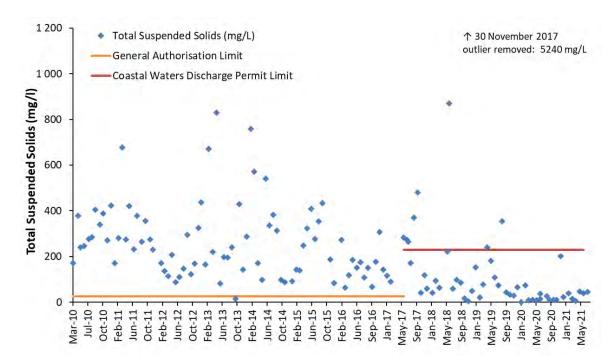


Figure 3-49 Monthly trends in total suspended solids (TSS) (mg/L) in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period March 2010 to June 2021 (concentration measured at the end of pipe). No data is available between April and June 2017. The lines indicate the limit prescribed by the General Discharge Limit of the revised General and Special Standard (orange line, 25 mg/L) (Government Notice No.36820 — 6 September 2013) and subsequent Coastal Waters Discharge Permits (depicted as the red line, 230 mg/L) (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

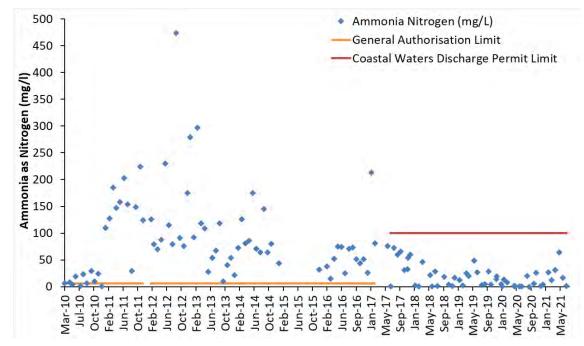


Figure 3-50 Monthly trends in ammonia nitrogen (mg/L) in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period March 2010 to June 2021 (concentration measured at the end of pipe). No data is available between April and June 2017. The lines indicates the limit prescribed by the General Discharge Limit of the revised General and Special Standard (orange line, 25 mg/L) (Government Notice No.36820 — 6 September 2013) and subsequent Coastal Waters Discharge Permits (depicted as the red line, 230 mg/L) (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

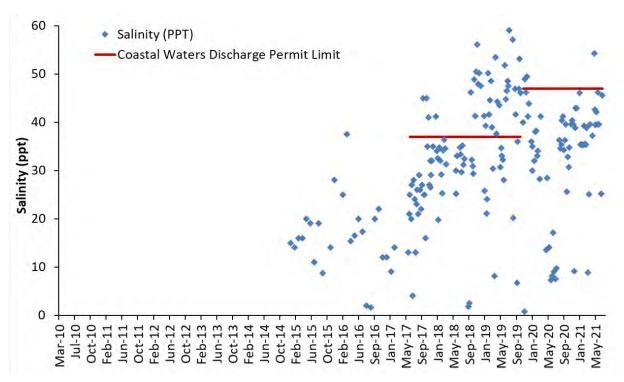


Figure 3-51 Monthly salinity (ppt) trends in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period January 2015 to June 2021 (concentration measured at the end of pipe). No data is available between April and June 2017. Sea Harvest was granted a Coastal Waters Discharge Permit on 26 June 2017, which prescribes a limit of 37 ppt (depicted as the red line), this was amended to 47 ppt (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

Sea Harvest has been measuring Chemical Oxygen Demand (COD) since November 2015. Although COD has consistently been significantly higher than the prescribed limit there appears to be a trend of general improvement. In 2017/2018 COD exceeded the limit 100% of the time with an average of $1\,121\pm601\,\text{mg/L}$, and non-compliance dropped to 75% (average of $545\pm289\,\text{mg/L}$) and 57% (average of $383\pm297\,\text{mg/L}$) in 2018/19 and 2019/20, respectively. However, in the recent year non-compliance increased to 83% with an average of $546\pm347\,\text{mg/L}$. The highest value was recorded in June 2018 with 2 957 mg/L. The results suggest that a large amount of oxygen is required to breakdown the organic waste in the effluent. Sea Harvest has not been able to meet the requirements of the CWDP (< 250 mg/L) under current effluent treatment methods (Figure 3-52). Improving COD to acceptable levels will reduce risks of anoxic conditions developing in the receiving marine environment, especially in Small Bay which is considered a sheltered environment with limited mixing capacity. Sea Harvest is currently investigating the installation of an AFM filtration system to reduce the COD in the effluent being discharged to sea.

Oil and grease were monitored monthly between March and December 2015 (Figure 3-53). Values always exceeded the General Authorisation limit of 2.5 mg/L, averaging 27 ± 25 mg/L and reaching a maximum of 91 mg/L in September 2015. The CWDP requires that Sea Harvest's effluent contains less than 10 mg/L of oil and grease and effluent monitoring was therefore reinstated in June 2017. In 2017/18, oil and grease values exceeded the limit 58% of the time with an average of 98 ± 247 mg/L, in 2018/2019 non-compliance increased to 67%, however, the average values improved to 36 ± 35 mg/L. Furthermore, a reading taken in July 2018 measured 17 472 mg of oil and grease per

litre. This result is not considered reliable and was removed from the monitoring results. In contrast, during the past two years, discharge concentrations have improved substantially, with non-compliance down to 9% (average of 2 ± 5 mg/L) and 0% (average of 1.6 ± 1.3 mg/L) in 2019/20 and 2020/21, respectively, with averages well below the required 10 mg/L limit.

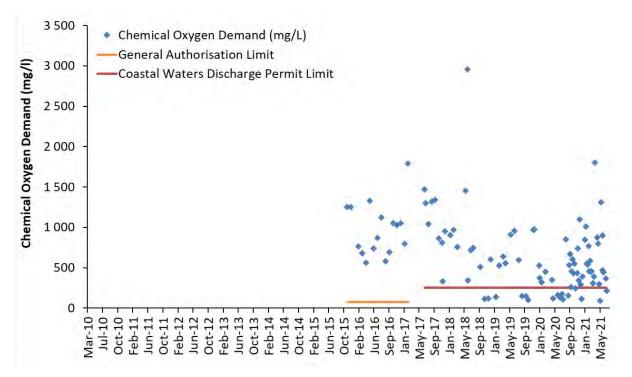


Figure 3-52 Monthly chemical oxygen demand (COD) trends in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period November 2015 to June 2021 (concentration measured at the end of pipe). The lines indicate the limit prescribed by the General Discharge Limit of the revised General and Special Standard (orange line, 25 mg/L) (Government Notice No.36820 — 6 September 2013) and subsequent Coastal Waters Discharge Permits (depicted as the red line, 230 mg/L) (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

Sea Harvest monitored pH between March 2010 and December 2014. The current CWDP requires the monitoring of pH, which was resumed in July 2017. The results from 2017 – 21 demonstrate that the effluent has generally been compliant with the legal limit bracket (falling between 5.5 - 9.5) with some exceptions, namely three occasions when pH measured below 5.5 in July 2017, November 2020, and March 2021, and on four occasions between May and July 2020 where readings were greater than 9.5 (Figure 3-54).

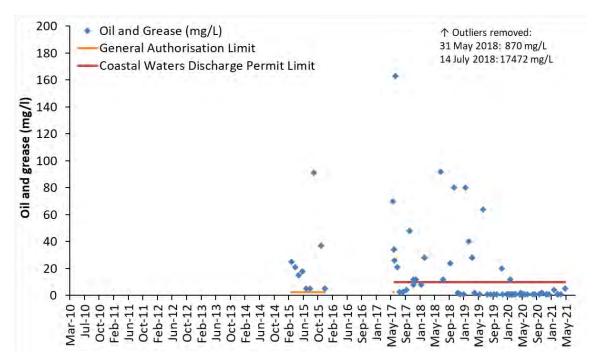


Figure 3-53 Monthly trends of oil and grease (mg/L) in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period March to December 2015 and from June 2017 to June 2021 (concentration measured at the end of pipe). The lines indicate the limit prescribed by the General Discharge Limit of the revised General and Special Standard (orange line, 25 mg/L) (Government Notice No.36820 — 6 September 2013) and subsequent Coastal Waters Discharge Permits (depicted as the red line, 230 mg/L) (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

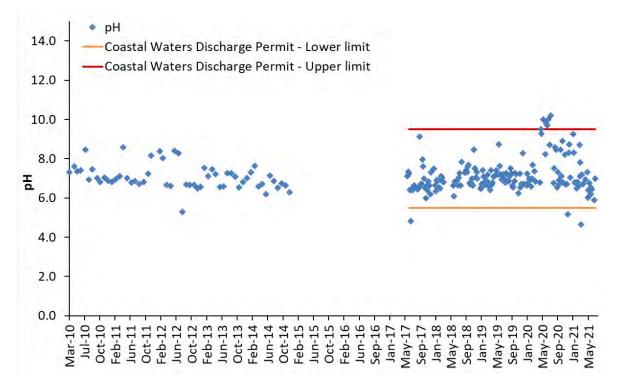


Figure 3-54 Monthly trends of the pH measured in the effluent discharged from the Sea Harvest fresh fish processing (FFP) plant into Small Bay in the period March 2010 to December 2014 and from June 2017 to June 2021. The red dashed lines indicate the lower (5.5) and upper (9.5) limits prescribed by the Coastal Waters Discharge Permit dated 26 June 2017 (Source: Meryl Lee Edwards, Environmental Officer at Sea Harvest fish Processing Plant).

With the ongoing drought in the Western Cape, Sea Harvest reclaims potable water by means of a Reverse Osmosis plant with the intention to save municipal water and to improve effluent quality (Frank Hickley, Sea Harvest pers. comm., 2018). Sea Harvest is committed to meeting effluent quality thresholds and environmental monitoring requirements as stipulated in the CWDP. However, the effluent at the Sea Harvest Fish Processing Plant is currently not treated adequately to ensure minimum impact to the receiving environment. The fish processing facility is still failing to comply with the chemical oxygen demand prescribed in the CWDP. Sea Harvest has been meeting the pH range prescribed in the CWDP, although recent high readings recorded between May and July 2020 may warrant consideration if they continue. The effluent produced by the RO plant has increased the salinity of the overall effluent dramatically and CWDP requirements were exceeded roughly 50% of the time until the limit was increased in the amended CWDP subsequently salinity readings are compliant 98% of the time for 2020/21. In addition, significant improvements have been observed in total suspended solids concentration and the majority or the current CWDP limits are being met.

3.6.5.2 Re-commissioning of the Premier Fishing fish processing plant

Southern Seas Fishing (now trading as Premier Fishing) previously discharged wastewater into the Bay but closed its factories in 2008 after being operational for 50 years. Premier Fishing is in the process of re-commissioning and upgrading the existing fishmeal and fish oil processing plant situated in Pepper Bay, the western side of Saldanha Bay. EA was granted in June 2013 and the Atmospheric Emission Licence was also approved in April 2014 but has been appealed. An application for a CWDP in terms of ICMA has been submitted to the Department of Environmental Affairs: Oceans and Coasts Branch (DEA: OC) for the discharge of cooling water containing condensate from the plant's scrubber to the sea. The permit application was provided for public review in Appendix H of the Revised Final EIA Report for the project (SRK Report 431676/10). On 24 April 2014 DEA: OC requested additional information for the CWDP application and that the application is subjected to another round of public participation. No Coastal Waters Discharge Permit has since been issued and construction/operation has not commenced (former Department of Environmental Affairs, Branch Oceans and Coast 2017).

3.7 Fisheries

There is a long history of fishing within the Bay and Lagoon, with commercial exploitation beginning in the 1600s (Thompson 1913). Presently, there is a traditional net fishery that targets mullet (or harders), while white stumpnose, white steenbras, silver kob, elf, steentjie, yellowtail and smooth hound shark support large shore angling, as well as recreational and commercial boat line-fisheries. These fisheries contribute significantly to the tourism appeal and regional economy of Saldanha Bay and Langebaan.

The two most important species in the fisheries in Saldanha Langebaan are white stumpnose that are caught by commercial and recreational line fishers, and harders that are commercially harvested by approximately 16 gill net permit holders. The total annual catch of white stumpnose by commercial (31% of total) and recreational line fishers (boat: 56% and shore 13%) was estimated at 125.3 tonnes for the 2006 – 2008 period (Parker *et al.* 2017).

Assuming a selling price of R40/kg, the landed catch value of the commercial sector's catch of 39 tonnes is approximately R 1.6 million; the value of the recreational fisheries in the region has not yet been quantified, but undoubtedly exceeds the landed catch value of the commercial fisheries. Commercial white stumpnose catch-per-unit-effort has declined considerably in the last 15 years, whilst recruitment has also crashed (Figure 3-55). This Saldanha - Langebaan white stumpnose stock is clearly under threat and more stringent catch control measures are required.

The commercial gill net fishery in Saldanha Langebaan reports an average of approximately 20 tonnes per year with a landed catch value of around R 200 000 (DAFF, unpublished data). This stock also appears to be under pressure with a notable decline in the average size of harders landed in both Saldanha and Langebaan between 1999 and 2012 (see Chapter 11 for more details on this). The observed shift towards a smaller size class of harders in catches does suggest that growth overfishing is occurring and further increases in fishing pressure will probably lead to declines in overall yield (catch in terms of mass) from the fishery. There has been considerable pressure to open the restricted Zone B within the Langebaan MPA to all commercial gill net fisher's resident in Saldanha and Langebaan. Permitting increased fishing effort within Zone B would drive further declines in average harder size which has a disproportionate negative impact on the reproductive output of the stock, as large female fish spawn exponentially more eggs as the grow. This would negatively impact the productivity of the harder stock in the Saldanha-Langebaan system and may lead to further long-term declines in the overall fishery catch (See Chapter 11).

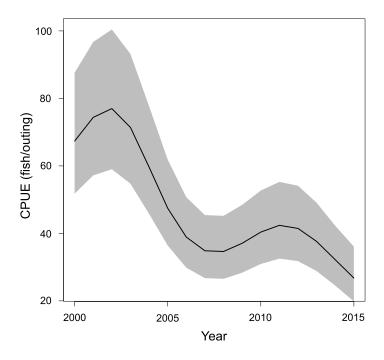


Figure 3-55 Annual Catch Per Unit Effort (CPUE) estimates (± 95% Confidence Interval) of white stumpnose derived from commercial boat catches logged in the National Marine Linefish System (NMLS) database (Source: Parker *et al.* 2017).

3.8 Marine aquaculture

The Department of Forestry, Fisheries and the Environment (DFFE) is driving sustainable development of the aquaculture sector in South Africa with the aim to create jobs for marginalised coastal communities and to contribute towards food security and national income. The development of the aquacultures sector is considered an important opportunity that can contribute to job creation and the local economy, and was therefore identified as a key priority of Operation Phakisa (Section 3.2).

Saldanha Bay is a highly productive marine environment and constitutes the only natural sheltered embayment in South Africa (Stenton-Dozey *et al.* 2001). These favourable conditions have facilitated the establishment of an aquaculture industry in the Bay since the 1980's. In January 2018 the then Department of Agriculture, Forestry and Fisheries (DAFF) was granted Environmental Authorisation to establish a sea-based Aquaculture Development Zone (ADZ) in Saldanha Bay and expand the total area available for aquaculture in the Bay to a maximum area of 884 ha from 464 ha allocated area, which is located within four precincts (Small Bay, Big Bay, Outer Bay North and Outer Bay South) (Figure 3-56). In 2018, it was reported that of the new established area, 151 ha was being actively farmed. In March 2020, 28 companies within the Saldanha Bay ADZ were registered on the Marine Aquaculture Right Register, of which only 15 companies were actively operational. More recently, as of September 2021, 27 companies were registered on the Marine Aquaculture Right Register, of which only three were not yet actively operational. The area of the ADZ actively being utilised is changing as new leases are being granted, new farms start, current lease holders expand their areas, or alternatively shrink in size, based on economic factors.

3.8.1 Saldanha Bay Aquaculture Development Zone

The aim of establishing the ADZ is to (a) encourage investor and consumer confidence (b) create incentives for industry development (c) provide marine aquaculture services, (d) manage the risks associated with aquaculture; and to provide skills development and employment for coastal communities.

The ADZ project triggered activities listed in terms of Listing Notice 1 of the EIA Regulations, 2014, required a Basic Assessment which was undertaken in 2017. SRK Consulting (Pty) Ltd. (SRK) was appointed by the Branch Fisheries Management as the independent consultant to develop a framework for the Saldanha Bay ADZ and undertake the Basic Assessment. The competent authority (the then DEA) granted three separate Environmental Authorisations (EAs) for aquaculture in the Bay, these were issued to the then DAFF: Fisheries Management Branch, Southern Cross Salmon Farm (combined application with DAFF but separated into two EAs) and the Molapong Aquaculture farm on 8 January 2018. Four appeals to the EA were received from interested and affected parties and the Appeal Decision was issued by the then DEA, on 7 June 2018 which dismissed the appeals, and the EA was upheld. Subsequently, the Branch Fisheries Management within the newly formed DFFE appointed an Environmental Control Officer to oversee the construction and operational phase of the ADZ and set up two committees: (1) a Consultative Forum (public and industry forum), which has grown to 140 members and meets every three months, and (2) the Aquaculture Management Committee (AMC) (government committee) which meets every two months, to ensure that the implementation of the ADZ is in line with the requirements specified in the EA and EMPr.

Figure 3-56 The four precincts that make up the entire ADZ area (884 ha).

Branch Fisheries Management published a "Guideline for Bivalve Production Estimates for the Saldanha Bay Aquaculture Development Zone". The guideline serves to manage the ADZ through a precautionary approach with regards to instillation of new infrastructure for bivalve operators to ensure that the initial production threshold of 10 000 tons per annum (graded production) for the first two years is maintained, as specified in the EA, is upheld by the ADZ operators. Coupled with environmental monitoring, adherence to the authorised tonnages should facilitate adaptive environmental management in the ADZ as a whole. To this end, the Branch Fisheries Management appointed an independent specialist to compile a Sampling Plan for the ADZ which was reviewed by local and international stakeholders and experts (DAFF 2018), as well as a dispersion model for the finfish farming (more details on these two studies are provided in the 2019 and 2020 SOB Report). Further work conducted for the ADZ by independent specialists includes, baseline macrofauna survey sampling undertaken by Capricorn Fisheries Monitoring in 2018, of which the macrofauna and physicochemical properties of the sediment were analysed by Steffani Marine Environmental Consultant and CSIR respectively. In 2020, the Branch Fisheries Management appointed Anchor Research and Monitoring (ARM) to compile the ADZ baseline data collected in 2018 into a Benthic survey report (Mostert et al. 2020a) and to conduct the 2020 Annual redox survey and compile the resulting report (Mostert et al. 2020b). Additionally, the WWF South Africa through its Fish for Good initiative is currently implementing a Fisheries Improvement Project with the Saldanha Bay mussel sector (which is designated as a "catch and grow" fishery by the Marine Stewardship Council). WWF (SA) appointed Anchor to undertake the 2021 Benthic monitoring survey (and conduct the Annual benthic chemical surveys for the Saldanha Bay ADZ for 2021 and 2022) in an effort to support the development of the ADZ by fulfilling the requirements as per the Sampling Plan. A summary of the 2021 reports is provided in sections 3.8.1.1 and 3.8.1.2 below; Dawson et al. 2021 and Gihwala et al. 2021. Furthermore, a new project is underway to complete multiple tasks including, but not limited to, the ongoing maintenance of continuous monitoring sensors within the Bay, a survey of the hard substrate/reef structure in Big Bay, data collection for dispersion model validation, updating the Sampling Plan and the commencement of Annual qualitative sampling of fouling organisms.

Various guidelines and protocols have been developed for managing the ADZ, these include an ADZ Entanglement Guideline (May 2020), Compliance Strategy (June 2020) and Incident and Emergency Response Protocol (Mar 2021) and an Operational and Management guideline (Nov 2020). Additionally, DFFE has engaged with the Saldanha Bay Water Quality Forum Trust to combine sampling efforts. The ADZ has had a Year 1 (Feb 2019 – Jan 2020) and Year 2 (Feb 2020 – Jan 2021) external Compliance audit of the EA and EMPr conditions which has resulted in no significant non compliances and the Year 3 audit is planned for Feb 2022. The ADZ is also audited monthly by the ADZ ECO to manage the compliance of the operators at a farm level as well as an ADZ level. The mussel industry is in the process of undertaking a Fisheries Improvement programme to improve overall fishing practices in the Rope Grown Mussel Industry, enhance the management of the fishery, establish critical partnerships, generate community support to inspire change in other fisheries in South Africa, and improve the accessibility of the Marine Stewardship Council standard in South Africa and other countries in the global South Africa. This initiative also includes a farmer awareness training programme on Endangered Threatened and Protected Species as well as training on the EA and EMPr conditions.

3.8.1.1 2021 Benthic invertebrate monitoring

Anchor Research and Monitoring (ARM) compiled the ADZ baseline benthic survey report (Mostert *et al.* 2020a), conducted the 2020 annual redox survey and compiled the resulting report (Mostert *et al.* 2020b), summaries of each were provided in the 2020 SOB report.

WWF (SA) appointed ARM to undertake the 2021 Benthic monitoring survey and conduct the 2021 Annual benthic chemical survey of the Saldanha Bay ADZ a summary of the results from each of these are provided below (Dawson *et al.* 2021, Gihwala *et al.* 2021). Given that no aquaculture has yet been undertaken in the Outer Bay South (Jutten Island) precinct, the 2021 monitoring program only sampled in Big Bay and Outer Bay North (Figure 3-57). The survey included the collection of benthic macrofauna samples and sediment samples for the analyses of Total Organic Carbon, Total Organic Nitrogen and particle size distribution. Additionally, trace metals analysis (copper and zinc) was undertaken in the finfish precinct as well as at control stations and representative stations in Big Bay. Results of this survey were compared to those of the baseline survey conducted in 2019 and subsequent sampling undertaken in the 2020 surveys.

Figure 3-57 Stations sampled during the 2021 monitoring survey of the Saldanha ADZ, control sites are indicated with blue arrows while impact sites are indicated with red arrows, grey arrows indicate hard substrata, yellow the finfish sites and purple the location of a new control site.

For the 2021 Benthic monitoring survey (Dawson *et al.* 2021) sediment granulometry revealed that, similar to previous results, reference and control sites in both precincts were dominated by sand. However, the quantities of finer sediment (mud) decreased relative to the baseline results. This is likely the result of a winter storm in 2020 with exceptionally strong wave action (max wave height recorded was near to 20 m) which would have causes the re-suspension and transport of muddy

sediments out of the Bay. The total sediment organic carbon and nitrogen at both lease areas were lower than those recorded in the baseline survey as well as being lower than those of the State of the Bay 2021 survey. This is not unexpected given the drop in percentage contribution of mud in the sediment and the fact that organic material is predominantly associated with fine sediment particles (mud and silt). This is because fine grained particles have a relatively larger surface area for organic matter to adsorb and bind to than do coarse grained particles. Therefore, the less mud in the samples, the less organic matter will accumulate. In contrast, the concentration of heavy metals (copper and zinc) increased slightly relative to the baseline survey. However, the values remain significantly lower than the concentration at which toxicity may begin to be observed in sensitive species. Overall, the baseline data for sediment quality was comparable between impact and reference sites, as well as sites sampled elsewhere in the Bay during the State of the Bay 2021 survey (this report), and no anthropogenic disturbances to the physico-chemical nature of the sediments were detected.

The monitoring of macrofaunal communities indicates that the current aquaculture operations are having a negligible effect on benthic macrofauna present in the lease areas. Analyses of five community indices (Shannon Weiner Diversity, Total number of species, Abundance per sample, Pielou's Evenness and biomass) between reference and impact sites of both lease areas were not significantly different for most comparisons. Additionally, there was no significant change in these metrics relative to those determined in the baseline survey (with the exception of biomass which was not record in the baseline survey).

Three biological indices were assessed in 2021, the results of which indicated that the values were generally within threshold limits, with only a few slight exceedances. Importantly these exceedances were not restricted to only the impact sites, i.e., some reference/control stations also exceeded the limits. Indicating a level slight disturbance at both impact and reference stations. Comparisons between data from the baseline and monitoring survey results indicated a slightly higher level of disturbance or higher level of change in samples from the monitoring survey. However, the results showed a reasonable high level of agreement and generally indicate that current aquaculture operations are having a limited effect on benthic macrofauna in the three lease areas.

The addition of biomass data allowed for Cumulative abundance-biomass (ABC) plots to be analyses. The results of which indicated that Outer Bay North reference sites were undisturbed while impact sites indicated the macrofaunal community was moderately disturbed. Based on the ABC plots, the macrofaunal communities of all sites in Big Bay, reference, finfish (currently also reference sites as no aquaculture is operational in this area) and impacts sites are considered moderately disturbed. It is important to note however, that data from 2019 and 2020 SOB similarly showed that Big Bay macrofaunal communities were moderately disturbed. This suggests that all sites (ADZ impact and reference sites, as well as SOB sites) within Big Bay are experiencing some level of disturbance, possibly a combination of natural disturbance due to exposure and/or low oxygen events and anthropogenic disturbance from a combination of human activities occurring within the Bay. The identification of a moderately disturbed site in Outer Bay North and data from ABC curves indicating that all communities within Big Bay are already experiencing low levels of disturbance - regardless of the presence or absences of aquaculture activities — suggests the need to maintain the interval between monitoring surveys at least every three years (and not allow gaps of up to five years between surveys). Thus, ensuring that any impacts associated with the ADZ operations are detected timeously

and do not compound the natural/existing disturbance within the bay and that the cumulative impacts within the bay do not push these sites towards detrimental levels of disturbance.

During the baseline surveys and subsequent deployments of monitoring instruments in the finfish lease area, it was noted that low-profile reef was present in the form of calcrete rock roughly < 1 m in height, additionally some outcrops of reef exceeding 1 m in height were also found. The extent of the abrasion platform present in Big Bay is currently unquantified and the proportion of this habitat type impacted by current and future mariculture activities unknown. Additionally, the effects of aquaculture on patches of this habitat type and its associated epifaunal communities has not previously been assessed in Big Bay with the exception of a known outcropping called Lynch Blinder. It was therefore suggested that further studies be conducted to address this gap in the information base. During the 2021 monitoring survey ARM divers collected video footage at two stations where reef was encountered. This footage was then used to provide a qualitative description of the reef epibenthos at each site. A total of 21 species were identified, with more species recorded at site BB5 (20 species) than at the finfish site FF2 (10 species), however, the sites shared a number of common species including the West Coast rock lobster Jasus Ialandii, red starfish Callopatiria granifera and reticulated starfish Henricia ornata, cape urchins Parechinus angulosus, and beds of the common feather star Comanthus wahlbergii. Additionally, surveys of the reef are scheduled to be undertaken to provide more information on this habitat and enable the formulation of mitigation and management measures that will support the ongoing adaptive management of the Big Bay ADZ precinct.

3.8.1.2 2021 Annual benthic chemical survey

Monitoring of benthic impacts below mariculture installations is international best practice and is being undertaken in Saldanha Bay by DFFE to validate dispersion model predictions of minimal impact. Organic deposition and the subsequent decomposition by sediment bacteria increases oxygen demand which can lead to anaerobic (without air) conditions in the seabed beneath both finfish and shellfish farms. Ammonification and sulphate reduction to sulphides occur as typical responses to lowering of the oxygen reduction (Redox) potential. Sediment organic carbon, redox potential (Eh) and total sulphides (S2-) have effectively been used in describing adverse impacts below finfish aquaculture and can be used to classify sediments associated with fish farming into five organic enrichment groups: two oxic (oxygen present), two hypoxic (oxygen deprived), and one anoxic (without oxygen) group. The Aquaculture Stewardship Council (ASC 2017) provides threshold limits directly below the aquaculture structures, as well as at the edge of the Acceptable Zone of Effect (AZE), a prescribed distance from the aquaculture structures — defined as 30 m from a fish cage array or shellfish longlines. Failure to meet the prescribed thresholds at the AZE limit or at finfish cages or directly below shellfish longlines will require management intervention and/or additional sampling (DAFF 2018). Non-compliance is dependent on the farm or AZE station being significantly greater than levels measured at the reference/control stations.

The 2021 annual redox survey of the Saldanha Bay ADZ was conducted during the annual Saldanha State of the Bay survey (21 March - 1 April 2021) (Gihwala *et al.* 2021). Sediment samples for the measurement of redox potential and sulphide (S^2) were collected at 27 stations in Big Bay, Small Bay and Outer Bay North (Figure 3-58). Scientific divers collected triplicate sediment samples at each of

the 18 stations where macrofauna were sampled in Big Bay and Outer Bay North. Additionally, triplicate samples were collected at control and impact sites in Small Bay as was previously done in the 2020 rapid synoptic survey (Mostert *et al.* 2020a). In the finfish precinct in Big Bay, three sediment samples were collected at 0 m, 30 m and 60 m along a transect from the edge of the proposed finfish cage location.

Figure 3-58 Stations sampled during the annual redox survey of the Saldanha ADZ, control sites are indicated with blue arrows while impact sites are indicated with red arrows, grey arrows indicate sites over rock/reef. Replacement impact sites are indicated with orange arrows and replacement control sites are indicated with purple arrows.

Originally, sediment sulphur concentrations, although known to be a critical tool for determining the impacts of aquaculture on benthic environments, were not measured during the 2019 and 2020 surveys due to lack of a suitable instrument. However, samples were collected for Sulphide analyses in 2021 and sent to the CSIR for analysis. With this additional data the use of Redox values as a proxy for sulphide concentrations could be assessed and previous data validated.

Redox measurements for 2019 and 2020 were highly variable among sites with both positive and negative values recorded. By contrast, the 2021 samples, collected by divers as opposed to benthic grab sampling (to reduce the exposure of the samples to oxygen as they are brought to the surface) displayed less variability. Within the finfish precinct, average redox potential was -128.56 mV, placing it within the "poor" Hypoxic B category and below the prescribed threshold (-100 mV), this despite the fact that no finfish are currently being farmed at the site. The average sulphide concentration measured in finfish samples was 82 μ M, equivalent to a "Good" Ecological Quality Standard (EQS) or Oxic B category. Despite a couple of the Big Bay redox values being below the threshold for bivalve mariculture (-100 mV) the values were not significantly different from the averages recorded at

control stations and no management actions are currently triggered. All sites within Big Bay had significantly lower sulphide measurements than the prescribed "Moderate" EQS or Hypoxic A category threshold (250 μ M). With the exception of one site, all Big Bay sites were placed into the High EQS (Oxic A) or "Good" EQS (Oxic B) categories.

Two of the seven redox measurements from Outer Bay North were significantly below the threshold specified for bivalve aquaculture (-100 mV). The position of the site NB1 is relatively sheltered with the current directions likely resulting in the deposition of organic matter from the Outer Bay North ADZ in this area (Pulfrich 2017). It should be noted that the average value recorded at NB1 during the 2019-2021 surveys was 43, -107.13 and -160.53 mV, respectively, suggesting a worsening trend. It is possible that this is based on the natural deposition of organic matter within this sheltered section of the bay, which is being supplemented by aquaculture activities. Therefore, it was suggested that the site be monitored closely and should the redox value progress further towards the Anoxic category management interventions should be undertaken. However, although the redox values recorded at NB1 and NB3 significantly exceed the -100 mV threshold, the sulphide values for these sites averaged $116~\mu$ M and $152~\mu$ M respectively, near the lower end of the "Good" sediment EQS. Indeed, the average sulphide concentrations measured in the sediments at all control and impact North Bay sites were below the $250~\mu$ M threshold and fell within the "Good" sediment EQS.

Redox values recorded from samples collected within the Small Bay lease area in 2021 fell mostly within the Hypoxic A or Hypoxic B geochemical categories. Average sulphide concentrations were notably higher than those measured in sediments collected from Big Bay or Outer Bay North, but with the exception of the deeper (14 m CF~8 m) SB C3 site, were classified as "Good' EQS. Given that none of the average redox or sulphide values measured at the Small Bay impact sites during the 2021 survey significantly exceeded the sediment quality targets target (-100 mV or > 500 μM for redox and sulphide respectively), there is no need for management action. Overall, the correlation between redox readings and measured sulphide concentrations was poor. Other studies have similarly presented figures showing a particularly poor relationship for data in the negative redox potential range between sulphide concentration and redox protentional, suggesting that it is valuable to continue using both as a measure of aquaculture impacts as opposed to just one.

Overall, the redox values were consistent across the established ADZ lease areas and fell within -100 mV redox threshold as stipulated by the Sampling Plan (DAFF 2018). In instances where thresholds were exceeded, redox measurements were not consistently, significantly different from those measured at control sites, whilst sulphide measurements did not exceed equivalent EQS thresholds. Therefore, no management actions are required at the present time but recommendations for future monitoring are provided below and should be incorporated into amendments/ updates to the Sampling Plan. The following provides a summary of key findings from the 2021 chemical survey:

1. Analytical laboratory measurements of sulphide concentrations in sediments were undertaken during the 2021 survey. Recent research indicates that the methylene blue method employed by the contracted laboratory (CSIR) results in sulphide measurements that are considerably lower (and more accurate) than those obtained using and ion-selective electrode protocol (upon which the Sampling Plan (2018) and Hargrave et al. (2008b) Geochemical categories are based). The 2021 sulphide measurements were therefore evaluated against the revised sediment Ecological Quality Standards (EQS) developed by

Cranford *et al.* (2020). It is recommended that future ADZ monitoring uses either the ultraviolet spectrometry or the methylene blue methods of sulphide measurement and these revised EQS categories to assess sediment health below mariculture facilities.

- 2. Redox potential measurements are relatively inexpensive and easy obtain and should continue to be collected alongside sulphide measurements to provide additional information on the state of the benthic environment and allow for comparisons with redox measurements taken to date.
- 3. Redox potential average measurements in 2021 were consistently negative throughout the sites surveyed and it is suspected that this is largely due to the natural, organically enriched nature of Saldanha Bay and its location within and upwelling region. Collection of sediment samples by divers as opposed to grab sampling (higher risk of oxidation exposure); which yielded highly variable readings in the previous chemical surveys, may have also played a role in the more consistent, negative redox potential readings obtained during the 2021 survey compared to the 2019 and 2020 grab sampling surveys. It is recommended that, when possible, divers are used in preference to grab sampling for the collection of sediment samples.
- 4. In instances where farming structures fall over hard substrata, redox and sulphide measurements are not considered suitable tools for monitoring the health of the benthic environment as sediment cannot be collected from hard substrata. Alternative means for monitoring the health of the benthic environment in these areas (e.g. assessment of visual or photo-quadrats) need to be identified and implemented in the future.

3.8.2 Aquaculture sub-sectors

Most established operators hold rights to farm mussels (*M. galloprovincialis* and *Choromytilus meridionalis*) and the pacific oyster *Crassostrea gigas*, while finfish rights (*Salmo salar* and *Oncorhynchus mykiss*) have only been issued to two farms since 2014. Abalone, scallops, red bait and seaweed are currently not cultured on any of these farms, although some of the farms have the right to do so (Refer to the 2014 and 2015 State of Saldanha Bay and Langebaan Lagoon Reports for details on individual farms). Most of the farming occurs in Small Bay, however, operations have expanded in Big Bay to include oysters and mussels, and mussels are being grown on lines in Outer Bay North.

Overall, the drive is to farm indigenous species as they do not require comprehensive risk assessments and are likely to have a lower impact on the marine ecology of Saldanha Bay and Langebaan Lagoon. However, in some cases indigenous species may be economically less viable. The Branch Fisheries Management therefore included alien trout species in their application for EA. Consequently, the Environmental Authorisation issued to for the ADZ includes the following alien finfish:

- Atlantic salmon (S. salar);
- Coho salmon (O. kisutch);
- King/Chinook salmon (O. tshawytscha);
- Rainbow trout (O. mykiss); and
- Brown trout (S. trutta).

Biodiversity Risk and Benefit Assessments have been conducted for all five salmon and trout species and generally the risk for establishment of this species is considered low due to the fact that these

species will be farmed in the sea, and rivers in this region are not suitable for successful reproduction of salmonids. Arguably the greatest risk of salmonid cage culture is the transfer of diseases and parasites to indigenous fish species.

Other new indigenous species include Abalone (*Haliotis midae*), South African scallop (*Pecten sulcicostatus*), white stumpnose (*Rhabdosargus globiceps*), kabeljou (*Argyrosomus inodorus*) and yellow tail (*Seriola lalandi*).

3.8.2.1 Shellfish marine aquaculture

Raft culture of mussels has taken place in Saldanha Bay since 1985 (Stenton-Dozey *et al.* 2001). Larvae of the mussels *M. galloprovincialis* and *C. meridionalis* attach themselves to ropes hanging from rafts and are harvested when mature. Mussels are graded, washed and harvested on board a boat. In 2015, the mussel sub-sector (based in Saldanha Bay) contributed 48.83% to the total mariculture production and was the highest contributor to the overall mariculture productivity for the country (DAFF 2016). Mussel production was fairly consistent between 2007 and 2011, after which it showed a steady increase, more than tripling from 2012 to 2019 when it peaked at 3 053 tonnes (Figure 3-59). In 2020, mussel production dropped by roughly 25% to 2276 tonnes, it is possible that the COVID-19 pandemic influenced the production. Oyster production has fluctuated around 250 tonnes per annum since 2000. Oyster production reached a peak in 2016 at 357 tonnes per annum but has since decreased to 288 tonnes in 2019, and decrease further is 2020 to 260 tonnes (Figure 3-59).

A study conducted between 1997 and 1998 found that the culture of mussels in Saldanha Bay created organic enrichment and anoxia in sediments under mussel rafts (Stenton-Dozey *et al.* 2001). The ratios of carbon to nitrogen indicated that the source of the contamination was mainly pseudofaeces, decaying mussels and fouling species. In addition, it was found that the biomass of macrofauna was reduced under the rafts and the community structure and composition had been altered (Stenton-Dozey *et al.* 2001).

Ongoing environmental impact monitoring surveys undertaken in Saldanha Bay by the Department of Forestry, Fisheries and the Environment (DFFE) will provide an indication of the environmental impact of oyster culture (DFFE paper in prep). However, visual observations of the benthos underneath oyster rafts and preliminary data show minimal impact in this area when compared to other sites within the Bay.

A recent study by Olivier *et al.* (2013) investigated the ecological carrying capacity of Saldanha Bay with regards to bivalve (in particular mussels and oysters) farming. The findings indicate that the sector could increase 10 to 28-fold, potentially creating an additional 940 to 2 500 jobs for the region without compromising the environment.

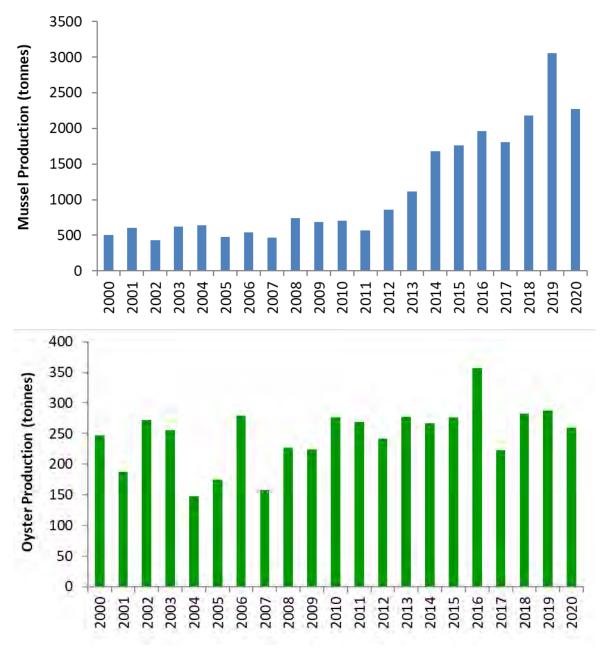


Figure 3-59 Annual mussel (top) and oyster (bottom) production (tonnes) in Saldanha Bay between 2000 and 2020 (source: Department of Forestry, Fisheries and the Environment 2021 unpublished data, which may be subject to change).

3.8.2.2 Finfish cage farming

Marine cage culture of Atlantic salmon was piloted in Gansbaai several years ago, however, this reportedly failed when the heavily fouled cages sank in strong seas. The biofouling accumulated on the cage mesh due to a lack of suitable cleaning equipment (specifically a suitable size work boat equipped with a crane) (Hutchings *et al.* 2011). The identification of marine aquaculture sites is a complex process that must take into consideration a number of factors. These include physical (e.g. sea surface temperatures, currents), biophysical (e.g. harmful algal blooms, optimal culture

temperatures), infrastructural (e.g. road access, airports), and existing resource-use issues (e.g. urbanisation, parks and recreational areas) (FAO 2015).

Saldanha Bay is protected when compared to the exposed west coast of South Africa and has been identified as one of very few areas where finfish cages can be installed successfully (Ecosense CC 2017). Finfish cage culture is currently being pioneered in Saldanha Bay and is largely focused on the farming of salmonid species, including Atlantic salmon (*S. salar*) and rainbow trout (*O. mykiss*). Both species are non-native to South Africa; however, *O. mykiss* is farmed in many parts of the country in ponds and raceways but this has been severely impacted by the drought and is limited in terms of seasonality of rain and temperatures.

Southern Atlantic Sea Farms attempted to pioneer Atlantic salmon in Saldanha Bay. During the pilot phase of this project, however, it was found that Outer Bay North is not suitable for Atlantic salmon due to the susceptibility of this species to amoebic gill disease, which combined with frequent low dissolved oxygen events led to high mortality rates. The project was therefore terminated in 2015 (Southern Atlantic Seafarms, Director Gregory Stubbs, *pers. comm.*, 2015).

Molapong Aquaculture (Pty) Ltd (Molapong) piloted under 50 tonnes of finfish per annum in Big Bay within Saldanha Bay. This experimental phase was successful and Molapong appointed Ecosense CC to conduct a Basic Assessment process to obtain Environmental Authorisation for the phased installation of sea cages on 40 ha in Big Bay and 15 ha near Jutten Island for the production of finfish, mussels and seaweed in Saldanha Bay up to a total of 2000 tonnes per year over both lease areas. Environmental Authorisation was issued on 8 January 2018 for the following project phases:

- Phase 1 (Experimental) The current level of finfish project (50 tonnes/annum duration 12 14 months).
- Phase 2 early commercial phase finfish project (100 t/annum 12 14 months). Establish seaweed lines. Establishment of mussel settlement lines.
- Phase 3 500 t/annum finfish project (12/14 months). Seeding mussel production lines.
- Phase 4 1200 t/annum finfish project (12 14 months. Harvesting mussels and possibly reducing numbers.
- Phase 5 —2000 t/annum finfish project (12 14 months). Harvesting mussels and possibly reducing numbers.

Molapong Aquaculture recently refined the draft Fish Escape and Stock Loss Action Plan which offers "insight into the operational and preventative measures employed by the farm and the subsequent contingency measures, should an escape occur." The farm is hoping to move from the pilot study area into the Finfish section of the Big Bay once the necessary authorisations are attained.

Southern Cross Salmon Farming (Pty) Ltd was also issued with an Environmental Authorisation on 8 January 2018 for the production of shellfish in the Outer Bay North Site (20 ha) to total production not exceeding 2 500 tonnes (graded) on long line. Furthermore, permission was granted to produce 1 000 tonnes of marine finfish per annum on 10 ha (at full production) within the Outer Bay South site by means of floating cages. Southern Cross Salmon Farming (Pty) Ltd is permitted to farm the same species that were authorised for the Aquaculture Development Zone. Southern Cross Salmon Farming has been focusing on the mussel production and have been farming mussels for roughly 2.5 years at the Outer Bay North Site, however, they have not yet commenced with finfish farming and given the

constraints associated with COVID-19 are not likely to start in the foreseeable future (Barend Stander, pers. comm. 2020).

Operational phase environmental impacts of finfish cage culture have been well reported in international literature and are listed in Table 3.10 along with methods currently in use in the Saldanha ADZ to address and manage each.

Table 3.10 Possible environmental impacts of finfish cage culture and the methods currently in use in the Saldanha ADZ to mitigate and manage them.

Potential environmental impacts	Mitigation and management currently in place
Incubation and transmission of fish disease and parasites	Regular and continuous animal health monitoring of the farms are conducted by independent aquatic vets.
Pollution of coastal waters due to the discharge of organic wastes	Possible impacts were assessed through the modelling study and instruments have been installed to conduct continuous monitoring of bottom oxygen.
Escape of genetically distinct fish that compete and interbreed with wild stocks that are often already depleted	This is only relevant when indigenous species are being farmed, which is currently not the case within the Bay as only Salmonids are currently farmed. In addition, there is a "Fish Escape and Stock Loss Action Plan" already in place should the farming of indigenous species occur.
Chemical pollution of marine food chains (& potential risk to human health) due to the use of therapeutic chemicals in the treatment of cultured stock and antifouling treatment of infrastructure	Managed and addressed through the National Residue Control Programme.
Physical hazard to cetaceans and other marine species that may become entangled in ropes and nets	Cages are continuously monitored and inspected for possible entanglements.
Conflict between piscivorous marine animals (including mammals, sharks, bony fish and birds) and farmers and the temptation to kill problem predators or use acoustic deterrents	Regulations are in place and neither of these deterring methods are permitted.
User conflict due to exclusion from mariculture zones for security reasons	Possible conflicts were accessed during the original EIA process and the size of the ADZ was reduced to ensure that conflicts are limited or absent.

More information on the marine ecological impacts of finfish farming can be found in previous versions of this monitoring report (AEC 2018/17/16).

4 MANAGEMENT AND POLICY DEVELOPMENT

Continuously accelerating urban and industrial development poses a significant threat in the form of fragmentation, loss of natural habitat and loss of ecological integrity of remaining marine and coastal habitats in Saldanha Bay and Langebaan Lagoon. While many developments are ostensibly "landbased", several rely on ships to transport raw material and/or processed products to and from them. While the increase in vessel traffic associated with each of these individual developments may be minor, collectively they contribute to the ever-increasing number of vessels visiting the Bay each year as well as to the increasing volumes of ballast water that are discharged into the Bay. Similarly, each of the individual developments also contributes to the increases in the volume of wastewater and stormwater that is produced (and ultimately discharged into the Bay) each year. The challenge of addressing these cumulative impacts in an area such as Saldanha is immense. The current and future desired state of the greater Saldanha Bay area is polarised, where industrial development (Saldanha Bay IDZ and associated industrial development) and conservation areas (Ramsar Site, MPAs and National Parks) are immediately adjacent to one another. Furthermore, the Saldanha Bay environment is utilised by a variety of, what could be considered, conflicting activities including industry, fishery, mariculture, recreation and the natural environment itself. necessitates sustainable development that is steered towards environmentally more resilient locations and away from sensitive areas (Thérivel et al. 1994). Several environmental management tools are considered in developing this region:

- 1. Coastal Management Programme (in terms of the Integrated Coastal Management Act (ICMA))
- 2. Strategic Environmental Assessment (in terms of the National Environmental Management Act (NEMA))
- 3. Environmental Management Framework (in terms of NEMA)
- 4. Environmental Management Programme (in terms of NEMA)
- 5. Establishment of a Special Management Area (in terms of ICMA)
- 6. Erosion management

These management tools are described in more detail in this chapter.

4.1 Coastal Management Programme

The National Environmental Management: Integrated Coastal Management Act (No. 24 of 2008) (ICMA) provides for the integrated management of South Africa's coastline to ensure the sustainable development of the coast. The ICMA mandates all three spheres of Government (local, provincial and national) to develop and implement Coastal Management Programmes (CMPs). CMPs contain principles and objectives to guide decisions and successful coastal management. These policy tools consist of three core components: 1) a situational analysis or status quo assessment; 2) a vision, priority and objectives setting component; and, 3) a five-year implementation programme, which includes specific coastal management objectives and implementation strategies for each identified priority area. The Saldanha Bay Municipality (SBM) compiled its first CMP in 2013, which was recently reviewed and updated (SBLM 2019). Ten objectives for coastal management have been identified in this updated CMP, which will be implemented by defined coastal management strategies. Seven

selected objectives relevant to this monitoring report have been extracted from the CMP 2019 - 2024 document (Table 4.1). The implementation of this five-year plan will be monitored, and implementation success will be measured by indicators identified in the CMP.

Table 4.1 Selected objectives of the Second Generation Saldanha Bay Local Municipality Coastal Management Programme.

Coastal Management Objective	Coastal Management Strategy
Improve cooperative governance and clarify institutional arrangements	 Clarification of institutional arrangements for coastal management and the facilitation of the generation of capacity The continued implementation and update of the Coastal Management Programme The promotion of cooperative governance through engagement with all relevant coastal stakeholders
3. To ensure that coastal planning and development is conducted in a manner that ensures the protection and rehabilitation of the coastal zone.	 Incorporation of biodiversity, environmental and climate change policies into town planning processes Addressing Coastal Erosion within the coastal zone To address the high percentage of vacant plots and the low occupancy levels of residential dwellings
4. To enhance compliance monitoring and enforcement efforts in the district	 Developing Local Authority Environmental Management Inspectorate and Honorary Marine Conservation Capacity Facilitating and encouraging public reporting of illegal activities Facilitating the development and enforcement of Municipal by-laws Addressing the increase in illegal Off-Road Vehicle activity
5. To ensure effective management of estuarine resources in the West Coast District Municipality	 Facilitating the designation of Responsible Managing Authorities (RMA) Supporting the development of Estuarine Management Plans for smaller estuaries in the WCDM Facilitating the implementation of Estuarine Management Plans in the District
6. The protection, management and sustainable use of natural resources	 The effective control of invasive alien plants Cooperative management of Protected Areas Monitoring mining activities in the coastal zone Facilitating the coordinated management of Marine Living Resources
8. The effective management and control of pollution in the coastal zone	 Managing the discharge of effluent, stormwater and other industrial-based pollutants into coastal waters Continue to plan, install, alter, operate, maintain, repair, replace, protect and monitor municipal WWTWs in coastal towns To promote the effective management of Air Quality To ensure the effective management of solid waste in the coastal zone Encouraging the Reinstatement of the Blue Flag Beach Programme
9. Ensuring the socio-economic development of coastal communities	 Promotion of the Small Harbours: Spatial and Economic Development Framework Development of marine aquaculture within the District Supporting the Small-Scale Fisheries Industry The facilitation of coastal tourism development Preparing for the growth of the renewable energy sector

4.2 Strategic Environmental Assessments for the Greater Saldanha Bay Area

Shortcomings that limit the role project-level Environmental Impact Assessments (EIAs) as a tool for achieving sustainable development are widely documented. These are often linked to the reactive and piecemeal focus of project level EIAs which have limited capacity for anticipating and assessing changes to affected ecosystems beyond property boundaries. Project level EIAs are also not effective in addressing cumulative impacts from multiple developments or activities (Thérivel *et al.* 1994, Brown & Hill 1995, Glasson *et al.* 1999, Dalal-Clayton & Sadler 2005). Inefficiencies arising from fragmented, activity-based EIA procedures can be countered by means of a strategic environmental management approach, which places a proposed activity within the environmental context of a particular geographical area. Accordingly, NEMA Section 24(3) provides that:

The Minister, or an MEC with the concurrence of the Minister, may compile information and maps that specify the attributes of the environment in particular geographical areas, including the sensitivity, extent, interrelationship and significance of such attributes which must be taken into account by every competent authority.

A task team has been set up by the Department of Environmental Affairs and Development Planning (DEA&DP) with the objective to conduct a Strategic Environmental Assessment (SEA) for the Greater Saldanha Bay Area (DEA&DP 2016). SEAs are effective environmental management instruments that are designed to ensure that environmental and other sustainability aspects are considered effectively and holistically in policy, plan and programme making within an area such as Saldanha Bay. The development of a SEA typically involves formulating a desired environmental state for the area under consideration and the identification and evaluation of limiting environmental attributes against a set of thresholds beyond which the realisation of the desired environmental state would be compromised. Any proposed development can then be evaluated against the SEA to ascertain whether the activities are congruent with the desired environmental state.

4.3 Environmental Management Framework

Environmental Management Frameworks (EMFs) are one of several prescribed environmental management instruments that give effect to NEMA Section 24(3) through the Environmental Management Framework Regulations of 2010 (Figure 4-1). These regulations take cognisance of the fact that important natural resources must be retained to provide for the needs and ensure the health and well-being of citizens in a particular area in the long-term. The EMF Regulations of 2010 state that an EMF should aim to promote sustainability, secure environmental protection and promote cooperative governance and may be adopted by the competent authority. If adopted by the competent authority, EMFs must be considered in all EIAs and must be considered by every competent authority during the decision-making process. The burden of proof to demonstrate that a proposed development is aligned to the EMF lies with the project proponent. The EMF provides applicants with a preliminary indication of the areas in which it would be potentially inappropriate to undertake an activity listed in terms of the NEMA EIA regulations by:

- 1. Specifying the sensitivity or conservation status of environmental attributes in a particular area;
- 2. Stating the environmental management priorities of the area; and
- 3. Indicating which activities would be compatible or incompatible with the specified area.

Chand Environmental Consultants were appointed in 2010 by the Western Cape Department of Environmental Affairs and Development Planning (DEA&DP) to compile a Draft EMF in 2013 for Saldanha Bay (for more information on the original EMF refer to AEC 2016). The original Draft EMF was recently reviewed as part of the Greater Saldanha Regional Spatial Implementation Framework (DEA&DP 2018). The original extent of the Saldanha Bay EMF was expanded to include the Berg River and its estuary, and a Draft Environmental Management Framework was completed by the Western Cape Government in April 2017. No final EMF is available, and it is unknown whether the EMF has been adopted yet.

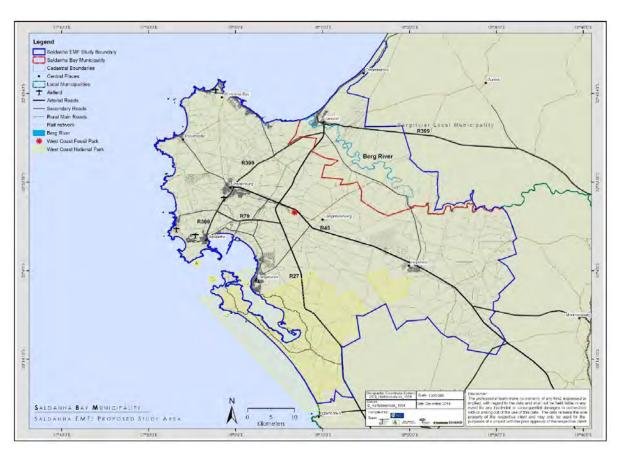


Figure 4-1 Study Area for the Greater Saldanha Bay Environmental Management Framework (DEA&DP 2017).

4.4 Generic Environmental Management Programme

DEA&DP compiled an Environmental Management Programme (EMPr) in collaboration with the National Department of Environmental Affairs (Directorates Oceans and Coast and Environmental Impact Assessment), the Saldanha Bay Municipality and the Saldanha Bay Water Quality Forum Trust (DEA&DP 2016). The EMPr Key contains mitigation measures and other interventions appropriate for a range of developments and associated impacts on the coastal and marine environment of Saldanha Bay. This document was implemented in 2019 and allows government officials involved in the environmental authorisation process to compare the EMPr submitted by the applicant against a definite set of criteria applicable to the environmental challenges faced in the Greater Saldanha Bay Area.

4.5 Special Management Area

An initiative for the establishment of a Special Management Area in Saldanha Bay is gathering momentum and has the potential to improve environmental management in Saldanha Bay and Langebaan Lagoon. A Special Management Area under the ICMA may be declared in terms of section 23 (1) (a) of the Act, if environmental, cultural or socio-economic conditions require the introduction of measures which are necessary to more effectively conserve, protect or enhance coastal ecosystems and biodiversity in the area of question. The Minister may declare any area that is wholly or partially within the coastal zone to be a Special Management Area and has the power to prohibit certain activities should these activities be considered contrary to the objectives of the Special Management Area (ICMA Section 23 (4)).

5 GROUNDWATER

5.1 Introduction

The Greater Saldanha Bay (GSB) region is experiencing significant growth from many sectors as it is close to a port; is well suited for industrial development; has good infrastructure; is particularly scenic in places and within a unique natural setting. These attributes have resulted in rapid growth of the region and thus needs to be managed strategically with a long-term perspective with the aim of satisfying as many role players as possible). The geographical extent of the project area is the administrative boundary of the Saldanha Bay Municipality with the addition of a marine component comprising 12 nautical miles from the High-Water Mark, Langebaan Lagoon, including the islands in the Bay (Schaapen and Marcus) and just outside the Bay (Malgas, Jutten and Vondeling).

Groundwater is a key component of the natural capital within the area. It plays a crucial role in sustaining critical and unique ecosystems and is also partly a source of water supply to the municipality as well as providing support to the agricultural sector. The geological setting is highly variable within the GSB area and for this reason the groundwater is also highly variable across the study area in terms of flow rates, volumes and quality (Figure 5-1). This variability has meant that a lot of geohydrological work has been completed in the area, dating back to the late 1970s. There has also been a lot of recent and ongoing geohydrological work in the area, especially regarding natural and artificial recharge. Recent work done in the area contributes to knowledge on the aquifer dimensions and recharge characteristics for which there has previously been some uncertainty in.

This report provides an update of the geohydrology of the area with a little more detail on the areas of actual and planned groundwater abstraction. It highlights the areas where crucial ecosystem support is received from groundwater as well us updated information on the groundwater area that has come to light over the past year.

5.2 Regional Hydrogeology

The hydrogeological characteristics of the Aquifer Systems in the Saldanha Bay area are complicated due to the complex nature of the regional geology (Figure 5-2). The transmissivity (T) of the confined Langebaan Road Aquifer is said to vary between 10 and 4 000 m^2/day with its storage capacity calculated to be 21.9 Mm³ (Roberts & Siegfried 2014). The transmissivity of the Elandsfontein aquifer is lower than that of the Langebaan Road area, according to Roberts & Siegfried (2014). It is estimated that its T is 5 – 250 m^2/day with its storage calculated to be 15.5 Mm³. The total volume of groundwater stored within the Langebaan Road and Elandsfontein Aquifers are estimated to be around 3 039 Mm³ (Roberts & Siegfried 2014). The regional aquifer yields, as mapped by the Department of Water and Sanitations (DWS), are displayed in Figure 5-3.

The groundwater quality, as indicated by electrical conductivity (EC) for the study area is shown in Figure 5-2. The groundwater quality at Vredenburg and the surrounding area, as well as the far east of the study area is characterised by saline water (300 - 1~000~mS/m and > 1~000~mS/m), while the central area (west of Hopefield) has good to marginal water quality (0 - 70~mS/m and 70 - 300~mS/m). Borehole quality (EC) from the National Groundwater Archive (NGA) has also been included in Figure 5-2. Based on field data from various studies in the area over the last 20 years, the groundwater

quality of the Langebaan Road Aquifer (LRA) aquifer (central to the study area) is good (< 100 mS/m) (Nel 2018). The groundwater quality from the Elandsfontein Aquifer is also good.

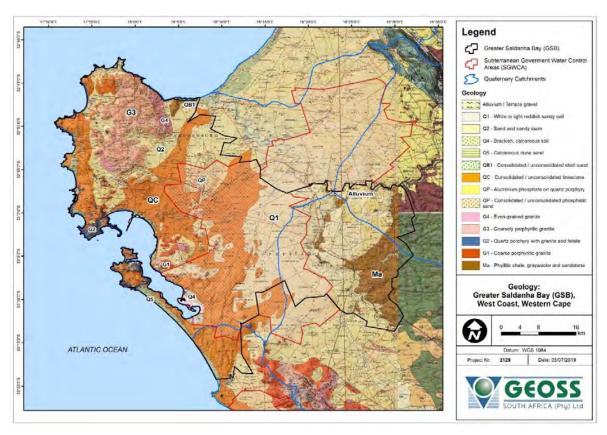


Figure 5-1 Geological setting of the study area (Cape Town, 3318) (CGS 1990).

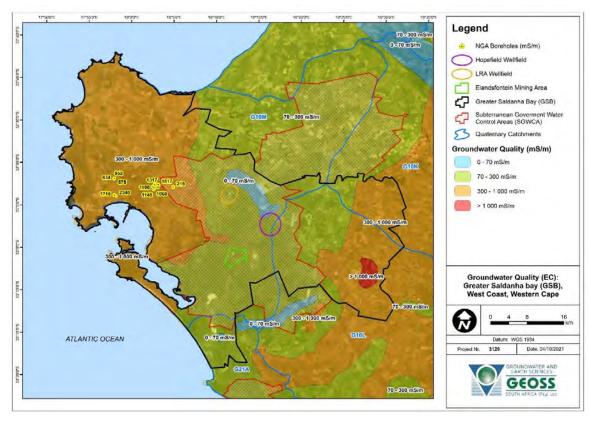


Figure 5-2 Regional groundwater quality (EC in mS/m) from WRC (2012).

Figure 5-3 Regional aquifer yield from the 1:500 000 scale groundwater map (3317 — Cape Town) (DWAF 2000).

5.3 Groundwater, aquifers and wellfields

5.3.1 Langebaan Road Aquifer (LRA) System

Aquifers in the area were studied many years ago — large scale drilling and exploration work was carried out by DWAF from the mid-1980s for a period of 10 years. The Langebaan Road Aquifer (LRA) is located between the lower Berg River and Saldanha Bay. The LRA was developed as part of potential emergency supply, but also as a long-term water supply to Saldanha Bay Municipality (Nel 2018). The existing wellfield at the LRA was officially established for the DWS in 1998. The Langebaan Road wellfield was then expanded for the purposes of emergency measures.

The LRA wellfield forms part of the Berg River hydrogeological unit of the Sandveld Group Aquifer. The geological depositional environment has a direct bearing on the most significant groundwater occurrences (Nel 2018). The Langebaan Road Aquifer System (LRAS), is situated above the northern paleo-channel. The LRAS is formed by the thick sand and gravel layers of the Elandsfontein Formation. The confining layer is formed by the Elandsfontein clay and peat. A shallow, unconfined aquifer of lesser extent exists in the top Bredasdorp calcareous layers. The clay layer that separates the Elandsfontein Formation and the Varswater Formation creates (semi) confined conditions in the basal gravels (GEOSS 2010). The confined Lower Aquifer Unit (LAU) is the most significant aquifer in the Langebaan Road area and is mostly restricted to paleo-channels, which defines the LRAS and the EAS. For the Langebaan Road area, the geology and hydrogeology are summarized in Table 5.1 (Weaver & Fraser 1998).

Table 5.1 Summary of the geology and hydrogeology of the Langebaan Road Wellfield.

Lithostratigraphic Unit		Aquifer Type	Approximate	Transmissivity
Formation	Member		thickness (m)	(m²/day)
Bredasdorp	Sand, calcrete	Unconfined	10 to 20	< 100
Elandsfontein	Clay Sand and gravel	Aquitard confined	20 to 30 40 to 60	< 1 Approx. 1 000
Granite	-	Bedrock	-	-

In 2008 and 2009, managed aquifer recharge (MAR) was tested at the wellfield, showing that it could be a viable option for the long-term sustainable management of the groundwater resources. Managed Artificial Recharge needs to be operationalised again and injection tests, carried out by GEOSS, took place at the wellfield at the end of September 2021 to reassess MAR feasibility at the wellfield. The data is currently being analysed.

Saldanha Bay Local Municipality is responsible for the monitoring of LRA as the License holder. SBLM have outsourced the monitoring to the company Luhlaza Advisory and Consulting (Pty) Ltd). The DWS have also been monitoring groundwater levels in the LRA area as well as much wider. The distribution of the monitoring boreholes listed is shown in Figure 5-4. The monitoring data collected is from both the lower and upper aquifer systems. Both groundwater level and water quality graphs from boreholes across the GSB area are shown in Figure 5-11 – Figure 5-24.

5.3.2 Elandsfontein Aquifer System (EAS)

The Elandsfontein Aquifer System has the following boundaries: the Langebaan Lagoon in the west, the Darling batholith in the south, the Brak and Groen Rivers to the south-east and east, respectively and the zero-flow boundary to the north. The Elandsfontein Aquifer System thus occurs to the south of the Hopefield Wellfield and comprises an Upper Aquifer System, which is made up of the calcareous layers of the Bredasdorp Formation which is underlain by think layers of clay and peat. The groundwater quality and yields are good within the EAS.

The Elandsfontein Phosphate Mine is situated within this aquifer (Figure 5-4), however, the nett abstraction of groundwater is minimal as the groundwater abstracted is recharged within a closed system. However, in the vicinity of the open pit active dewatering is taking place and then re-injection of the abstracted groundwater 2 km down-gradient of the open-pit. The anticipated impacts of the drawdown and injection have been numerically modelled and the modelled results were included with the Elandsfontein Mine Water Use License Application. The License was approved based on the modelled and anticipated abstraction and recharge impacts. Therefore, the actual monitoring the mine is doing of 28 dedicated monitoring boreholes is closely compared to the modelled results. The groundwater level decline and rise (down-gradient of the injection boreholes) is encouragingly very similar to the modelled results. The Water Use Licence compliance conditions for the mine stipulate comprehensive groundwater level and quality monitoring and the mine is adhering to these conditions.

5.3.3 Hopefield wellfield

The Hopefield wellfield occurs to the south-east of the Langebaan Road Aquifer wellfield (Figure 5-4) and is considered to be part of the EAS. The following is based on all the field work and interpretation of the data at Hopefield, as per Nel (2019):

- The groundwater in the aquifer appears to be of good quality, with EC-values between 54 and 63 mS/m.
- A total of 12 production boreholes were drilled based on the geophysical profile results. A
 combination of thick sand and deep weathering areas was targeted. High conductive clayey
 areas were avoided.
- An additional 6 monitoring boreholes were drilled to provide data for local management of the aquifer.

The Hopefield wellfield was developed for emergency groundwater supply for the Saldanha Bay Municipality for a supply of 1 642 500 m³/a. Monitoring boreholes have also been set up to serve as pilot boreholes to characterise the aquifer conditions; to monitor aquifer performance; as well as assess the impact on the surrounding users. This wellfield is being comprehensively analysed by a specialist hydrogeologist (Luhlaza Advisory and Consulting (Pty) Ltd.) appointed by SBLM.

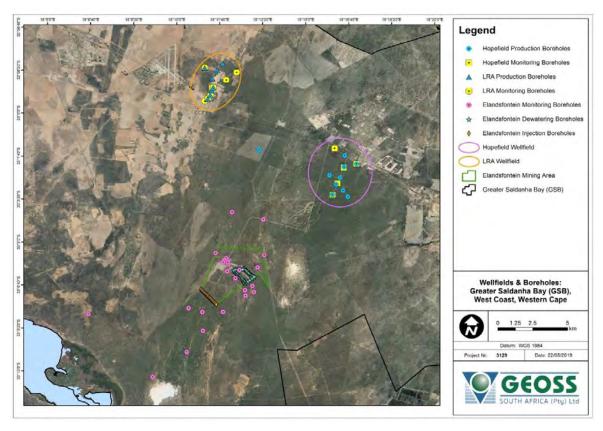


Figure 5-4 Map outlining the approximate locations of the Elandsfontein property, Hopefield wellfield and Langebaan Road Aquifer wellfield.

5.4 Groundwater flow

A Time Domain Electromagnetic (TDEM) geophysical survey was carried out in the Saldanha Bay area between Yzerfontein and the Aurora-Piketberg Mountain Range (Figure 5-5). The survey began on 21 May 2020 and concluded at the end of June 2020. The survey was carried out using the SkyTEM helicopter system. The area covered by the airborne survey included the potential recharge area along the Aurora Mountains, the faults from Porterville and Malmesbury, as well as all the potential flow paths from the recharge areas to the Langebaan Lagoon Ramsar discharge area. The geophysical survey provided an improved resolution and characterisation of the subsurface to supplement the interpretation of recharge and groundwater flow.

Groundwater flow in the area was mostly informed by the bedrock and topography of the Saldanha Bay area along with groundwater levels, hydrochemical and isotopic data from research being done in the area. Both the depth of bedrock and the topography of the Saldanha Bay area was derived from the airborne geophysical survey data. The bedrock depth layers that were derived from the conductivity data of the airborne survey was subtracted from the topography layer. This was done to obtain the depth of the layers relative to the surface topography. The bedrock topography was interpreted from the contact between the sand and the bedrock in each layer and then combined to form a single data set. The bedrock depth was then combined with the topography to provide a bedrock elevation map (Figure 5-6).

Figure 5-5 Area covered by the airborne geophysical survey conducted in Saldanha Bay.

The yellow colour on the map depicts the higher elevated areas such as the mountains at Aurora, Moorreesburg and the granite hills along the western part of the Saldanha Bay area. The blue colour illustrates the deeper parts of the bedrock and the deepest bedrock elevations (dark blue) occur in the southwestern part of the Elandsfontein aquifer towards the Lagoon, south towards Yzerfontein and in the north eastern side where a paleochannel is located in a north easterly to south westerly direction along the coast towards Saldanha Bay town. These bedrock depths (dark blue) are approximately 100 m below sea level.

There are also some deep bedrock patches found in the Langebaan Road wellfield vicinity and between the Berg River and Aurora with depths up to 60 m below sea level. Overall, the blue coloured area is where sands were deposited over time and make up the aquifer structure in the area. The bedrock depths at the Hopefield wellfield ranges between 10 m and 30 m below sea level. This slightly higher bedrock elevation suggests local groundwater flow from the Hopefield wellfield towards the Lagoon in the southwest and also the Langebaan Road wellfield towards the northwest.

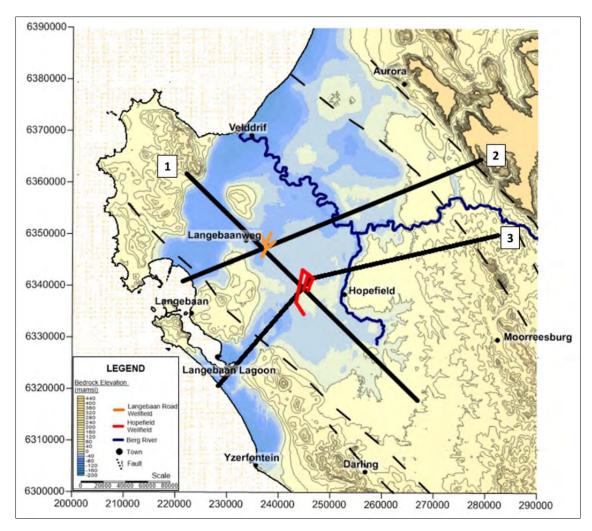


Figure 5-6 Bedrock topography map indicating the Traverses for which cross sections were generated.

Along with the delineation of the bedrock topography, the geophysical survey results also allowed for geological cross sections to be generated. These cross-sections aided in the identification possible groundwater flow paths occurring in the Saldanha Bay area. The locations of the cross section can be seen on Figure 5-7.

Cross-section 1

The geophysical data suggests that groundwater recharge most likely takes place as regional recharge and reaches the Saldanha Bay area via deep flow paths. It is suspected that recharge occurs in the Moorreesburg area after which groundwater flows towards Hopefield towards Langebaan Road. This water then flows to both the shallow and deep aquifers in the Langebaan Road area (Figure 5-7). Overall, the data suggests that groundwater flows from the Aurora and Moorreesburg recharge zones towards Saldanha Bay passing both wellfields and flowing towards the discharge zones. The main discharge from the aquifer occurs at the Langebaan Lagoon at Geelbek from the southern part of the aquifer, with some groundwater discharge occurring at the Berg River and north of the River where the salt pans occur. Groundwater occurrence and flow paths throughout the Saldanha area are displayed in Figure 5-8.

Cross-section 2

Geophysical data shown on this cross section (Figure 5-9) indicates that recharge from rainfall occurring on the Aurora-Piketberg mountains occurs at the foot of this mountain. Groundwater then flows towards the Berg River. Recharge also occurs on granite outcrops closer to the ocean at Langebaan Road (at 10 000 m on the profile). This suggests that the deeper Langebaan Road aquifer gets recharged by local rains which accumulate at the foot of granite hills. Groundwater then flows from the higher elevated granite hills towards the Langebaan Road Wellfield and discharges into the Berg River.

Cross-section 3

Data for the cross section shown in Figure 5-10 provides evidence of the possible the regional recharge occurring at the higher elevations in the Moorreesburg area. Bedrock elevation suggests that groundwater flows from the Moorreesburg recharge area, underneath the Sout River towards Hopefield wellfield and then discharges into the Langebaan Lagoon. The quality of the groundwater that contributes to the Langebaan Lagoon is good and was measured at values between 14 – 43 mS/m.

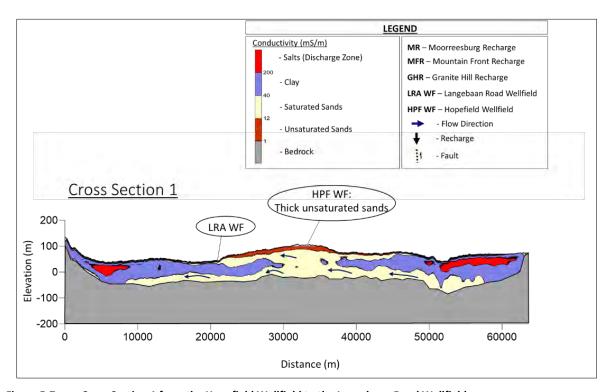


Figure 5-7 Cross Section 1 from the Hopefield Wellfield to the Langebaan Road Wellfield.

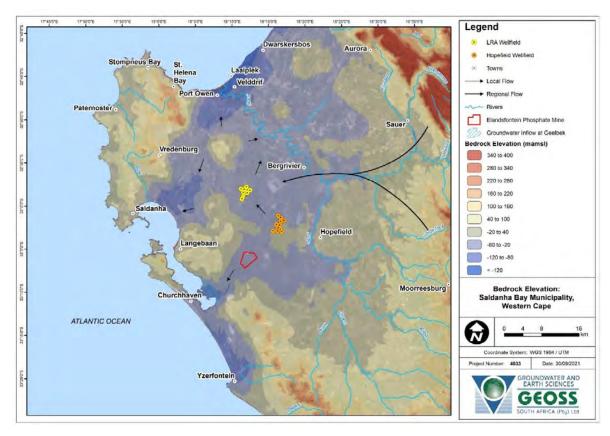


Figure 5-8 Groundwater flow paths in Saldanha Bay Groundwater Use and Quality.

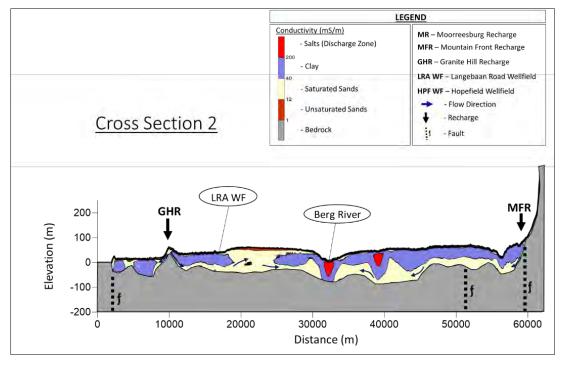


Figure 5-9 Cross section (2) from the Aurora Mountains to Saldanha Bay.

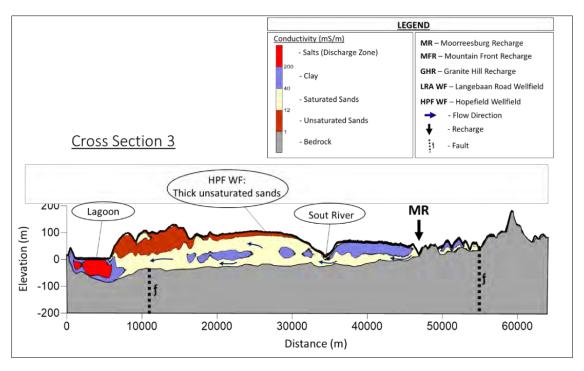


Figure 5-10 Cross section 3 from the Moorreesburg area to Langebaan Lagoon.

The current sectors in the region that utilizes groundwater is mostly the agricultural sector and industrial sectors. The Elandsfontein Phosphate mine also uses groundwater for dewatering purposes, SANParks uses groundwater for stock and domestic purposes and the Saldanha Bay Local Municipality has two wellfields in the area which use groundwater to supplement surface water supply. Most of the groundwater in the area are monitored in terms of its use, groundwater level trends as well was water quality. Monitoring data (groundwater levels and quality) can be found in Figure 5-11 – Figure 5-24. The following list provides general information on groundwater users in the area, if they monitor the groundwater and what the quality of the groundwater being abstracted is:

Duferco Steel Processors — currently utilizes groundwater and has groundwater monitoring in place, which is conducted by GEOSS. Data shows water chemistry and groundwater levels are stable (within the normal monitoring range). However, it should be noted that groundwater in this area is very saline.

Transnet Port Terminals/Transnet National Port Authorities (TNPA) — groundwater monitoring has not taken place in the last 3 years — however, prior to that, monitoring data collected shows that water chemistry and groundwater levels are stable (within the normal monitoring range). Similar to Duferco, groundwater in the vicinity of TNPA is very saline.

Strategic Fuel Fund —currently utilizes groundwater and has groundwater monitoring in place, which is conducted by GEOSS. Data shows that water chemistry and groundwater levels are stable (within the normal monitoring range). Although groundwater levels are currently stable at all monitoring boreholes at this site, a slight decrease in water level is observed over the past 20 years.

Elandsfontein Mine — currently the mine is abstracting groundwater for dewatering purposes. Monthly monitoring is in place and is carried out by GEOSS. Monitoring data collected shows that

water chemistry and groundwater levels are stable (within the normal monitoring range). Marginal changes in water levels are observed in and around the vicinity of the mine.

SANParks — currently utilizes groundwater for stock and domestic purposes. Groundwater monitoring is in place for some SANParks boreholes and data shows that water chemistry and groundwater levels are stable (within the normal monitoring range).

Saldanha Bay Local Municipality/West Coast District Municipality (WCDM) — the Langebaan Road Aquifer (LRA) Wellfield currently abstracts groundwater for the supplementation of their surface water supply. Although groundwater abstraction for water supply has not yet taken place at the Hopefield Wellfield, both wellfields get monitored on a month basis by Luhlaza Advisory and Consulting (Pty) Ltd. Groundwater levels show evidence of pumping at the LRA Wellfield can be seen in groundwater level data collected, however, levels quickly recover to static conditions. Groundwater quality at both wellfields are within stable ranges.

Rainbow Farms and Hopefield Poultry — both these farms have registered boreholes and approved water use licenses. However, a comment on the groundwater use, level and quality cannot be made at the moment as monitoring data could not be accessed.

Agricultural Sector — similar to Rainbow Farms and Hopefield Poultry, there are lots of boreholes registered under the agricultural sector with valid water use licenses. However, monitoring data for these users could not be accessed.

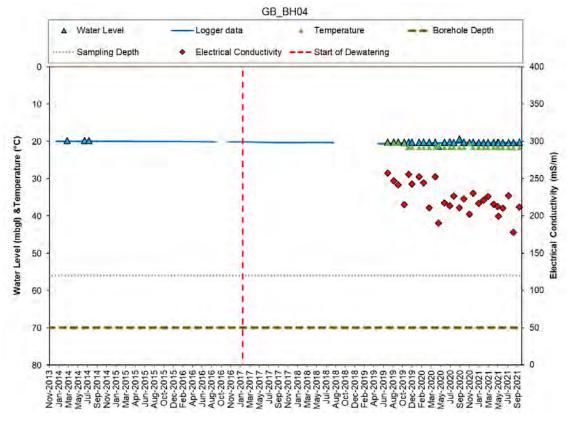


Figure 5-11 Long-term water level, temperature and EC monitoring at Geelbek BH04 by Elandsfontein Mine (GEOSS 2021).

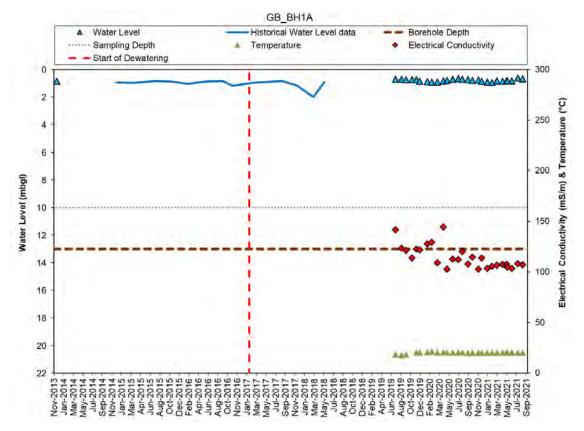


Figure 5-12 Long-term water level, temperature and EC monitoring at Geelbek BH1A by Elandsfontein Mine (GEOSS 2021).

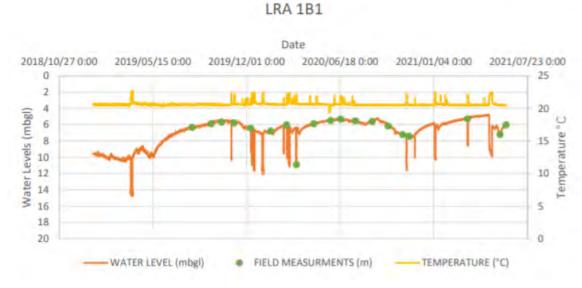


Figure 5-13 Long-term water level and temperature monitoring at Langebaan Road 1B1, Langebaan Road/Hopefield (Luhlaza 2021).

LRA 1B1M

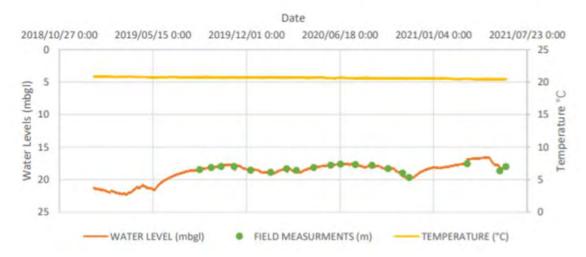


Figure 5-14 Long-term water level and temperature monitoring at Langebaan Road 1B1M, Langebaan Road/Hopefield (Luhlaza 2021).

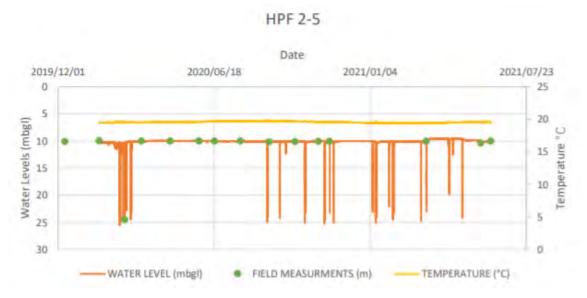


Figure 5-15 Long-term water level and temperature monitoring at Hopefield 2 -5, Langebaan Road/Hopefield (Luhlaza 2021).

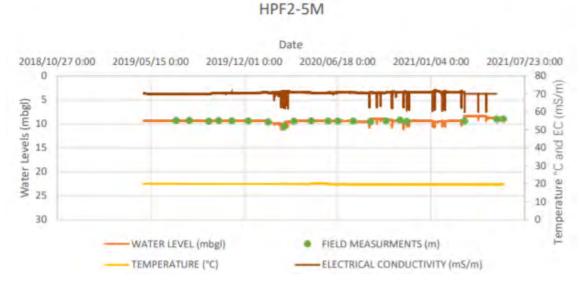


Figure 5-16 Long-term water level, temperature and EC monitoring at Hopefield 2 -5M, Langebaan Road/Hopefield (Luhlaza 2021).

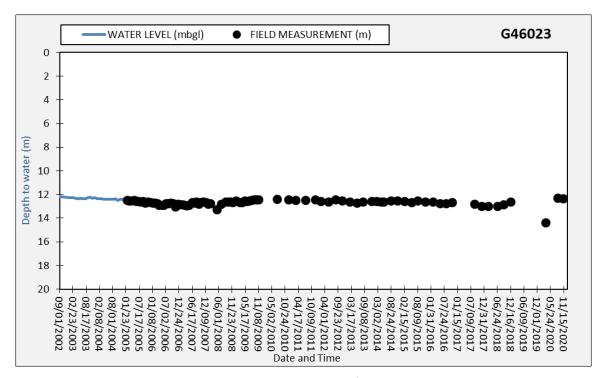


Figure 5-17 Long-term water level monitoring by the Agricultural/Industrial sector at G46023 (DWS) (Institute for Water Studies 2021).

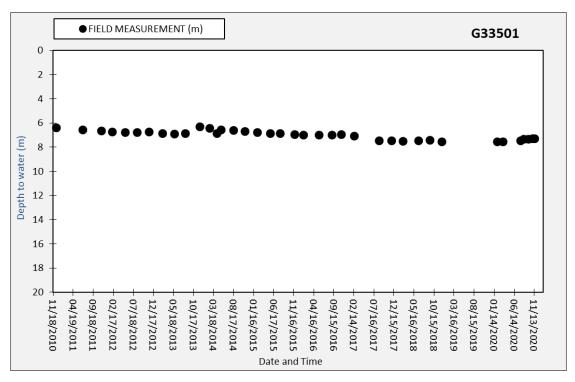


Figure 5-18 Long-term water level monitoring at G33501 (DWS) (Institute for Water Studies 2021).

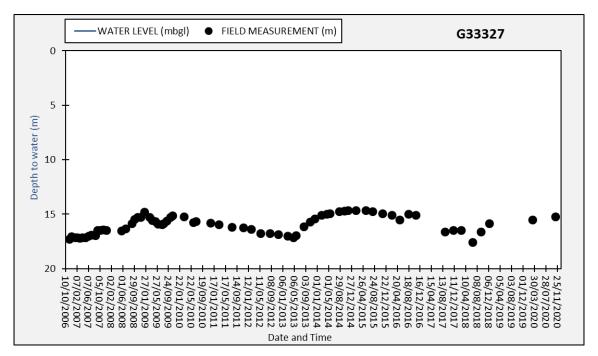


Figure 5-19 Long-term water level monitoring at G33327 (DWS) (Institute for Water Studies 2021).

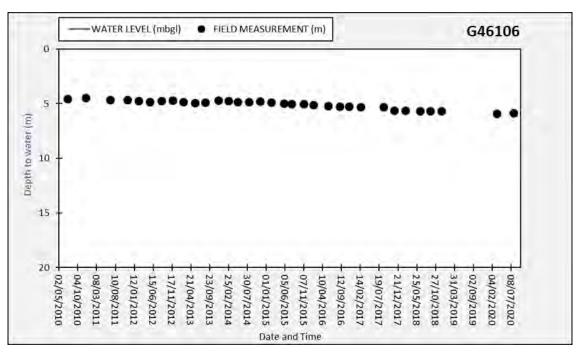


Figure 5-20 Long-term water level monitoring at G46106 (DWS) (Institute for Water Studies 2021).

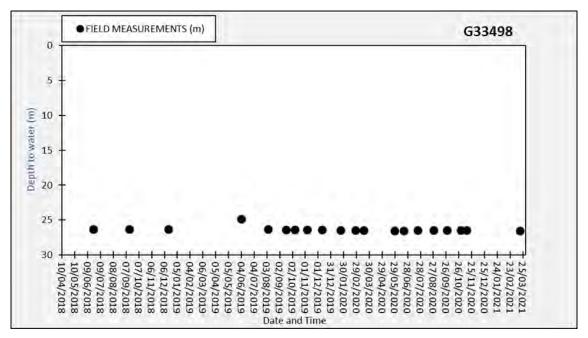


Figure 5-21 Long-term water level monitoring at G33498 (DWS) (Institute for Water Studies 2021).

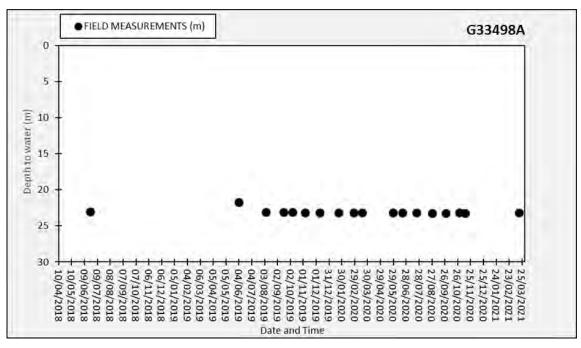


Figure 5-22 Long-term water level monitoring G33498A (DWS) (Institute for Water Studies 2021).

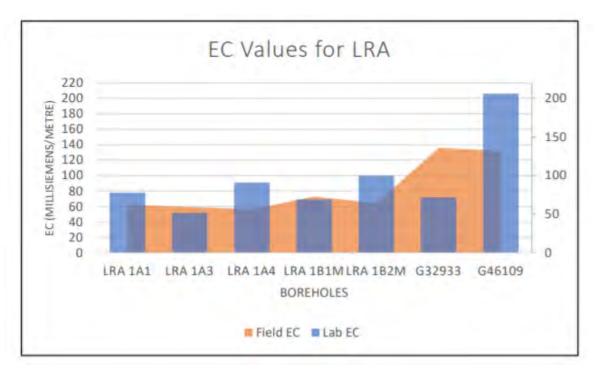


Figure 5-23 Electrical Conductivity data from the Langebaan Road Wellfield (Luhlaza 2021).

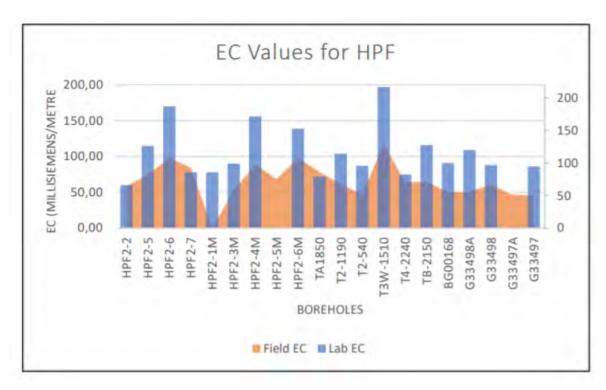


Figure 5-24 Electrical Conductivity data from the Hopefield Wellfield (Luhlaza 2021).

5.5 Licensed groundwater use and status

The existing LRA is licensed to abstract 6 ML/d ($2.19 \text{ Mm}^3/a$) and it is possible that for the LRA extension will be licensed for an additional 8 ML/d ($2.92 \text{ Mm}^3/a$). Thus, it is possible that 14 ML/d ($5.11 \text{ Mm}^3/a$) can be abstracted from the LRA. The licence for the Hopefield wellfield has not yet been finalised, however, an abstraction of 4 to 5 ML/d ($1.46 \text{ to } 1.83 \text{ Mm}^3/a$) has been applied for.

According to the Water Authorisation and Registration Management System (WARMS) 2021 database, private groundwater users abstract in the region of 2.1 Mm³/a, most of which is abstracted from the agricultural sector. Other private sectors that use groundwater at a smaller scale include the Industrial and Mining sector. Farmers and other landowners in the GSB area have invested in groundwater development to supplement municipal water supply given the uncertainty of water resources in light of the drought. Further to large-scale abstractions, many commercial industries in particular, and farms have registered water use on their respective properties.

5.6 Regional database status

The Saldanha Bay/Langebaan area groundwater database is part of the Western Cape Province groundwater database, which was established from various data sources with the Aquabase Water Resources Management software:

- 1. National Groundwater Archive of the DWS, forming the basis of the WC database.
- 2. Groundwater chemistry for the Water Management System of DWS Hydrogeology.

- 3. Groundwater data from the Water Business Continuity Project of the Western Cape Government.
- 4. Elandsfontein Phosphate mine groundwater monitoring data (water levels end chemistry).

The DWS has a well-covered monitoring network in the area in which a number of boreholes are monitored in terms of water levels on a monthly or quarterly basis and for which data has been imported into the greater Western Cape (WC) database. This data has to be downloaded from the NGA on a monthly or quarterly basis and imported into the WC database to create a general overview of the water level situation in the area.

The Elandsfontein mine has a comprehensive groundwater level and chemistry monitoring network around the mine and "downstream" to the Geelbek area at the southern tip of the Langebaan Lagoon. Monthly monitoring data has been imported into the WC database and will be updated with incoming data on a monthly basis. For this monitoring project an online map has been produced on https://www.groundwaterinfo.africa, for which a login is required to access the map. This website also has some maps accessible by the public and which present a general overview of the groundwater properties in the area, but a more detailed map for the Saldanha/Langebaan area may be produced in future which could include long-term monitoring charts for water levels and or chemistry. Such a map would benefit this State of the Bay project to showcase the monitoring efforts to the public. The images below (Figure 5-25 – Figure 5-28) show what the current map for Elandsfontein can present:

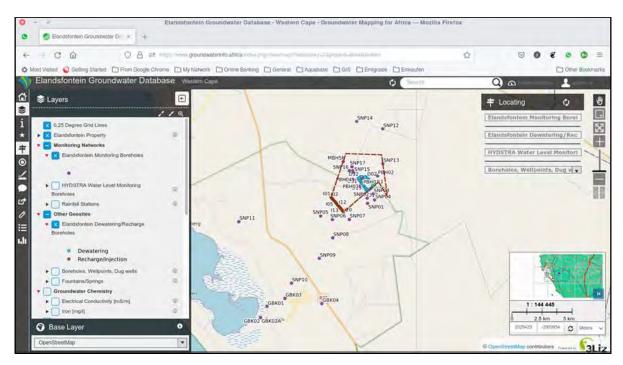


Figure 5-25 Regional database: Elandsfontein, SANParks and Geelbek boreholes.

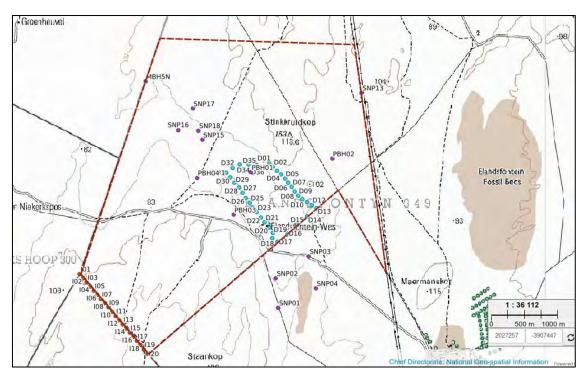


Figure 5-26 Regional database at Elandsfontein Phosphate Mine.

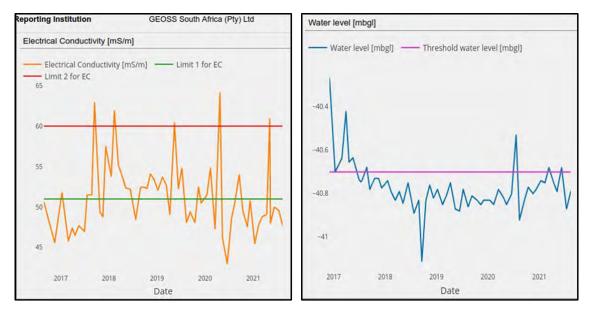


Figure 5-27 Examples of long-term electrical conductivity and water level trend available currently on the regional database for Elandsfontein boreholes. 9

* ANCHOR

_

⁹ Note: the water level graphs relates to the Elandsfontein mine's licensed dewatering programme and is not representative of regional conditions.

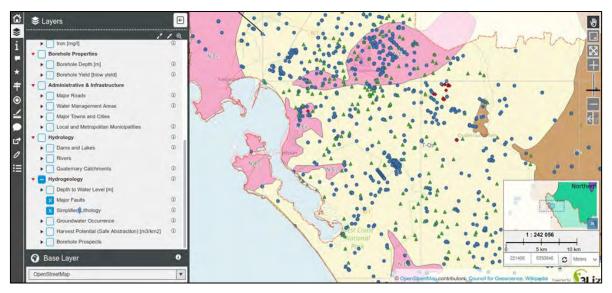


Figure 5-28 boreholes for which groundwater information will be available once the regional database has been completed.

5.7 Summary

An overview of the geological and geohydrological setting of the Greater Saldanha Bay area has been provided in this report. Groundwater is a key component of the natural capital within the area. Additional information has been provided on groundwater flow, groundwater uses and quality as well as the current (2021) licensed use and status.

Assessment of groundwater flow in the area indicated that groundwater moves from recharge zones (high lying areas in Aurora and Moorreesburg) towards Saldanha Bay, passing both wellfields, towards the discharge zones. The main discharge from the aquifer occurs at the Langebaan Lagoon at Geelbek from the southern part of the aquifer, with some groundwater discharge occurring at the Berg River and north of the River where the salt pans occur. According to the WARMS database (2021), the main existing abstraction of groundwater is for the agricultural sector. Other sectors, which abstract on a smaller scale are the mining, industrial and conservation sectors. In times of drought when the groundwater supply is critical to the area, there is less groundwater inflow to the system, however, there is enough available groundwater within the area to support the proposed abstraction volumes from the Langebaan Road Aquifer and Hopefield wellfields. It is anticipated that this groundwater abstraction will not impact the freshwater inflows at Geelbek. However, any additional allocation of groundwater needs to be carefully considered and within the above context.

Due to the complexity of the geohydrological setting within the area and the critical groundwater dependent ecosystems within the area as well as the valuable role groundwater plays in meeting water requirements during times of drought, regional monitoring of groundwater levels and quality is crucial. The distribution of existing monitoring boreholes within the study area is illustrated in Figure 5-29. It is crucial that all this monitoring data is collated and analysed regularly to ensure that the groundwater use within in the area is carried out sustainably and responsibly. A regional groundwater database for the area that integrates all the groundwater information (from DWS and private authorised users), including the analysis of the data, is currently in the pipeline. This will provide

stakeholders quick and easy access to groundwater information in the region, which will help inform decisions made regarding the resource.

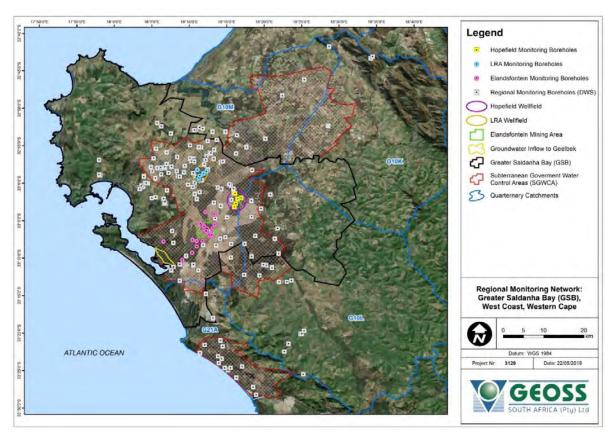


Figure 5-29 Groundwater monitoring network within the study area.

6 WATER QUALITY

6.1 Introduction

The temperature, salinity (salt content) and dissolved oxygen concentration occurring in marine waters are the variables most frequently measured by oceanographers in order to understand the physical and biological processes impacting on or occurring within a body of seawater. Historical longterm data series exist for these three variables for Saldanha Bay spanning the period 1974 – 2000 and have been augmented by monitoring studies undertaken by the Council for Scientific and Industrial Research (CSIR) (van Ballegooyen et al. 2012) on behalf of Transnet for their Reverse Osmosis (RO) desalination plant (data for the period 2010 – 2011) and various other projects. A trial deployment of a conductivity temperature and depth (CTD) instrument by Anchor Environmental from 3 April to 13 May 2017 provided six weeks of recent data in this area. A thermistor string comprising four underwater temperature meters (UTMs), used for continuous monitoring of water temperature in the Bay, was deployed at North Buoy in Small Bay in April 2014 by Anchor Environmental Consultants on behalf of the SBWQFT. This array is retrieved and maintained during the annual field survey and data up until March 2021 are included in this report. Current data were collected by an Acoustic Doppler Current Profiler (ADCP) from 7 to 10 April 2017 at a site adjacent to the Sea Harvest processing factory in Small Bay as well as at Club Mykonos Beach in Big Bay from 14 February to 28 February 2018. Recently, from 24 April 2020, the Department of Forestry, Fisheries and Environment (DFFE) initiated dissolved oxygen monitoring at Aquaculture Development Zone Precincts in Small Bay and Big Bay with instruments moored 0.5 m from the sea floor at Farm (within the ADZ precincts) and Control stations (Figure 6-1). Data are recorded hourly, and the instruments are being serviced every 6 - 8 weeks. Data for the period April 2020 - June 2021 are presented below, but this monitoring is scheduled to be ongoing and should reveal interesting seasonal and long-term trends in the Bay's water quality.

Figure 6-1 Saldanha ADZ precincts (red border), MPA (white border) and location of moored oxygen sensors.

Monitoring of temperature and salinity at the head of the lagoon was initiated in September 2016 using a Star ODDI Salinity, Conductivity, Temperature and Depth Logger, funded by the Elandsfontein Phosphate Mine (Kropz). The Star ODDI was subsequently replaced with an Aqua TROLL 200 data logger (August 2019) which has been yielding considerably better and more useful data. Variations in temperature, salinity and depth are recorded every 20 minutes, and data for the entire monitoring period to date (September 2016 to August 2021) are presented below.

Some data are also available on other physico-chemical parameters from the Bay including turbidity and bromide, as well as for faecal coliforms (introduced to the Bay through wastewater discharges) and trace metals (from natural and anthropogenic sources).

6.2 Circulation and current patterns

Circulation patterns and current strengths in Saldanha Bay prior to development in 1974/1975 were investigated using various techniques (drogues, dye-tracing, drift cards and sea-bed drifters, Shannon & Stander 1977). Surface currents within the upper five meters were found to be complex and appeared to be dependent on wind strength and direction as well as tidal state. Within Small Bay, currents were typically weak (5 – 15 cm.s⁻¹) and tended to be clockwise (towards the NE) irrespective of the tidal state or the wind (Figure 6-2). Greater current strengths were observed within Big Bay (10 - 20 cm.s⁻¹) and current directions within the main channels were dependent on tidal state. The strongest tidal currents were recorded at the mouth of Langebaan Lagoon (50 – 100 cm.s⁻¹), these being either enhanced or retarded by the prevailing wind direction. Currents within the main channels in Langebaan Lagoon were also relatively strong (20 – 25 cm.s⁻¹). Outside of the main tidal channels, surface currents tended to flow in the approximate direction of the prevailing wind with velocities of 2 – 3% of the wind speed (Shannon & Stander 1977). Current strengths and direction at 5 m depth were similar to those at the surface but were less dependent on wind direction and velocity and appeared to be more influenced by tidal state. Currents at 10 m depth at the mouth of the Bay were found to be tidal (up to 10 cm.s⁻¹, either eastwards or westwards) and in the remainder of the Bay, a slow (5 cm.s⁻¹) southward or eastward movement, irrespective of the tidal state, was recorded.

The currents and circulation of Saldanha Bay subsequent to the construction of the Marcus Island causeway and the iron ore/oil terminal were described by Weeks *et al.* (1991a). Historical data of drogue tracking collected by the Sea Fisheries Research Institute during 1976 – 1979 were analysed in this paper. This study confirmed that wind is the primary determinant of surface currents in both Small Bay and Big Bay; although tidal flows do influence currents below the thermocline and are the dominant forcing factor in the proximity of Langebaan Lagoon. Weeks *et al.* (1991a) noted that because much of the drogue tracking was conducted under conditions of weak or moderate wind speeds, the surface current velocities measured (5 – 20 cm.s⁻¹), were probably underestimated. The authors concluded that the harbour construction had constrained water circulation within Small Bay, enhancing the general clockwise pattern and increasing current speeds along the boundaries, particularly the south-westward current flow along the Iron Ore Terminal (Figure 6-2).

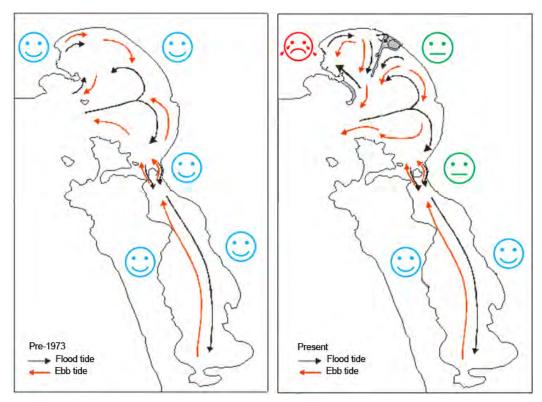


Figure 6-2 surface currents and circulation of Saldanha Bay prior to harbour development (pre-1973) and after construction of the causeway and Iron Ore Terminal (present) (Adapted from: Shannon & Stander 1977 and Weeks *et al.* 1991a).

More recent data collected during strong NNE wind conditions in August 1990 revealed that greater wind velocities do indeed influence current strength and direction throughout the water column (Weeks *et al.* 1991b). These strong NNE winds were observed to enhance the surface flowing SSW currents along the ore terminal in Small Bay (out of the Bay), but resulted in a northward replacement flow (into the Bay) along the bottom, during both ebb and flood tides. The importance of wind as the dominant forcing factor of bottom, as well as surface, waters was further confirmed by Monteiro & Largier (1999) who described the density driven inflow-outflow of cold bottom water into Saldanha Bay during summer conditions when prevailing SSW winds cause regional scale upwelling.

An ADCP was deployed from 7 to 10 April 2017 at Sea Harvest in Small Bay (see Figure 6-3 — left) to inform a Coastal Waters Discharge Permit (CWDP) application for a proposed RO Plant outfall. The data were analysed as a dynamic cell, moving with the tide, in 7 m water depth. This enabled quantification of typical current velocities and directions at this location under the prevailing wind conditions. The data are summarised in a current rose that shows the prevailing current moving alongshore in a SSE direction (Figure 6-3 — right). Current velocities recorded at the deployment site over the sampling period indicated that calms were measured 29.9% of the time and current velocities of 1-5 cm/s were measured 64.6% of the of the time (Figure 6-3 — right). The maximum current speed recorded was 15.14 cm/s (Wright et~al.~2018a).

Currents were found to be primarily wind driven, rather than tidally driven (Figure 6-4). A positive correlation ($r^2 = 0.3$) was found between current speed and wind speed — a period of strong wind resulted in a corresponding peak in current speed, while a relaxation of the wind forcing led to a

decrease in current speed (Figure 6-4). A wide range of wind speeds was experienced during the four-day deployment period, ranging from 3-16 knots (1.5 to 8 m/s) with winds consistently blowing from the south.

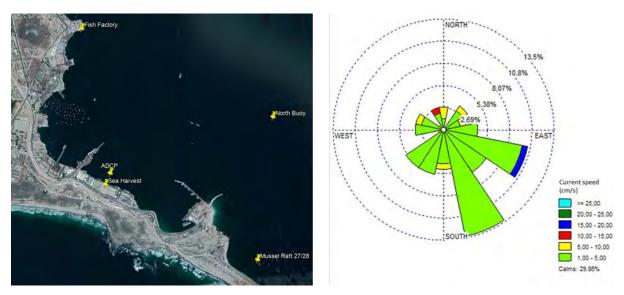


Figure 6-3 Location of the Sea Harvest ADCP (left) and current rose depicting current direction (flowing to) and strength at -7 m water depth (right) (Source: Wright et al. 2018a).

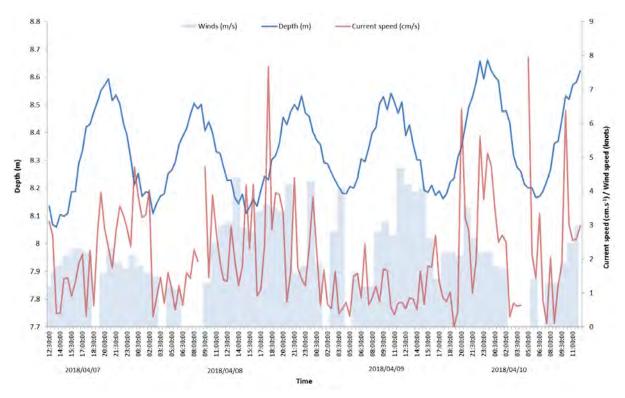


Figure 6-4 ADCP data collected every 30 minutes for depth (m), indicating the tidal cycle current speed (cm/s), and wind speed (m/s) over the four days of ADCP deployment at Sea Harvest in Small Bay in April 2018 (Source: Wright *et al.* 2018a).

A current rose depicting the strength, frequency and direction of currents was constructed from ADCP data collected from 14 February to 28 February 2018 at the proposed Club Mykonos RO discharge site in Big Bay (33°2'50.48"S; 18°1'59.71"E) (Figure 6-5). The data for the dynamic cell that recorded currents at 8.5 m water depth show the prevailing current moving alongshore in a north-easterly direction (Figure 6-5). Less frequently, currents were recorded flowing in a northerly direction. Again, currents appeared to be primarily wind driven rather than tidally driven. Of the current velocities measured, 35.6% fell between 10 and 15 cm/s, while current speeds between 5 and 10 cm/s were recorded 20.4% of the time (Figure 6-5). Maximum and average current speeds were recorded as 27.7 cm/s and 11.23 cm/s, respectively (Wright *et al.* 2018b). Wind speeds during the deployment period ranged from 2 to 22 knots (1 to 11 m/s) and were consistently from the south (Figure 6-6).

Krug (1999) studied current speeds at the mouth of Langebaan lagoon and circulation into and out of the lagoon. A two-weeks field survey was conducted in Langebaan Lagoon and Saldanha Bay in March 1997 with the aim of furthering understanding of the processes driving the mixing and the exchange between Saldanha Bay and Langebaan Lagoon. Flows into and out of the lagoon were found to be predominantly tidally driven and that there existed an asymmetry between the ebb and the flood flows at both of the lagoon's inlets. When tidal forcing was strong, water particles released at the lagoon inlets during the ebb were subject to long drifts. Outflow from the east inlet appeared to take the form of a turbulent jet, while at the west inlet, strong frictional interactions between the flow and land boundaries was observed which caused the flow to rapidly expand and lose momentum and was thus prevented from forming a jet. It was also found that buoyancy forcing on lagoon outflow was generally small and that water issuing from the lagoon during the ebb remained attached to the seabed as it propagated into Saldanha· Bay. However, when Saldanha Bay was strongly stratified, the east inlet ebb jet lifted off from the bottom as it reached the 8 m depth contour. Outflow from the lagoon made an important contribution to vertical mixing in Saldanha Bay, specially near the lagoon entrance. Southerly winds contributed to the overall residual circulation by driving water out of the Lagoon.

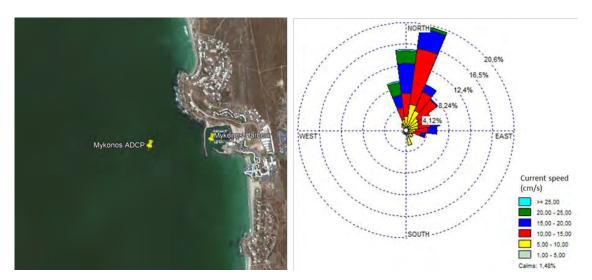


Figure 6-5 Location of the Mykonos ADCP (left) and the resulting current rose showing current direction (flowing to) and strength data at -8.5 m water depth (Wright *et al.* 2018b).

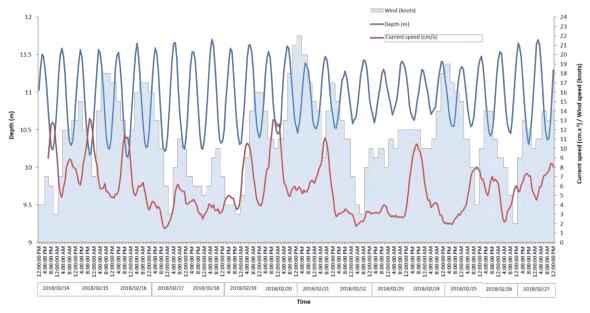


Figure 6-6 ADCP data collected every hour over a 14-day deployment period in February 2018 showing current speed (cm.s⁻¹) and wind speed (knots). Depth (m) indicates the tidal cycle (blue line) (Source: Wright *et al.* 2018b).

6.3 Wave action

Construction of the Iron Ore Terminal and the Marcus Island causeway had a major impact on the distribution of wave energy in Saldanha Bay, particularly in Small Bay. Prior to port development in Saldanha Bay, Flemming (1977) distinguished four wave-energy zones in the Bay, defined as being a centrally exposed zone in the area directly opposite the entrance to the Bay, two adjacent semi-exposed zones on either side, and a sheltered zone in the far northern corner of the Bay (Figure 6-7 left). The Iron Ore Terminal essentially divided the Bay into two parts, eliminating much, if not all, the semi-exposed area in Small Bay, greatly increasing the extent and degree of shelter in the north-western part of Small Bay, and subtly altering wave exposure patterns in Big Bay (Figure 6-7 right). Wave exposure in Big Bay was altered less dramatically; however, the extent of sheltered and semi-sheltered wave exposure areas increased after harbour development (Luger *et al.* 1999).

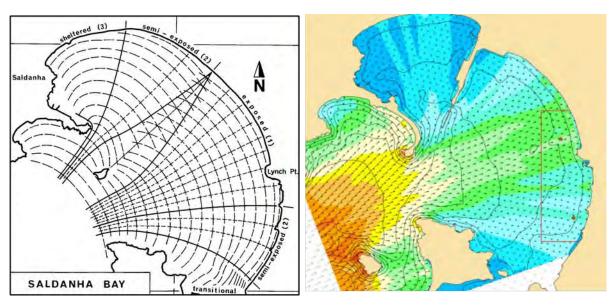


Figure 6-7 Predicted wave fields in Saldanha Bay showing wave height and direction prior to (left) and post (right) harbour development. Orange shading indicates wave heights > 1.4 m, while blue shading indicates wave heights of < 0.6 m (Sources: Flemming 1977 and WSP Africa Coastal Engineers 2010).

6.4 Water temperature

Water temperature records for Saldanha Bay and Langebaan Lagoon were first collected during 1974/1975 as part of a detailed survey by the then Department of Industries — Sea Fisheries branch, later renamed the Department of Environmental Affairs and Tourism (DEAT) — Marine and Coastal Management (MCM), Department of Environmental Affairs — Oceans and Coasts (DEA-O&C) and currently DFFE. The survey was initiated to collect baseline data of the physical and chemical water characteristics prior to the development of the Bay as an industrial port. The findings of this survey were published in a paper by Shannon & Stander (1977). Average monthly surface water temperatures prior to the construction of the iron ore/oil terminal and Marcus Island causeway varied from 16 to 18.5°C during summer (January 1975) and 14.5 to 16°C during winter (July 1975). For the duration of sampling, higher temperatures were measured in the northern part of Small Bay and within Langebaan Lagoon, whilst cooler temperatures were measured at sampling stations in Outer Bay and Big Bay.

The water column was found to be fairly uniform in temperature during winter and spring (i.e., temperature did not change dramatically with depth) and the absence of a thermocline (a clear boundary layer separating warm and cool water) was interpreted as evidence of wind driven vertical mixing of the shallow waters in the Bay. A clear shallow thermocline was observed at about 5 m depth during the summer and autumn months at some deeper stations and was thought to be the result of warm lagoon water flowing over cooler sea water. The absence of a thermocline at other shallow sampling stations was once again considered evidence of strong wind driven vertical mixing. Shannon & Stander (1977) suggested that there was little interchange between the relatively sun-warmed Saldanha Bay water and the cooler coastal water through the mouth of the Bay, but rather a "slopping backwards and forwards tidal motion".

The Sea Fisheries Research Institute continued regular quarterly monitoring of water temperature and other variables in Saldanha Bay until October 1982. These data were presented and discussed in papers by Monteiro *et al.* (1990) and Monteiro & Brundrit (1990). The temperature time series for Small Bay and Big Bay is shown in Figure 6-8. This expanded data series allowed for a better understanding of the oceanography of Saldanha Bay. The temperature of the surface waters was observed to fluctuate seasonally with surface sun warming in summer and cooling in winter, whilst the temperature of deeper (10 m depth) water shows a smaller magnitude, non-seasonal variation, with summer and winter temperatures being similar (Figure 6-8). In most years, a strong thermocline separating the sun warmed surface layer from the cooler deeper water was present during the summer months at between 5 – 10 m depth. During the winter months, the thermocline breaks down due to surface cooling and increased turbulent mixing, and the water column becomes nearly isothermal (surface and deeper water similar in temperature) (Figure 6-8). Unusually warm, deeper water was observed during December 1974 and December 1976 and was attributed to the unusual influx of warm oceanic water during these months (Figure 6-8).

Warm oceanic water is typically more saline and nutrient-deficient than the cool upwelled water that usually occurs below the thermocline in Saldanha Bay. This was reflected in the high salinity (Figure 6-13), and low nitrate and chlorophyll concentration (a measure of phytoplankton production) measurements taken at the same time (Monteiro & Brundrit 1990).

Monteiro *et al.* (1990) suggested that the construction of the Marcus Island causeway and the iron ore/oil terminal in 1975 had physically impeded water movement into and out of Small Bay, thus increasing the residence time and leading to systematically increasing surface water temperatures when compared with Big Bay. There appears to be little support for this in the long-term temperature time series (Figure 6-8) and although the pre-construction data record is limited to only one year, Shannon & Stander (1977) show Small Bay surface water being 2°C warmer than Big Bay during summer, prior to any harbour development. It is likely that the predominant southerly winds during summer concentrate sun warmed surface water in Small Bay, whilst much of the warm surface layer is driven out of Big Bay into Outer Bay.

Continuous monitoring of temperature throughout the water column at various sites in Outer Bay, Small Bay and Big Bay during a two-week period in February - March 1997 allowed for better understanding of the mechanisms causing the observed differences in the temperature layering of the water column. It revealed that the summer thermocline is not a long-term feature but has a six to eight-day cycle. Cold water, being denser than warmer water, flows into Saldanha Bay from the adjacent coast when wind driven upwelling brings this cold water close to the surface. The inflow of cold, upwelled water into the Bay results in a thermocline, which is then broken down when the cooler bottom water flows out the Bay again. This density driven exchange between Saldanha Bay and coastal waters is estimated to be capable of flushing the Bay within six to eight days, substantially less than the approximately 20 day flushing time calculated based on tidal exchange alone by Shannon & Stander (1977). The influx of nutrient rich upwelled water into Saldanha Bay is critical in sustaining primary productivity within the Bay, with implications for human activities such as fishing and mariculture. The fact that the thermocline is seldom shallower than 5 m depth means that the shallower parts of Saldanha Bay, particularly Langebaan Lagoon, are not exposed to the nutrient (mainly nitrate) import from the Benguela upwelling system. As a result, these shallow water areas do not support large plankton blooms and are usually clear.

Water temperature in Saldanha Bay was intensively monitored by the CSIR over the period March 1999 to February 2000 (Monteiro *et al.* 2000). At the time, this was the most detailed long-term temperature record available, with continuous measurements (every 30 minutes) taken at one-meter depth intervals over the 11 m depth range of the water column where the monitoring station was situated in Small Bay. The average monthly temperature at the surface (1 m) and bottom (10 m) for this period is shown in Figure 6-8. These data confirmed the pattern evident in earlier data, showing a stratified (layered) water column from spring to summer caused by wind driven upwelling, with the water column being more or less isothermal (of equal temperatures) during the winter (Figure 6-8). The continuous monitoring of temperature also identified a three-week break in the usual upwelling cycle during December 1999, with a consequent gradual warming of the bottom water. This "warm water event" was associated with a decrease in phytoplankton production due to reduced import of nitrate, which in turn, impacted negatively on local mussel mariculture yields (Monteiro *et al.* 2000). However, since the water column remained stratified, the magnitude of this event was not as great as the December 1974 and 1976 events.

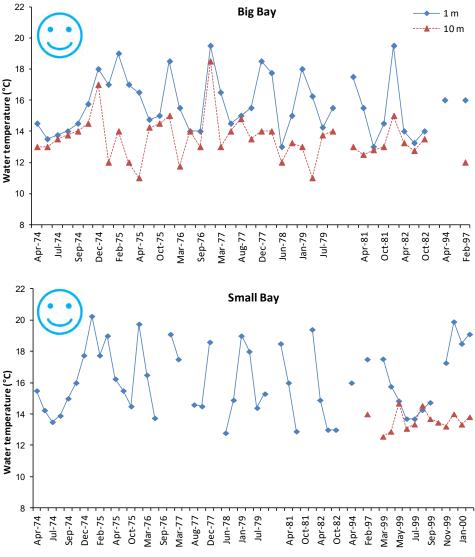


Figure 6-8 Water temperature time series at the surface and at 10 m depth for Big Bay and Small Bay in Saldanha Bay (Data: Monteiro et al. 1990, Monteiro & Brundrit 1990, Monteiro et al. 2000, Shannon & Stander 1977).

The CSIR also undertook baseline monitoring in Saldanha Bay on behalf of Transnet before the implementation and operation of the Transnet Reverse Osmosis (RO) desalination plant in 2012 (van Ballegooyen *et al.* 2012). Monitoring of sea water temperature, salinity and dissolved oxygen took place over a period of 10 months (July 2010 to March 2011) at one site immediately adjacent to the proposed desalination plant outfall (an underwater mooring). Water column profiling was also undertaken at nine stations at discrete intervals during the year. Locations of the sampling stations are listed in Table 6.1 and indicated on Figure 6-9. The combination of continuous monitoring and discrete profiling measurements was designed to address seasonal (every three months), event (three to 10 days), and diurnal (daily) scales of temporal variability in the Bay.

Sites were selected in an effort to address the following issues/aspects:

- Brine Discharge Site (BDS) to provide a measure of brine plume impacts in the immediate vicinity of the proposed brine discharge at Caisson 3.
- WRO3 and WRO4 to measure the brine plume extent moving seawards along the dredged shipping channel.
- WRO1 and WRO2 to monitor potential plume excursions out of the dredge channel and towards Small and Big Bay.
- Mussel Farm (MF) and Intermediate Dredge Site (IDS) to couple WRO1 and WRO2 to data measured previously. The MF site was also considered to be a sensitive location, while the IDS lies roughly on a line between the proposed RO Plant discharge and the MF.
- North Buoy (NB) to create a baseline to complement both past and potential future long-term mooring at North buoy.
- Big Bay (BB) to provide a baseline station in Big Bay to act as a control site.

Table 6.1 Location and details of sites sampled during the water column profiling surveys undertaken by the CSIR between July 2010 and March 2011.

Site	Latitude	Longitude	Depth (m)	Distance from discharge (m)	Location
North Buoy (NB)	33° 1.114'S	17°58.130'E	12.5	1 875	Outside channel
Mussel Farm (MF)	33° 1.794'S	17° 58.247'E	16.0	1 400	Outside channel
Intermediate Dredge site (IDS)	33° 1.889'S	17° 58.642'E	16.0	880	Outside channel
WRO3	33° 1.935'S	17° 59.030'E	26.5	525	Inside channel
WRO4	33° 1.721'S	17° 59.127'E	28.5	105	Inside channel
WRO2	33° 1.651'S	17° 59.094'E	23.0	85	On slope
Brine Discharge Site (BDS)	33° 1.679'S	17° 59.147'E	17.3	30	On slope between dredge channel berthing areas
WRO1	33° 1.688'S	17° 59.215'E	18.0	85	Outside channel
East Buoy (Big Bay)	33° 3.188'S	18° 0.433'E	15.5	3450	Outside channel

Figure 6-9 Water quality monitoring stations adopted for the RO plant baseline survey undertaken by the CSIR (Source: van Ballegooyen *et al.* 2012).

Examples of the temperature data from the water column profiling exercises undertaken at North Buoy are shown in Figure 6-10. In general, the profiles at all sites indicated a well-mixed column in winter, becoming increasingly stratified in spring and early summer, and highly stratified in late summer/autumn. The temperature variability in the lower water column was very high during spring and early summer when strong wind events change the water column from being moderately to highly stratified to a well-mixed water column under strong wind conditions. This variability was much lower in summer due to the presence of cold upwelled waters that help to stratify the water column and in so doing, increase the resistance of the water column to vertical mixing. Stratification was less pronounced at East Buoy in Big Bay than at the more sheltered stations in and around Small Bay (van Ballegooyen *et al.* 2012). This was ascribed to more turbulent conditions in Big Bay compared to Small Bay. A strong thermocline was also evident in the shipping channel, which is more accessible to the cold bottom waters associated with upwelling that enters the Bay.

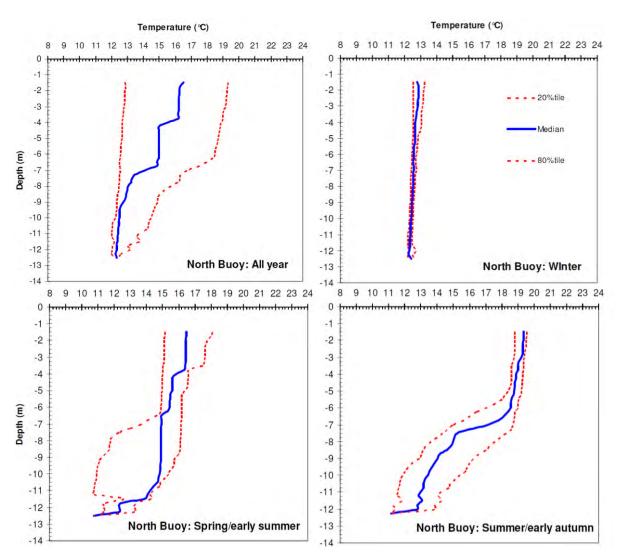


Figure 6-10 Seawater temperature median profiles at North Buoy for all four seasons. The 20th and 80th percentile limits of the profiles are indicated by the dotted red lines (Source: van Ballegooyen *et al.* 2012).

With a view to continuing the long-term temperature data set at North Buoy, five underwater temperature recorders (UTRs), programmed to record temperature every hour were deployed at 2 m, 4.5 m, 7 m, 9.5 m and 12 m depth on the 12 April 2014. These thermistors are retrieved and serviced annually, and average daily temperature data for the period April 2014 to March 2021 are shown in Figure 6-11.

Unfortunately, three of the UTRs reached the end of their battery life during the April 2019 – April 2020 deployment period and data could only be retrieved from the bottom two loggers at 9.5 m and 12 m depths. Two replacement loggers were added at 2 m and 7 m depth in May 2020 and data are therefore available for four depths up until the most recent servicing in March 2021 when a fifth UTR was again added at 4.5 m depth. The data from 1 April 2014 to 27 March 2021 shows a similar pattern to historical data, with high variability and water column stratification evident from September to May (i.e., from spring through to autumn) and a well-mixed, isothermal water column in the winter months in most years (Figure 6-11). Variation in bottom water temperature is greater than in the surface waters and appears to happen over synoptic time scales as noted by van Ballegooyen *et al.* (2012).

Relaxation of upwelling and the down mixing of warmer surface waters, or the intrusion of warm oceanic waters that results in warming of the bottom water is most frequently observed in spring to early summer and again in late summer to early autumn. The seasonal presence of water column stratification during summer, and absence thereof in winter, is clearly seen in a plot of the difference between the average daily water temperature measured at 2 m depth and that at 12 m depth (Figure 6-12).

Notable inter-annual variation in the water column temperature profile is evident in the data series with the period April 2016 to February 2018 appearing anomalous compared to the other data collected in the period between April 2014 and March 2016 and subsequently from March 2018 to March 2021. This coincides with the extreme drought experienced in the Western Cape over this period. During this period, maximum summer water temperatures are reduced (below 20°C) and the stratification of the water column appears much more limited, only becoming properly established for a short period from December 2016 to February 2017 (Figure 6-11, Figure 6-12). Although some stratification is evident in the spring of 2017, a complete breakdown of the thermocline occurred for an extended period during January 2018, when cool (approximately 12°C) water persists throughout the water column. This stands in marked contrast to historical data when thermocline breakdown typically occurred only during winter, or when it did occur in summer, it was associated with a "warm water" event. Winter water temperatures during the drought (2016 – 2017) were low (average for the period June to August was 12°C on the bottom) compared to the winters before (2014) and after, (2018 – 2020) when the average on the bottom was 13.4°C. This inter annual variation is not unusual and may be linked with El Nino- La Nina climatic cycles. The anomalous data collected over the period December 2016 to February 2017 during the drought is almost certainly linked to the dominance of the South Atlantic High-Pressure system during this period. Persistent southerly winds throughout most of the year would have promoted coastal upwelling, resulting in reduced summer water maxima (in extreme cases decreasing temperatures throughout the water column) and causing cooler than average winter water temperatures.

The monthly average bottom $(11-13^{\circ}\text{C})$ or surface $(13-18^{\circ}\text{C})$ water temperatures in the period 2014 to 2021 are, however, similar to those recorded in earlier monitoring (since 1974) (Figure 6-8). There also appears to be no clear trend of seawater warming or cooling over time, but rather anomalous, seasonal scale events are being detected. Establishment of continuous, high temporal resolution water temperature monitoring will prove valuable in analysing long-term trends. This is an economically viable way of detecting changes in the frequency of anomalous conditions such as the intrusion of warm oceanic water events that would have significant impacts on ecosystem productivity and health.

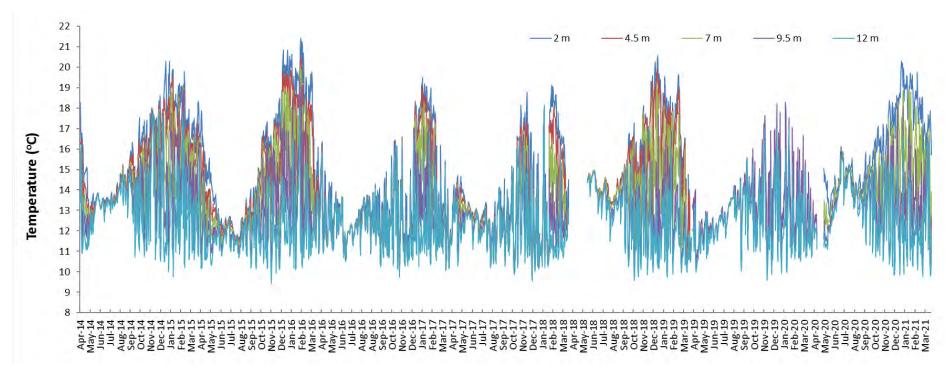


Figure 6-11 North buoy temperature time series for the period 12 April 2014 – 27 March 2021. Temperature was recorded every hour and the average daily temperature is shown here.

Note that only the bottom two sensors provided data over the period April 2019 – April 2020 and the 4.5 m depth was not sampled during May 2020 – March 2021.

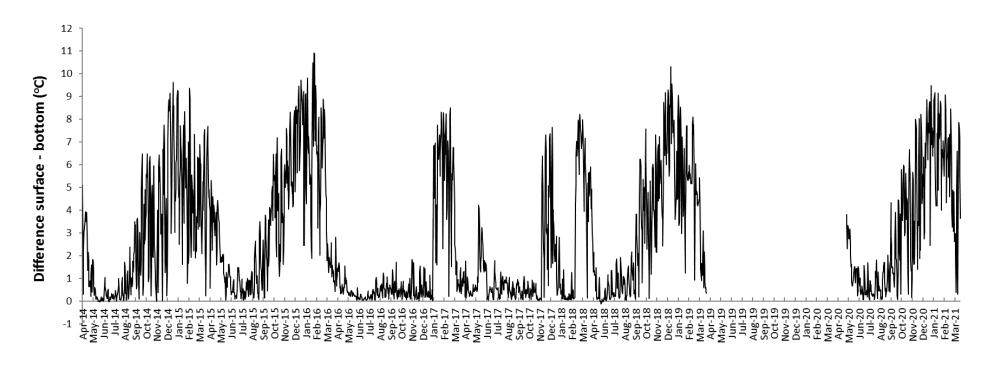


Figure 6-12 Difference in the average daily water temperature measured at 2 m and 12 m depth at North Buoy in Small Bay for the period 12 April 2014 – 27 March 2021. A large positive difference depicts strong water column stratification.

6.5 Salinity

6.5.1 Saldanha Bay

Salinities of the inshore waters along the West Coast of South Africa typically vary between 34.6 and 34.9 Practical Salinity Units (PSU) (Shannon 1966), and the salinity values recorded for Saldanha Bay usually fall within this range. During summer months when wind driven coastal upwelling within the Benguela region brings cooler South Atlantic central water to the surface, salinities are usually lower than during the winter months when the upwelling front breaks down and South Atlantic surface waters move against the coast (warm surface waters are more saline due to evaporation).

The historic salinity data time series for Sadhana Bay covers much of the same period as that for water temperature. Salinity data at 10 m depth were extracted from the studies of Shannon & Stander (1977), Monteiro & Brundrit (1990), Monteiro *et al.* (1990) and Monteiro *et al.* (2000) and are presented in Figure 6-13. There was little variation in salinity with depth. Under summer conditions when the water column is stratified, surface salinities may be slightly elevated due to evaporation, therefore, salinity measurements from deeper water more accurately reflect those of the source water.

The salinity time series at 10 m depth shows salinity peaks in December 1974 and 1976 which reflect an influx of warm water that occurred at this time (Figure 6-13). Higher than normal salinity values were also recorded in August 1977 and July 1979. Although this was not reflected in the temperature time series, probably due to rapid heat loss and mixing during winter, the salinity peaks do indicate periodic inflows of surface oceanic water into Saldanha Bay.

Oceanic surface waters tend to be low in nutrients, limiting primary production (i.e., phytoplankton growth). The oceanic water intrusions into Saldanha Bay that were identified from the temperature and salinity measurements corresponded to low levels of nitrate and chlorophyll concentrations measured at the same time as salinity and temperature peaks (Figure 6-14). This highlights the impacts of the changes in physical oceanography (water temperature and salinity) in the immediate area on the biological processes (nitrate and chlorophyll) occurring within Saldanha Bay (Monteiro & Brundrit 1990). Data concerning these parameters cover a short period only (1974 to 1979) and are little use in examining effects of human development on the Bay.

Examples of the salinity data from the water column profiling exercises undertaken at North Buoy by the CSIR in 2010/2011 are shown in Figure 6-15 (van Ballegooyen *et al.* 2012). In general, the profiles at all sites were found to be consistent with the notion that lower salinity bottom waters enter the Bay during the upwelling season (summer), and higher salinity surface waters are present in late summer/autumn. The low salinity "spikes" observed in the profile data are reportedly spurious (instrument error) and can be ignored (van Ballegooyen *et al.* 2012).

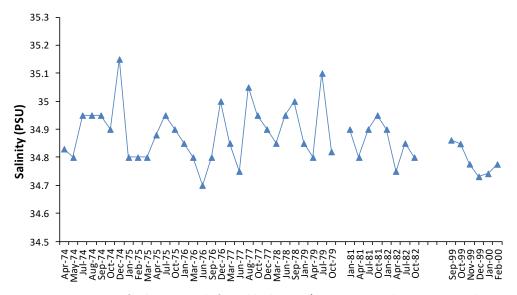


Figure 6-13 Time series of salinity records for Saldanha Bay (Data sources: Shannon & Stander 1977, Monteiro & Brundrit 1990, Monteiro et al. 1990, Monteiro et al. 2000).

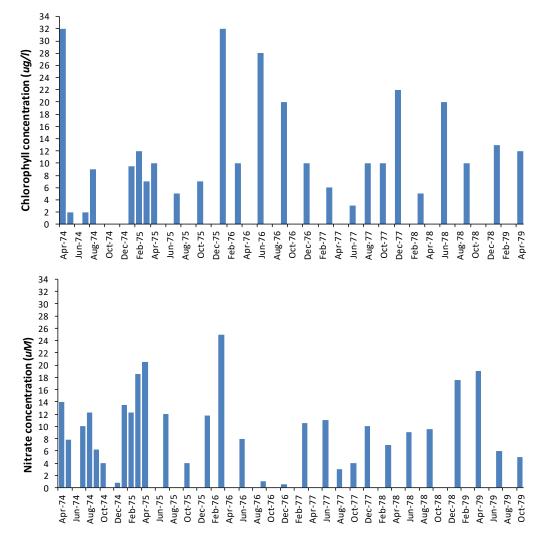


Figure 6-14 Time series of chlorophyll and nitrate concentration measurements for Saldanha Bay (Data source: Monteiro & Brundrit 1990).

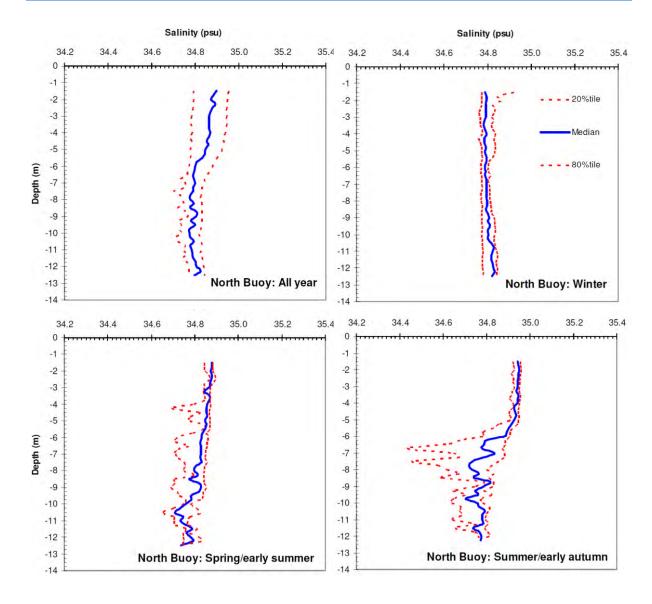


Figure 6-15 Salinity median profiles at North Buoy in Small Bay for all seasons (winter, spring/early summer and summer/early autumn). The 20th and 80th percentile limits of the profiles are indicated by the dotted red lines (Source: van Ballegooyen *et al.* 2012).

6.5.2 Langebaan Lagoon

Given the sensitivity of the Langebaan Lagoon, and in spite confidence expressed by a range of specialists that groundwater use by Elandsfontein mine is unlikely to impact on the lagoon, Kropz Elandsfontein in conjunction with the Saldanha Bay Water Quality Forum Trust (SBWQFT) has also been monitoring various biological and physico-chemical variables associated with Langebaan Lagoon to establish an appropriate baseline against which any potential future changes in the Lagoon can be benchmarked. This includes monitoring of temperature and salinity (see below) and biota (see Chapter9) as well as macrophytes (see Chapter 8) around the top end of the lagoon.

Monitoring of temperature and salinity at the head of the lagoon was initiated in September 2016 using a Star ODDI Salinity, Conductivity, Temperature and Depth Logger. This instrument was configured to take measurements of temperature, salinity and depth at ten-minute intervals. The

instrument was retrieved, data downloaded and redeployed at approximately 3-month intervals following this time. Some modifications to the mooring and its deployment site were necessary over the course of the monitoring undertaken to date. The instrument was initially fixed to a mooring block on the edge of the channel near Geelbek at the head of the lagoon during September 2016. The instrument was retrieved, and data downloaded for the first time in December 2016. Data records from this period up until the end of 2018 have been presented in previous State of the Bay reports and are not repeated here. The Star ODDI was replaced with an Aqua TROLL 200 data logger at the end of August 2018 and quality of data collected has improved dramatically since then. The instrument was unfortunately removed (stolen) at some point between January and April 2020 (theft was discovered when we went to service the instrument in April 2020) but was replaced, with the new instrument having been deployed in August 2020 (the delay in securing an new instrument being related to the global COVID-19 pandemic). Data collected over the period August 2019 to September 2021 are presented on Figure 6-16 to Figure 6-18 below, along with measured water level.

The data record for the entire period August 2019 to September 2021 show a clear seasonal trend, with water temperature being much higher in summer (Dec-Feb, maximum 28°C) than in winter (Jun-Aug, minimum 10°C). Clear day to day oscillations in temperature, and salinity and water level are also evident in the data set. The diurnal fluctuations in temperature are similar across all seasons, with temperatures increasing over the course of the day, peaking in the early afternoon, then declining through the afternoon and night, reaching a minimum at the time of sunrise each day. The trend in salinity is more interesting though, exhibiting a similar diurnal oscillation to that for temperature, but this oscillation is linked to the state of the tide (not the time of day) and changes through the year. In winter, salinity oscillates between that of normal seawater (around 35.0 PSU) at high tide and a slightly fresher state (between 32.0 and 34.0 PSU) at low tide. Salinity appears to drop as the tide recedes and is most likely linked with outflow of freshwater from the aquifer at this time. In summer, the pattern reverses with salinity increasing from that of normal seawater (35.0 PSU) at the peak of the high tide becoming hyper-saline (39 – 40 PSU) as the tide recedes. It is likely that this is a function of increased evaporation at this time of year (linked to higher prevailing air temperatures) and that the water emerging from the marshes at the head of the lagoon becomes severely hypersaline as a result, and even though it is diluted by freshwater flowing out of the aquifer, this is not sufficient to bring the level below that of normal seawater. It is likely that this effect (development of hypersaline conditions) is quite localised at present (i.e., restricted to the extreme upper reaches of the lagoon only) but could become much more pervasive if freshwater outflow from the aquifer were to drop in future.

Also of interest in these data, there appears to be no link between rainfall and salinity levels in the lagoon which strongly suggests that variations in salinity in the lagoon are linked with groundwater inflow as opposed to surface water inflow, which is consistent with observations made by others (Smith 2017, GEOSS 2019, Nel 2019).

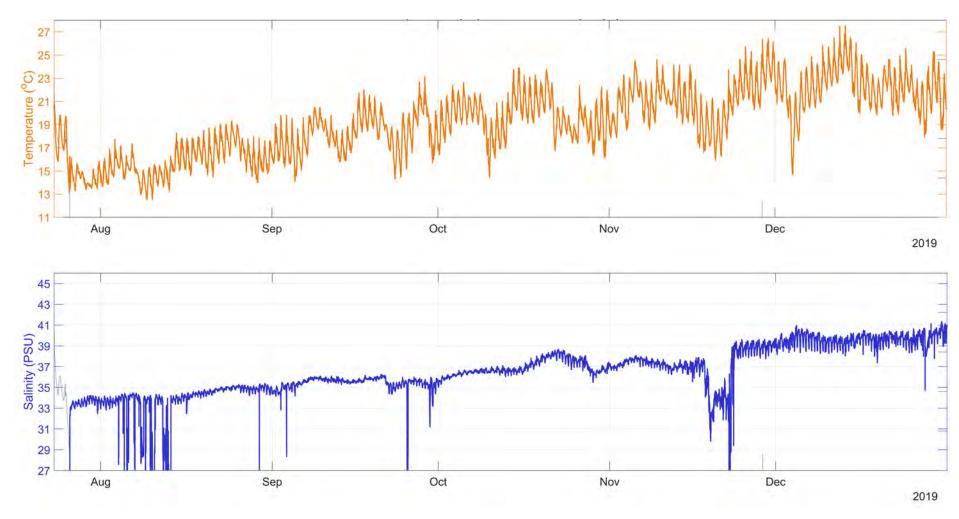
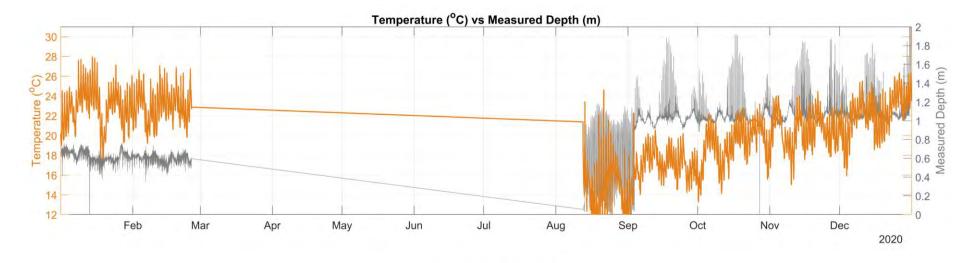



Figure 6-16 Variations in temperature (°C, top) and salinity (PSU, bottom) in the period August – December 2019.

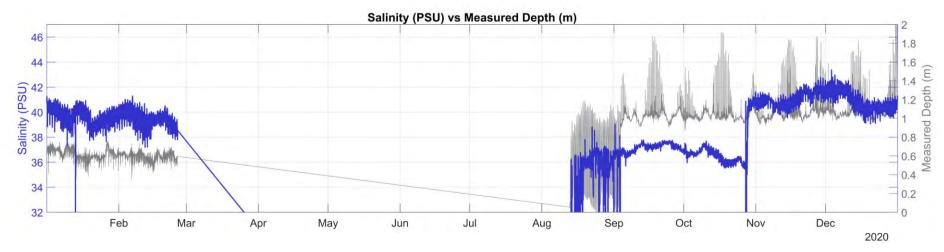
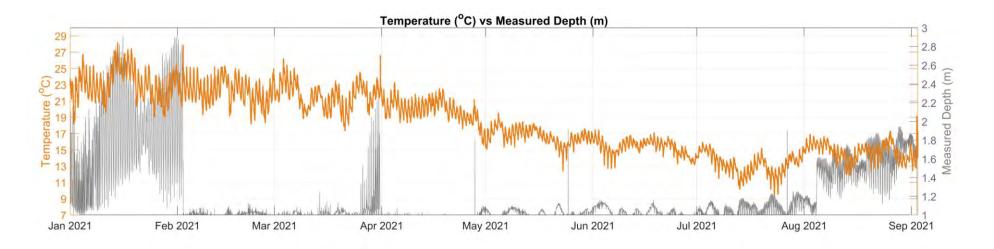



Figure 6-17 Variations in temperature (°C, top), salinity (PSU, bottom) and depth (top and bottom) from Jan – Dec 2020.

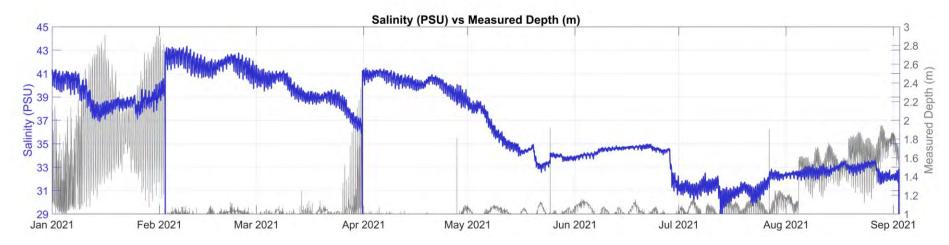


Figure 6-18 Variations in temperature (°C, top), salinity (PSU, bottom) and depth (top and bottom) from Jan – Sep 2021.

6.6 Dissolved oxygen

Sufficient dissolved oxygen in sea water is essential for the survival of nearly all marine organisms. Low oxygen (or anoxic conditions) can be caused by excessive discharge of organic effluents (from for example, fish factory waste or municipal sewage) as microbial breakdown of this excessive organic matter depletes oxygen in the water. The well-known "black tides" and associated mass mortalities of marine species that occasionally occur along the west coast results from the decay of large plankton blooms under calm conditions. Once all the oxygen in the water is depleted, anaerobic bacteria (not requiring oxygen) continue the decay process, causing the characteristic sulphurous smell.

Apparent Oxygen Utilization (AOU) is a measure of the potential available oxygen in the water that has been used by biological processes. Values for Small and Big Bay over the period April 1974 to October 1982 and July 1988 are given in Monteiro *et al.* (1990). AOU is defined as the difference between the saturated oxygen concentration (the highest oxygen concentration that could occur at a given water temperature e.g., 5 ml/l) and the measured value (e.g., 1 ml/l). Hence positive AOU (5 ml/l – 1 ml/l = 4 ml/l) values indicate an oxygen deficit (highlighted red in Figure 6-19). More recent data on oxygen concentrations in Small Bay (covering the period September 1999 to February 2000) were provided by Monteiro *et al.* (2000). During this study, oxygen concentration at 10 m depth was recorded hourly by an instrument moored in Small Bay. These values were converted to AOU and monthly averages are plotted in Figure 6-14.

There is no clear trend evident in the AOU time series, as low oxygen concentrations (high AOU values) occur during both winter and summer months (Figure 6-19). Small Bay does experience a fairly regular oxygen deficit during the winter months, whilst Big Bay experiences less frequent and lower magnitude oxygen deficits. Monteiro *et al.* (1990) attributed the oxygen deficit in Small Bay largely to anthropogenic causes, namely reduced flushing rates (due to the causeway and ore terminal construction) and discharges of organic rich effluents. More recent data (September 1999 to February 2000) indicate a persistent and increasing oxygen deficit as summer progresses (Figure 6-19). It is clear that oxygen levels within Small Bay are very low during the late summer months, likely as a result of naturally occurring conditions; however, the ecological functioning of the system could be further compromised by organic pollutants entering the Bay. There is evidence of anoxia in localised areas of Small Bay (e.g., under the mussel rafts and within the yacht basin) that is caused by excessive organic inputs. Monteiro *et al.* (1997) identified the effluent from a pelagic fish processing factory (no longer operational) as the source of nitrogen that resulted in an *Ulva* seaweed bloom in Small Bay.

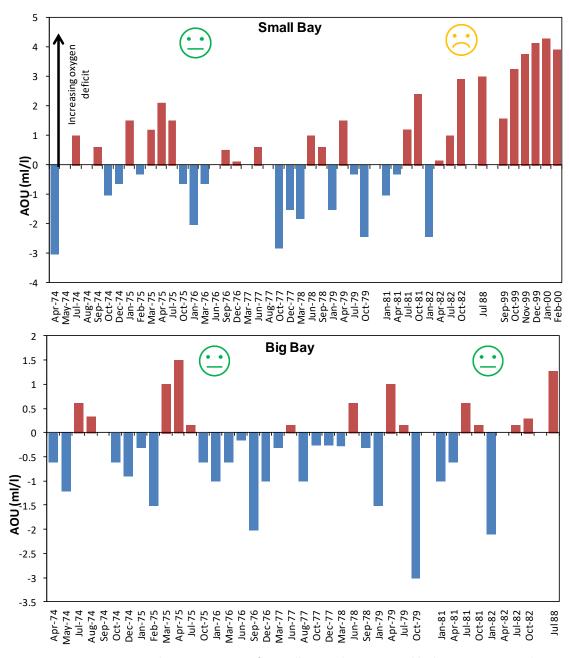


Figure 6-19 Apparent oxygen utilization time series for Small Bay and Big Bay in Saldanha Bay. Positive values in red indicate an oxygen deficit (Data sources: Monteiro *et al.* 1990, 2000).

Examples of the dissolved oxygen data from the water column profiling exercises undertaken by the CSIR at North Buoy in 2010/2011 are shown in Figure 6-20 (van Ballegooyen *et al.* 2012). The profiles indicated that dissolved oxygen concentrations are high in winter but very low in the bottom waters and near the seabed in summer, late summer and early autumn. These low oxygen concentrations in the near bottom waters are considerably lower than those reported by Shannon & Stander (1977) for the period prior to the development of the port, but those in the upper water column are similar. Shannon & Stander's results for dissolved oxygen concentrations for the period April 1974 to October 1975 are as follows:

- 8.60 ± 1.86 (standard deviation) mg/L at the surface
- 7.96 ± 1.63 mg/L at -5 m
- 6.85 ± 1.54 mg/L at -10 m
- 5.13 ± 1.80 mg/L at -20 m

The *in situ* mooring installed by the CSIR in 2010/2011 as part of the baseline monitoring for the RO plant yielded temperature, salinity and dissolved oxygen times series for the period 9 July 2012 to 23 March 2012 at a temporal resolution of 10 minutes (Figure 6-21).

Observations highlighted by the CSIR (van Ballegooyen et al. 2012) from these data are as follows:

- The most obvious variability in the Bay is that which occurs over synoptic (weather) time scales.
- South-easterly to southerly winds result in upwelling that advects cold, lower salinity and oxygen deficient waters into the Bay.
- If the winds continue to blow, then a degree of vertical mixing takes place, resulting in a slow increase in temperature, salinity and dissolved oxygen in the bottom waters.
- When the wind drops or reverses to NW, then the water column develops a high degree of stratification shortly followed by a relaxation of upwelling that leads to the colder, less saline and low oxygen bottom waters exiting the Bay. Coupled with vertical mixing, this results in the warmer more oxygenated surface waters being mixed downwards, sometimes to the depth of the mooring.
- As summer progresses, the bottom waters are more insulated from the surface waters and the variability in temperature, salinity and dissolved oxygen of the bottom waters decreases compared to spring and early summer.
- The dissolved oxygen in the bottom waters decreases throughout summer to early autumn
 when the winter storms and vertical mixing of the water column alleviated these low oxygen
 conditions.

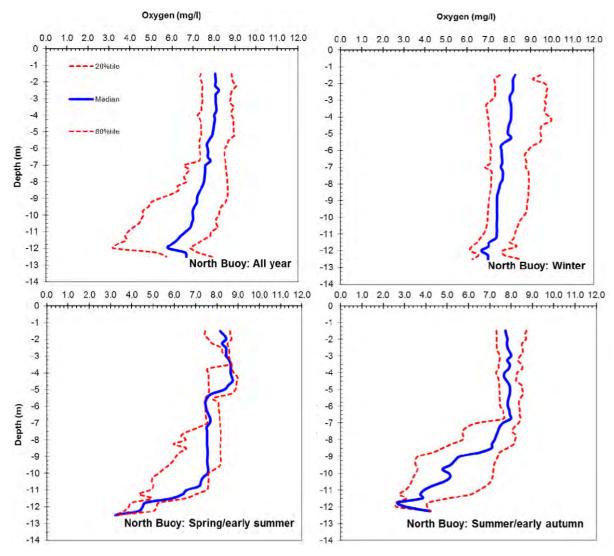


Figure 6-20 Dissolved oxygen concentration median profiles at North Buoy for all seasons (winter, spring/early summer and summer/early autumn). The 20th and 80th percentile limits of the profiles are indicated by the dotted red lines (Source: van Ballegooyen *et al.* 2012).

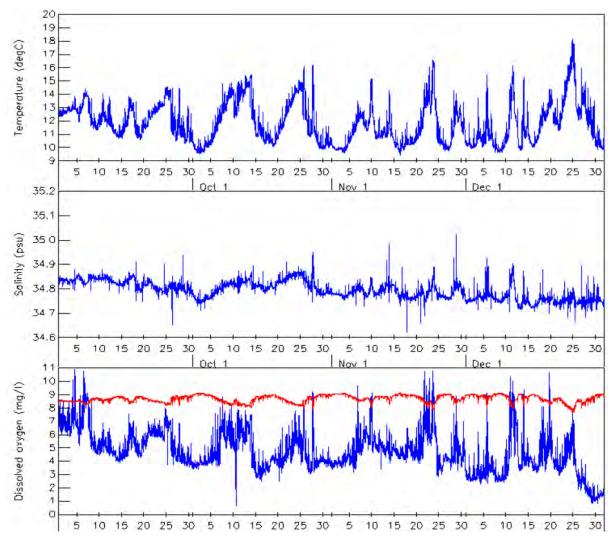


Figure 6-21 Time series of water temperature, salinity and dissolved oxygen concentrations from the mooring site (33° 01.679'S; 17° 59.143'E) for spring/early summer (Source: van Ballegooyen *et al.* 2012).

The CTD deployment during April/May 2017 in 22 m water depth on the Big Bay side of the RO Plant discharge was very close to the mooring deployed by the CSIR in 2010/2011. The instrument recorded depth, temperature, pH, salinity and dissolved oxygen at 20-minute intervals (Figure 6-22). The data show the same synoptic scale variability in temperature and dissolved oxygen as reported by van Ballegooyen *et al.* (2012), with a positive correlation between dissolved oxygen and temperature reflecting alternate stratification and water column mixing associated with upwelling and relaxation phases over 3 – 10-day periods. During this late autumn deployment, dissolved oxygen levels were noticeably lower than those recorded by the CSIR mooring that was in shallower water (18 m vs 23 m) and during the spring/early summer period. The very low dissolved oxygen values recorded for a short period in early May (1 to 2 mg/L) are below the level that is tolerable for many invertebrates and most fish species. This low oxygen event was associated with an influx of cold water from the adjacent coast where low oxygen water is known to occur during autumn. Salinity remained constant within a narrow range for most of the deployment period except for two sharp drops to just below 33.5 ppt (these are probably anomalous readings due to instrument error). No salinity spikes were detected in

the data series indicating that discharges of brine from the RO plant were not detected at the mooring site during the deployment, but it is not known if the RO Plant was operational during this period.

The most recent dissolved oxygen measurements come from ongoing deployments of instruments at mariculture Farm and Control sites in both Small Bay and Big Bay. The Small Bay control site is situated at North Buoy and is directly comparable to the dissolved oxygen recorded at 10 m depth at this location covering the period September 1999 to February 2000 as reported by Monteiro *et al.* (2000). The data from both these periods is presented in Figure 6-23. The clear decline in dissolved oxygen with the onset of summer upwelling is evident in the early 1999 - 2000 data set, with levels declining quite abruptly from 4 - 7 ml/L in mid-September to between 1 - 4 ml/L thereafter (Figure 6-23). The more recent data set shows that these frequently hypoxic conditions (< 2 ml/L) continue through until autumn (late May) when, as described above, the decline in upwelling and turbulent mixing of the water column with the onset of winter leads to higher dissolved oxygen levels in the bottom waters. It is also clear that there have not been major changes in dissolved oxygen levels in Small Bay over the last two decades, with regular hypoxic and even anoxic events recorded during summer and autumn both the 1999 - 2000 and 2020 - 21 data sets. The major increase in the frequency of Small Bay hypoxic events occurred after the major harbour development in the 1970s and the situation does not appear to have changed much since (Figure 6-19).

The 2020 – 21 data reveal that Big Bay also experiences regular hypoxic events during late summer autumn, reflecting the external source of low oxygen upwelled water, but these are of a smaller magnitude that seen in Small Bay (Figure 6-23). This is attributed to better mixing of the water column in Big Bay, lower retention times (enhanced flushing) and lower organic loading from anthropogenic sources (e.g., mariculture, fish factory effluent, wastewater treatment works). Note that there is currently no mariculture activity on the Big Bay Farm site that is earmarked for future fin fish cage farming. Within Small Bay oxygen concentration at the farm site are frequently lower than the control site despite being substantially shallower; as dissolved oxygen typically decreases with depth and the external source of low oxygen upwelled water occurs more frequently and persists for longer in the deeper parts of the Bay, the deeper control site is expected to have lower dissolved oxygen under natural conditions (Figure 6-23). The assumption is that the more pronounced and frequent hypoxia at the Small Bay farm sites is a result of organic loading and higher microbial respiration, i.e., a consequence of bivalve mariculture. Conditions very close to anoxia are observed on the Small Bay farm site when control site dissolved oxygen concentrations, although also hypoxic, remained consistently higher (Figure 6-23). Near anoxic conditions have, however, occurred historically at the North buoy site in late December 1991 (Figure 6-23). Hypoxic and near anoxic conditions in the lower part of the water column are frequent occurrences during summer-autumn seasons in Small Bay and anthropogenic organic loading, appears to exacerbate the situation.

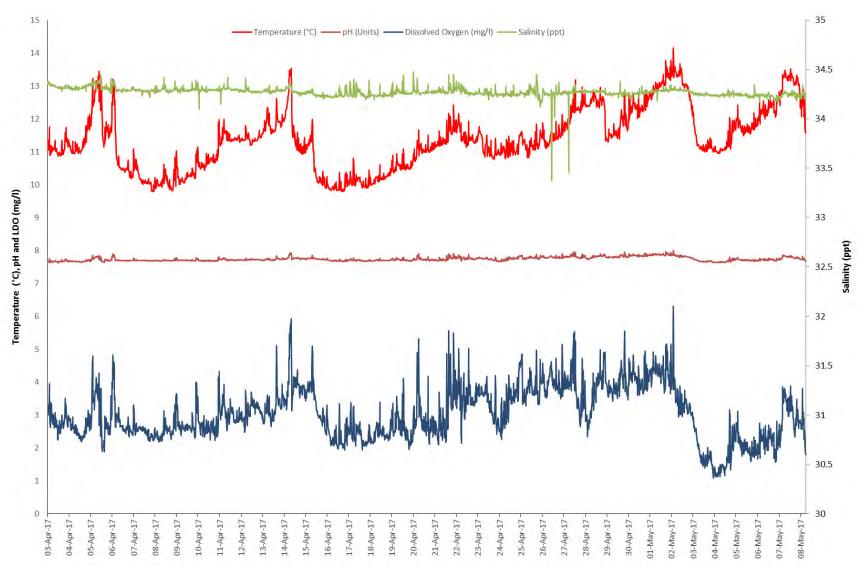


Figure 6-22 Temperature, salinity, pH and dissolved oxygen (DO) recorded by the CTD deployed in 23 m water depth adjacent to the RO plant discharge at the base of the Iron Ore Terminal.

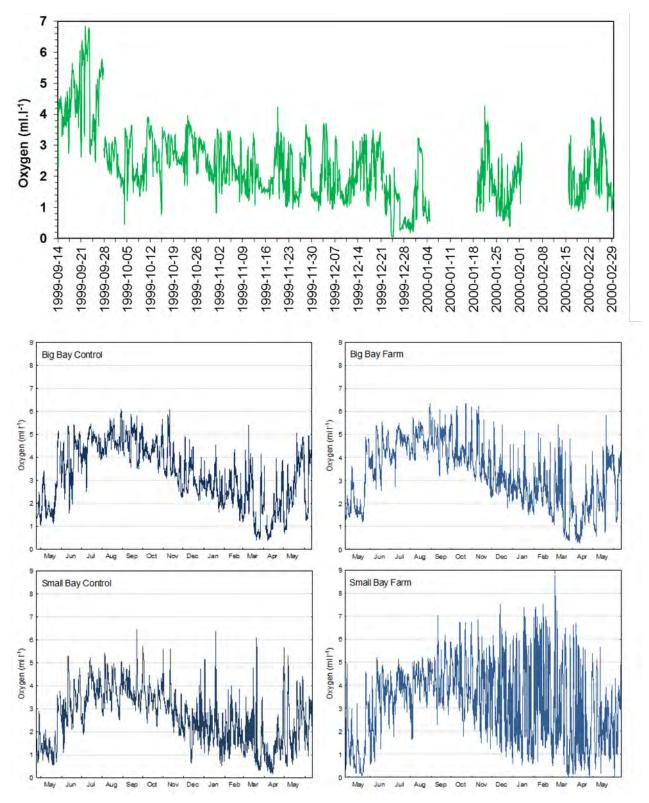


Figure 6-23 Comparison of Dissolved Oxygen concentration recorded at 12 m depth at North Buoy (Small Bay Control) in 1999 – 2000 (top) and 2020 – 2021 (bottom), as well as three other sites in 2020 – 2021 Small Bay Farm (7 m depth), Big Bay Farm (16 m depth) and Big Bay Control (18 m depth). 2020 – 21 graphs courtesy of DFFE (D:SAM).

6.7 Turbidity

The CSIR describe the water of Saldanha Bay as being "fairly turbid", the turbidity comprising both organic and inorganic particulates that are suspended in the water column (van Ballegooyen *et al.* 2012). Turbidity in the Bay generally peaks under strong wind conditions (due to wind and wave action that suspends particulate matter in the water column, particularly Big Bay). Langebaan Lagoon, however, typically remains very clear even when the winds are very strong. This is likely due to the coarse nature of the sediment in the Lagoon when compared to the finer sediment in Saldanha Bay. Phytoplankton blooms and shipping movements have also been observed to cause significant increases in turbidity in the Bay. Historic measurements (n = 90) made by Carter and Coles (1998) indicate that average levels of Total Suspended Solids (TSS) in the Bay are in the order of 4.08 mg/L (± 2.69 mg/L SD) and peak at around 15.33 mg/L. Higher values caused by shipping movements (162 mg/L) have, however, been recorded by the CSIR (1996). Variations in turbidity caused by these different driving forces are clearly demonstrated in Google Earth images presented by CSIR (van Ballegooyen *et al.* 2012, Figure 6-24).

Data on turbidity (a measure of light conditions in the water column) and TSS (a measure of the mass per unit volume of particulates in the water column) were collected at water column profiling stations sampled for the RO plant baseline in 2010/2011 (van Ballegooyen et~al.~2012). Turbidity data for the North Buoy site in Small Bay are shown here (Figure 6-25). In general, TSS concentrations are greatest near the seabed, particularly at the shallower sites in and around Small Bay. Concentrations generally did not exceed 10 mg/L, except for a few occasions where higher TSS of between 10 mg/L and 40 mg/L were observed (typically in the near bottom waters at the Mussel Farm site, at East Buoy in Big Bay, and in the immediate vicinity of the berths along the Iron Ore Terminal). A few values above 100 mg/L were recorded in the vicinity of the Iron Ore Terminal, reportedly related to shipping activities. The water column turbidity data reflected the same general trends as the TSS data, with turbidity in winter generally in the range of 5 – 12 NTU while in the other seasons the turbidity typically lay between 5 and 8 NTU (van Ballegooyen et~al.~2012).

Figure 6-24 Turbidity generated under high wind conditions (top) and by propeller wash (bottom) in Saldanha Bay (Source: van Ballegooyen *et al.* 2012).

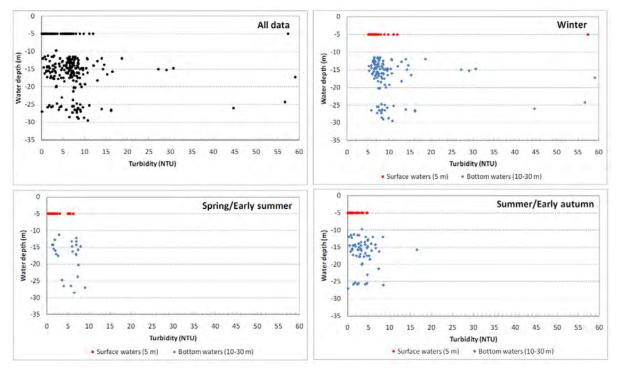


Figure 6-25 Turbidity (NTU) plotted as a function of depth and season (Source: van Ballegooyen et al. 2012).

6.8 Bromide

Measurements of bromide concentrations were collected at water column profiling stations sampled for the RO plant baseline in 2010/2011 (van Ballegooyen *et al.* 2012). Measurements were taken at the surface and near the bottom to determine natural occurrence in Saldanha Bay. The purpose was to ensure that the biocide proposed for the RO plant (2,2-dibromo-3-nitrilopropionamide or its breakdown products) do not change natural distributions of bromide. Bromide concentrations in seawater are generally in the range of 65 mg/L to well over 80 mg/L in some confined sea areas. Data presented by the CSIR were consistent with these observations (between 40 and 95 mg/L, Figure 6-26), with variability higher in summer than in winter (van Ballegooyen *et al.* 2012). Variability was particularly high in spring/early summer and it was suggested that this may be related to maintenance dredging that occurred close to the sample sites around the Iron Ore Terminal at the time.

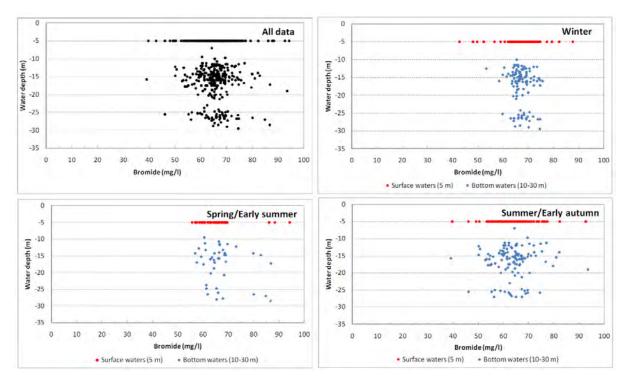


Figure 6-26 Bromide concentrations measured at all stations in winter, spring/early summer, and summer/early autumn (Source: van Ballegooyen et al. 2012).

6.9 Microbial indicators

Untreated sewage or storm water runoff may introduce disease-causing micro-organisms into coastal waters through faecal pollution. These pathogenic micro-organisms constitute a threat to recreational water users and consumers of seafood. Although faecal coliforms and *Escherichia coli* are used to detect the presence of faecal pollution, they provide indirect evidence of the possible presence of water borne pathogens and may not accurately represent the actual risk to water users (Monteiro *et al.* 2000). These organisms are less resilient than *Enterococci* spp. (and other pathogenic bacteria), which can lead to risks being underestimated due to mortality occurring in the time taken between collection and analysis. To improve monitoring results, the enumeration of *Enterococci* spp. should be included in water quality sampling programmes (DEA 2012).

6.9.1 Water quality guidelines

Marine water quality is assessed according to the most sensitive water use applicable to the specific area (e.g., mariculture vs. industrial use). For this study, WQGs for the natural environment (DWAF 1995a), industrial use (DWAF 1995c), and mariculture (DWAF 1995d) were used to assess water bodies not designated as recreational areas, while the evaluation of microbial data collected from Saldanha Bay and Langebaan Lagoon was undertaken in accordance with the revised guidelines for recreational use (DEA 2012) as described below.

6.9.1.1 Recreational Use

In the past, the DWAF (1995b) Water Quality Guidelines (WQGs) for coastal marine waters were used to assess compliance in respect of human health criteria for recreational use; however, these WQGs were replaced in 2012 by the revised *South African Water Quality Guidelines for Coastal Marine Waters Volume 2: Guidelines for Recreational Waters* (DEA 2012). The revised WQGs do not distinguish between different levels of contact recreation but rather evaluate aesthetics (bad odours, discolouration of water and presence of objectionable matter), human health and safety (gastrointestinal problems, skin, eye, ear and respiratory irritations, physical injuries and hypothermia), and mechanical interference. Measurable indicators commonly monitored include 'objectionable matter', water temperature and pH as well as the levels of intestinal *Enterococci* (or less ideally concentrations of *E. coli* or faecal coliforms). Guidelines state that samples should be collected 15 to 30 cm below the water surface on the seaward side of a recently broken wave in order to minimise contamination and reduce sediment content (DEA 2012). Samples to be tested for *E. coli* counts should be analysed within six to eight hours of collection, and those to be tested for intestinal *Enterococci*, within 24 hours.

The Hazen non-parametric statistical method is recommended for dealing with long-term microbiological data that do not typically fit a normal (bell shaped) distribution. The data are ranked into ascending order and percentile values are calculated using formulae incorporated in the Hazen Percentile Calculator (McBride and Payne 2009). In order to calculate 95th percentiles, a minimum of ten data points is required, while the calculation of the 90th percentile estimates require only five data points. Rather than using a measure of actual bacterial concentrations, a compliance index is used to determine deviation from a fixed limit (DEA 2012). This method is being increasingly used globally to determine compliance in meeting stringent water quality targets within specified time frames (e.g., Carr & Rickwood 2008). Compliance data are usually grouped into broad categories, indicating the relative acceptability of different levels of compliance. For example, a low count of bacteria would be 'Excellent', while a 'Poor' rating would indicate high levels of bacteria. Target limits, based on counts of intestinal *Enterococci* sp. and/or *E. coli*, for recreational water use in South Africa are indicated in Table 6.2.

Table 6.2 Target limits for *Enterococci* sp. and *Escherichia coli* based on the revised guidelines for <u>recreational</u> waters of South Africa's coastal marine environment (DEA 2012). The probability of contracting a gastrointestinal illness (GI) is also listed.

Category	Estimated risk per exposure	E. coli. (count/100 ml)			
Excellent	2.9% GI risk	≤ 100 (95 percentile)	≤ 250 (95 percentile)		
Good	5% GI risk	≤ 200 (95 percentile)	≤ 500 (95 percentile)		
Sufficient/Fair (min. requirement)	8.5% GI risk	≤ 185 (90 percentile)	≤ 500 (90 percentile)		
Poor (unacceptable)	> 8.5% GI risk	> 185 (90 percentile)	> 500 (90 percentile)		

6.9.1.2 Mariculture Use

Filter feeding organisms, such as shellfish, can accumulate pathogenic organisms in their bodies and thereby infect the people that consume them. The *Guidelines for Inland and Coastal Waters: Volume 4 Mariculture* (DWAF 1995d) provides target levels for faecal coliforms in water bodies used for mariculture as outlined in Table 6.3. These guidelines aim to protect consumers of shellfish from bacterial contamination. For mariculture, faecal coliform concentrations for the 80th and 95th percentiles were calculated.

Table 6.3 Maximum acceptable count of faecal coliforms (per 100 ml sample) for <u>mariculture</u> according to the DWAF 1995 guidelines (DWAF 1995d).

Purpose/Use	Guideline value
Mariculture	20 faecal coliforms in 80% of samples 60 faecal coliforms in 95% of samples

6.9.2 Microbial monitoring in Saldanha Bay and Langebaan Lagoon

In 1998 the CSIR were contracted by the Saldanha Bay Water Quality Forum Trust (SBWQFT) to undertake fortnightly sampling of microbiological indicators at 15 stations within Saldanha Bay. The initial report by the CSIR, covering the period February 1999 to March 2000, revealed that within Small Bay, faecal coliform counts frequently exceeded the guidelines for both mariculture and recreational use (the 1995 guidelines of 100 faecal coliforms occurring in 80% of samples analysed) at nine of the 10 sampling stations. These results indicated that there was indeed a health risk associated with the collection and consumption of filter-feeding shellfish (mussels) in Small Bay. Much lower faecal coliform counts were recorded at stations within Big Bay, except for the 80th percentile guideline for mariculture being exceeded at one station (Paradise Beach). All other stations ranged within the guidelines for mariculture and recreational use (Monteiro *et al.* 2000).

Regular monitoring of microbiological indicators within Saldanha Bay has continued to the present day and is now undertaken by the West Coast District Municipality (WCDM). The available data cover the period February 1999 to August 2021 for 20 stations (ten in Small Bay, five in Big Bay and five in Langebaan Lagoon). Data during this period has, for the most part, been collected on a monthly or bimonthly basis since 1999 at 14 stations within Small and Big Bay in Saldanha, with the exception of Station 11 (Seafarm — Transnet National Ports Authority) where no data were collected during 2003, 2004, 2008, 2010 and 2011. Regular data collection was initiated at some of the Langebaan sites in 2004. Samples were collected at Stations 19 and 20 (Kraalbaai North and South, respectively) for the first time in 2012. In previous SOB reports, data were presented cover a complete calendar year to account for seasonal differences, the 2019,2020 and 2021 reports, however, includes data up until end July which includes both summer and winter data. Compliance with mariculture guidelines were assessed by comparing faecal coliform counts to the DWAF 1995 guidelines (DWAF 1995d), whilst recreational use compliance was assessed by comparing *E. coli* count data to the revised recreational guidelines (DEA 2012).

6.9.2.1 Water quality for recreational use

Recreational water quality rankings for all sampled sites throughout Saldanha Bay and Langebaan Lagoon are shown in Table 6.4, whilst Figure 6-27 and Figure 6-28 graphically depict these data for Langebaan Lagoon. Data from the microbial monitoring programme suggest that nearshore coastal waters in the system have improved considerably for recreational use since 2005 (Table 6.4). Based on the 2021 E. coli data, 14 of the 20 sampled stations were categorized as having excellent water quality and only two stations had poor water quality. The Bok River beach site that frequently had poor water quality for most of the monitoring record has shown consistent improvement over the last 3 years, ranked "Fair" in 2018 and 2019, "good" in 2020 but is now ranked as having "poor" water quality. Water quality at the Hoedjiesbaai site, however, has deteriorated and has been ranked as "Poor" for the last four years. Water quality at Pepper Bay (Site 5) deteriorated considerably in 2020 and was ranked as "poor" for the first time since 2006, however, water quality has improved and is ranked as "good" for 2021. Three sites within Langebaan lagoon were rated as "Fair" water quality (Paradise beach, Leentjiesklip and Kraalbaai South) in 2020 but has since improved and been rated as "excellent" water quality (Figure 6-27). It is encouraging that "Fair" to "Excellent" water quality is being maintained at the popular swimming and water sport sites close to Langebaan (i.e., Mykonos Beach and Langebaan Main Beach). It is also encouraging that there have been improvements in water quality at beaches along the northern shore of Small Bay that are also popular swimming sites. It appears that the reuse of the majority of treated wastewater from the Saldanha Wastewater Treatment Works (WWTW) for other uses (including industrial, construction and irrigation) that was historically discharged via the Bok River Mouth is having a positive effect. Infrastructure upgrades on the treatment plant that were completed recently also appear to have had the desired effect of improved effluent quality. The fact that water quality has improved at sites near the Bok River mouth but have deteriorated at Hoedjiesbaai suggests that the contamination may be from other sources (e.g., storm water, sewage leaks etc.). Similarly, the cause of the decline in water quality at the Pepper Bay-Big Quay site is not known, but potential sources should be investigated. Both these sites have buildings in close proximity to the waters edge and the integrity of any waste disposal infrastructure should be examined. See Chapter 3 further information regarding activities and discharges in the Saldanha Bay-Langebaan Lagoon System.

Table 6.4 Sampling site compliance for <u>recreational use</u> based on <u>E. coli</u> counts for 10 sites in Small Bay, 5 sites in Big Bay and 5 sites in Langebaan Lagoon. Ratings are calculated using Hazen percentiles with the 90th and 95th percentile results grouped together to give an overall rating per annum. 'ND' indicates that there was insufficient data for the calculation of Hazen percentiles in that year and 'Ex.' indicates excellent water quality.

	Site	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	1. Beach at Mussel Rafts	Fair	Fair	Ex.	Fair	ND																		
	2. Small Craft Harbour	Ex.	Fair	Good	Ex.	Ex.	Ex.	Good	Ex.	Ex.	Ex.	Ex.	Ex.	Ex.	Good	Ex.	Fair							
	3. Sea Harvest - Small Quay	Fair	Fair	Ex.	Ex.	Fair	Ex.	Fair	Ex.	Ex.	Ex.	Good	Ex.	Fair	Ex.	Ex.	Ex.	Ex.	Ex.	Fair	Ex.	Ex.	Ex.	Ex.
≥	4. Saldanha Yacht Club	Poor	Poor	Poor	Fair	Poor	Poor	Poor	Ex.	Fair														
8	5. Pepper Bay - Big Quay	Poor	Fair	Poor	Fair	Fair	Fair	Fair	Poor	Ex.	Ex.	Fair	Ex.	Ex.	Good	Ex.	Poor	Good						
Sm	6. Pepper Bay - Small Quay	Poor	Fair	Fair	Good	Ex.	Good	Ex.	Ex.	Good	Ex.	Good	Good	Ex.	Good	Fair	Fair	Ex.	Ex.	Ex.	Ex.	ND	Ex.	Ex.
	7. Hoedjies Bay Hotel - Beach	Fair	Fair	Poor	Fair	Good	Poor	Poor	Good	Fair	Ex.	Fair	Fair	Poor	Poor	Fair	Good	Fair	Good	Fair	Poor	Poor	Poor	Poor
	8. Beach at Caravan Park	Fair	Fair	Fair	Poor	Ex.	Fair	Poor	Ex.	Good	Poor	Fair	Fair	Fair	Poor	Good	Fair	Ex.	Fair	Fair	Fair	Fair	Fair	Ex.
	9. Bok River Mouth - Beach	Poor	Fair	Poor	Poor	Poor	Poor	Poor	Ex.	Fair	Poor	Poor	Good	Ex.	Poor	Fair	Good	Ex.	Poor	Poor	Fair	Fair	Good	Poor
	10. General Cargo Quay - TNPA	Ex.	Fair	Ex.	Ex.	Ex.	Ex.	Good	Ex.															
	11. Seafarm - TNPA	Ex.	Fair	Ex.	Ex.	ND	ND	Ex.	Ex.	Ex.	ND	Ex.	ND	ND	Ex.									
Bay	12. Mykonos - Paradise Beach	Ex.	Fair	Ex.	Fair	Ex.																		
. B	13. Mykonos - Harbour	Fair	Fair	Ex.	Ex.	Fair	Ex.	Fair	Ex.	Ex.	Good	Fair	Ex.	Ex.	Ex.	Ex.	Ex.	Ex.						
	14. Leentjiesklip	ND	ND	Good	Fair	Good	Ex.	Fair	Ex.	Good	Ex.	Ex.	Ex.	ND	Ex.	Ex.	Ex.							
E.	15. Langebaan North - Leentjiesklip	Ex.	Fair	Good	Ex.	Poor	Good	Ex.	Good	Ex.	Good	Ex.	Ex.	Fair	Ex.									
pa	16. Langebaan - Main Beach	ND	ND	Fair	Ex.	Good	Ex.	Ex.	Ex.	Ex.	Ex.	Fair	Ex.	Ex.	ND	Ex.	Good	Ex.						
Inge	17. Langebaan Yacht Club	ND	ND	ND	ND	ND	Poor	Ex.	Good	Ex.	Ex.	Fair	Good	ND	Ex.	Ex.	Ex.							
ಇ	18. Tooth Rock	ND	ND	ND	ND	ND	Fair	Ex.	Ex.	Ex.	Ex.	Fair	Ex.	ND	Ex.	Ex.	Ex.							
	19. Kraalbaai North	ND	Ex.	Ex.	Ex.	Ex.	Ex.	Ex.	ND	Fair	Ex.	Ex.												
	20. Kraalbaai South	ND	Ex.	Ex.	Ex.	Ex.	Ex.	Ex.	ND	Ex.	Fair	Ex.												

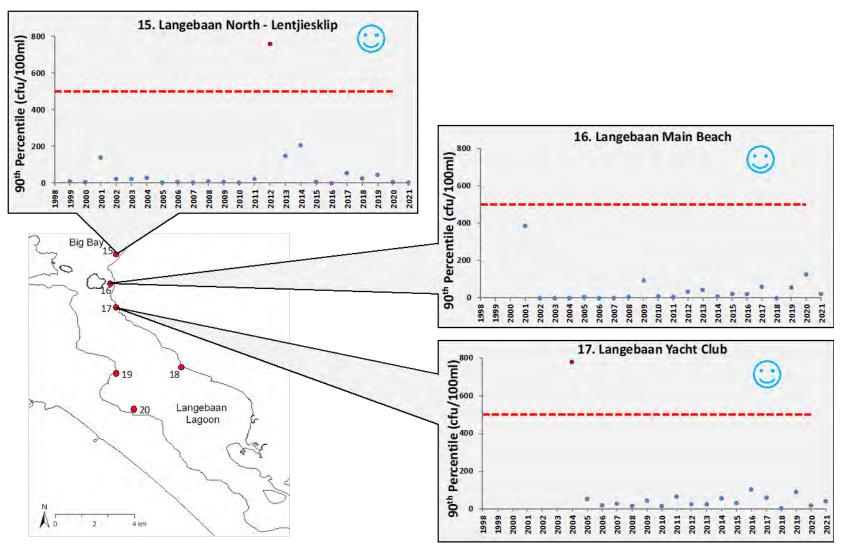


Figure 6-27 Hazen method 90th percentile values of *E.coli* counts at three of the six sampling stations within Langebaan Lagoon (Feb 1999 – Aug 2021). The red line indicates the Hazen method 90th percentile contact recreation limit of *E. coli* counts (500 colony-forming units/100 ml) above which water quality is ranked as 'Poor/Unacceptable'. Red data points indicate 90th percentile values exceeding the guideline, whilst blue data points fall within the recommended guideline. The faces correspond to changes water quality over time.

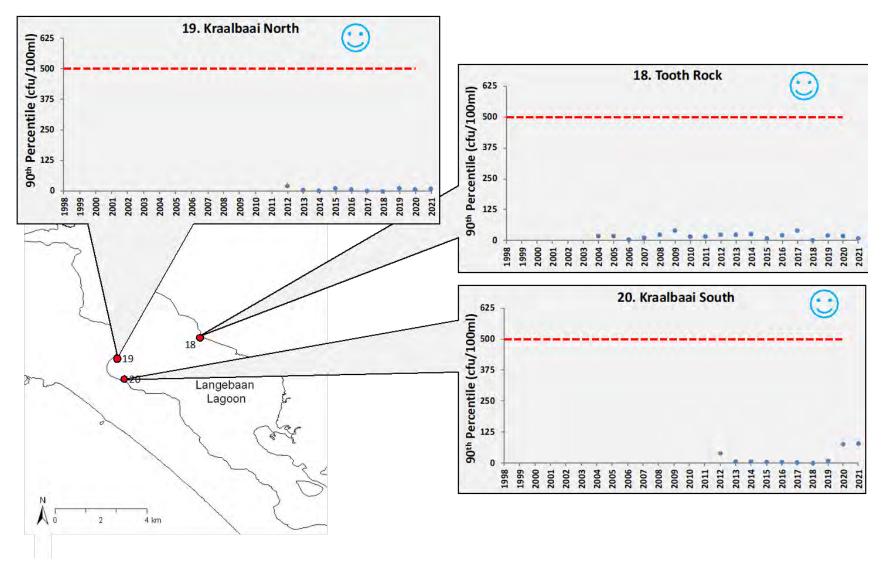


Figure 6-28 Hazen method 90th percentile values of *E.coli* counts at three of the six sampling stations within Langebaan Lagoon (Feb 1999 – August 2021). The red line indicates the Hazen method 90th percentile contact recreation limit of *E. coli* counts (500 colony-forming units/100 ml) above which water quality is ranked as 'Poor/Unacceptable'. The faces correspond to water quality over time.

6.9.2.2 Water quality for mariculture

Guideline limits for mariculture are much more stringent than recreational guideline limits and levels of compliance for mariculture are much lower than for recreational use. Concentrations of microbiological indicators in samples collected from shallow coastal waters close to sources of contamination (storm water drains etc.) were found to be higher than those further away from populated areas. At the start of the monitoring in 1999, nine out of the 10 sites in Small Bay (Sites 1 - 9) were non-compliant in respect of the 80th percentile mariculture guideline limits for faecal coliforms (Figure 6-29, Figure 6-30 and Figure 6-31). There has been considerable improvement over time, particularly at sites near the entrance to Small Bay (the beach at the Mussel Rafts, the Small Craft Harbour and the Saldanha Bay Yacht Club) that have met standards every year since 2000. More recent improvement is seen at the small quay at Pepper Bay across the years 2017 - 2020 but faecal coliforms were above the limit for 2021. The big quay at Pepper Bay was again non-compliant in 2021 for the second consecutive year. In 2019, the General Cargo Quay didn't meet the mariculture standard for the first time in the 20-year sampling history, but was again compliant in 2020 and continues to be compliant in 2021. The remaining three sites within Small Bay, however, continue to exceed the mariculture guidelines (i.e., Hoedjies Bay Beach, the beach at Caravan park and the Bok River Mouth), although the counts of faecal coliforms for the beach at Caravan Park has declined and is closer to the guideline mariculture limit than in previous years. The areas of particular concern are Hoedjies Bay and the Bok River Mouth that historically have exceeded the guideline by orders of magnitude. While some improvement has been seen, at both of these sites, over the last three years with year-on-year declines and cfu counts that are approaching the guideline, faecal coliform counts appear to have somewhat increased in 2021 and are well above the guideline value (Figure 6-30 and Figure 6-31). Although a sustained improvement in levels of compliance with mariculture WQGs has occurred since the 1999 – 2005 period at most sites (Figure 6-29 and Figure 6-30), these data indicate that there remains a serious issue of water quality with respect to mariculture operations within Small Bay, particularly in light of the proposed additional mariculture development in the area. The prevailing poor water quality in the near-shore waters of Small Bay may force sea water abstraction further offshore at an increased cost for any land-based mariculture facilities wishing to develop within the Industrial Development Zone (IDZ).

Faecal coliform counts at three of the four sites sampled within Big Bay in 2018 were within the 80th percentile limit for mariculture, whilst all four sites were within the limit in 2019 and 2020 (data to beginning August 2020). In 2021, three of the four sites remained compliant whilst Mykonos Harbour was non-compliant (Figure 6-32). There has been no discernible trend over time at these four sites with the exception of a dramatic decrease in faecal coliform counts after the first three (2001 – 2003) sampling events at Leentjiesklip. The water quality in Big Bay has met mariculture guidelines nearly every year since 2004, with the exception of the Mykonos Harbour site when levels were marginally exceeded in 2009, 2011 and recently in 2017 and 2018 and again in 2021.

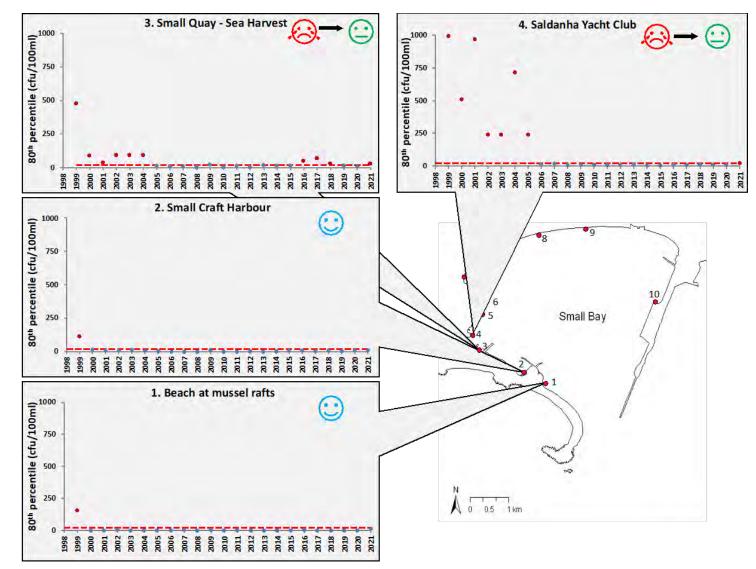


Figure 6-29
80th percentile values of faecal coliform counts at four of the 10 sampling stations within Small Bay (Feb 1999 – August 2021). The red line indicates the 80th percentile mariculture limit of faecal coliforms (20 colony-forming units/100 ml). Red data points indicate 80th percentile values exceeding the guideline, whilst blue data points fall within the recommended guideline. The faces correspond to changes in water quality over time.

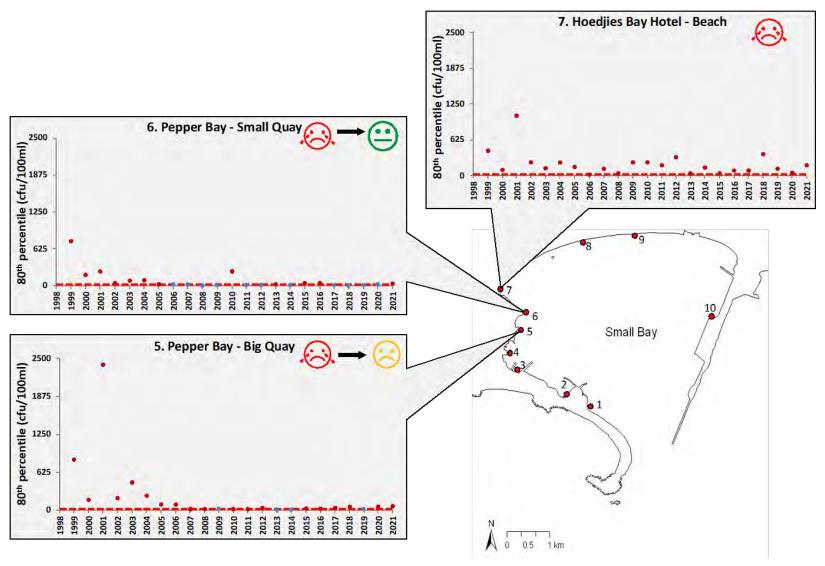


Figure 6-30 80th percentile values of faecal coliform counts at three of the 10 sampling stations within Small Bay (Feb 1999 – Aug 2021). The red line indicates the 80th percentile mariculture limit of faecal coliforms (20 colony-forming units/100 ml). Red data points indicate 80th percentile values exceeding the guideline, whilst blue data points fall within the recommended guideline. The faces correspond to changes in water quality over time.

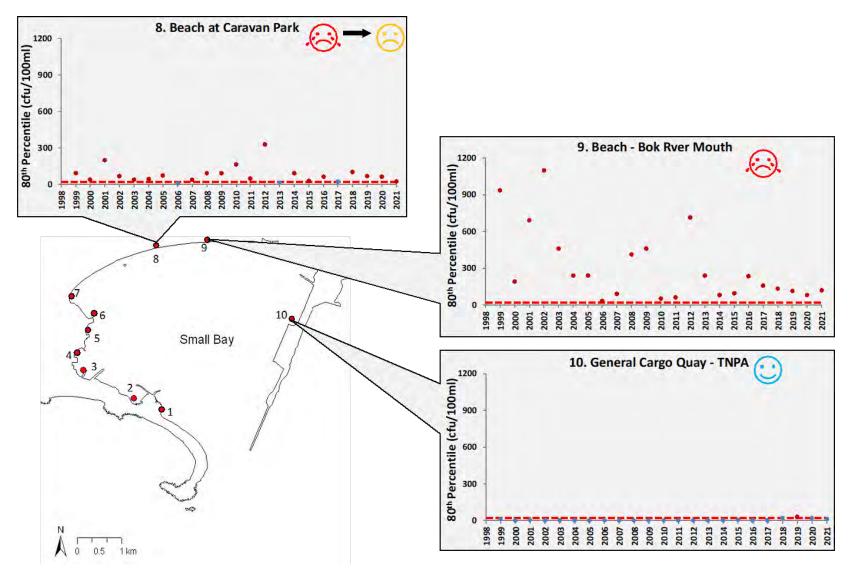


Figure 6-31 80th percentile values of faecal coliform counts at three of the 10 sampling stations within Small Bay (Feb 1999 – Aug 2021). The red line indicates the 80th percentile mariculture limit of faecal coliforms (20 colony-forming units/100 ml). Red data points indicate 80th percentile values exceeding the guideline, whilst blue data points fall within the recommended guideline. The faces correspond to changes in water quality over time.

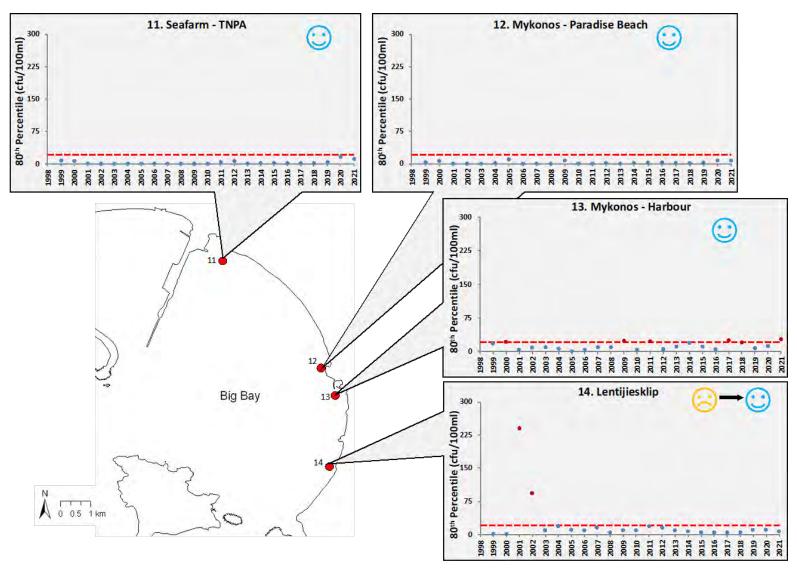


Figure 6-32

80th percentile values of faecal coliform counts at the four sampling stations within Big Bay (Feb 1999 – Aug 2021). The red line indicates the 80th percentile mariculture limit of faecal coliforms (20 colony-forming units/100 ml). Red data points indicate 80th percentile values exceeding the guideline, whilst blue data points fall within the recommended guideline. The faces correspond to changes in water quality over time.

6.10 Heavy metal contaminants in the water column

It is common practise globally in countries like Canada, Australia, New Zealand, the United States of America and South Africa to monitor the long-term effects of pollution in water bodies by analysing levels in the tissues of specific marine species or species assemblages. Sessile bivalves (e.g., mussels and oysters) are good indicator species for monitoring water quality as these filter feeding organisms tend to accumulate trace metals, hydrocarbons and pesticides in their flesh. These sessile molluscs (anchored in one place for their entire life) are affected by both short-term and long-term trends in water quality. Monitoring contaminant levels in mussels or oysters can provide an early warning of poor water quality and detect changes in contaminant levels in the water column.

Trace/heavy metals are often regarded as pollutants of aquatic ecosystems; however, they are also naturally occurring elements, some of which (e.g., copper and zinc) are required by organisms in considerable quantities (Phillips 1980). Aquatic organisms accumulate essential trace metals that occur naturally in water as a result of, for example, geological weathering. All these metals have the potential to be toxic to living organisms at elevated concentrations (Rainbow 1995). High levels of cadmium, for example, reduces the ability of bivalves to efficiently filter water and extract nutrients, thereby impeding successful metabolism of food. Cadmium can also lead to injury of the gills of bivalves further reducing the effectiveness of nutrient extraction. Similarly, elevated levels of lead result in damage to mussel gills, increased growth deficiencies and possibly mortality. High levels of zinc are known to suppress the growth of bivalves at levels between 470 to 860 mg/L and can result in mortality of the mussels (DWAF 1995d).

Human activities greatly increase the rates of mobilization of trace metals from the earth's crusts and this can lead to increases in their bioavailability in coastal waters via natural runoff and pipeline discharges (Phillips 1995). Analysing dissolved metals in water is challenging as concentrations are typically low and difficult to detect, they have high temporal and spatial variability (e.g., with tides, rainfall events etc.) and most importantly they reflect the total metal concentration rather than the portion that is available for uptake by aquatic organisms (Rainbow 1995). Measuring metal concentrations in benthic sediments resolves analytical and temporal variability problems as metals accumulate in sediments over time and typically occur at higher concentrations than dissolved levels, but this still does not reflect their bioavailability. Analysing metal concentrations in the tissues of aquatic organisms appears to be the most suitable method for assessing ecotoxicity as the metals are frequently accumulated to detectable concentrations and reflect a time-integrated measure of bioavailable metal levels (Rainbow 1995).

Filter feeding organisms such as mussels of the genus *Mytilus* have been successfully used as bio-indicator organisms in environmental monitoring programs throughout the world (Kljaković-Gašpić *et al.* 2010). These mussels are abundant, have a wide spatial distribution, are sessile, are able to tolerate changes in salinity, are resistant to stress, and have the ability to accumulate a wide range of contaminants (Phillips & Rainbow 1993, Desideri *et al.* 2009, Kljaković-Gašpić *et al.* 2010).

6.10.1 Mussel Watch Programme

In 1985 the Marine and Coastal Management (MCM) branch of the former Department of Environmental Affairs (DEA), initiated the Mussel Watch Programme (Note that DEA and the former Department of Agriculture, Forestry and Fisheries (DAFF) now comprise the Department of Forestry, Fisheries and the Environment (DFFE)). Brown mussels *Perna perna* or Mediterranean mussels *Mytilus galloprovincialis* were collected every six months from 26 coastal sites and periodically from five stations in Saldanha Bay. According to DFFE, challenges in processing the mussel samples have resulted in data from the Saldanha Bay Mussel Watch Programme only being available between 1997 – 2001 and 2005 – 2007. After the programme was discontinued in 2007, Anchor Environmental Consultants initiated sampling again in 2014 by collecting mussel samples from the same five sites during the annual 'State of the Bay' field survey. The most recent mussel samples were collected in April 2021 and analysed for the metals lead (Pb), cadmium (Cd), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), arsenic (As) and mercury (Hg). Data from the Mussel Watch Programme and from the annual 'State of the Bay' field trips are represented in Figure 6-33 to Figure 6-39 below.

In July 2017 the former DAFF (now DFFE) fisheries management branch published the South African live molluscan shellfish monitoring and control programme (DAFF 2017). This document states that "sampling for heavy metals, polychlorinated biphenyls (PCBs) and pesticides should be conducted annually, while tests for radionuclides should be conducted every three years or more frequently if there is reason to suspect contamination. Sampling for specific contaminants is recommended only when the sanitary survey reveals a potential problem, or if there is concern due to a paucity of data." Sampling remains the responsibility of aquaculture facilities (see Section 6.10.2).

The regulations pertaining to the maximum legal limits of metal contaminants in shellfish (including mussels, but excluding oysters) for human consumption in South Africa are published under the Foodstuffs, Cosmetics and Disinfectants Act, Act 54 of 1972. Until 2018, the limits for metals in shellfish as published under regulation R.500 of 2004 were applied to any bivalve samples collected as part of this study. Maximum limits were, however, only specified for cadmium and mercury. In 2018, new South African regulations were published (Regulation R.588 of 2018 in Government Gazette No. 41704) and included amendments to those of 2004. Specifically, it included a reduction of the acceptable concentration of cadmium in marine bivalve mussels from 3 to 2 mg/kg and the exclusion of Mercury from the list, rendering cadmium the only metal for which a legal limit had been stipulated in the South African regulations. For the metals with no specified limits, limits as specified for fish and fish products (in the case of arsenic and lead) or those adopted by other countries (in the case of copper and zinc) were used instead. These are indicated in green bolded text in Table 6.5 and with a green line on the graphs. All limits refer to concentrations of contaminants analysed relative to the wet weight of the flesh of the organism. In 2021, international regulations pertaining to metals in foodstuff were again reviewed to set guideline limits for metals in bivalve flesh collected as part of the SOB monitoring programme going forward. Where more than one value was listed per metal, the median value was used. In the case of Arsenic, where only two values were available, the most conservative value was used (Table 6.6). These limits will be referred to as the median guideline limits and are indicated in red bolded text in the table and in red and with a red line on each series of graphs.

Table 6.5 Historical maximum levels for metals in mussels in different countries and in South Africa for different years. Values in green bolded text were applied to the SOB mussel samples collected up to 2018 for Cadmium and December 2020 for copper, lead, zinc, arsenic and mercury.

Country	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cd (ppm)	Hg (ppm)
South Africa ¹		0.5 up to 2018 (fish products)		3.0 until 2018 (fish products)	3.0 ¹ until 2018 2.0 ¹¹ since 2018	0.5 until 2018
Canada ²	70.0	2.5	150.0	1.0	2.0	
Australia & NZ ³		2.0			2.0	0.5
European Union ⁴		1.5			1.0	0.5
Japan ⁵		10.0			2.0	0.2
Switzerland ²		1.0			0.6	0.5
Russia ⁶		10.0			2.0	
USA ^{7, 8}		1.7			4.0	
China ⁹					2.0	
Historical guideline limits	70.0	0.5	150.0	3.0	3.0 until 2018 2.0 since 2018	0.5

- 1. Regulation R.500 (2004) published under the Foodstuffs, Cosmetics and Disinfectants Act, 1972 (Act 54 of 1972).
- 2. Fish Products Standard Method Manual, Fisheries & Oceans, Canada (1995).
- 3. Food Standard Australia and New Zealand (website).
- 4. Commission Regulation (EC) No. 221/2002.
- 5. Specifications and Standards for Foods. Food Additives, etc. Under the Food Sanitation Law JETRO (Dec 1999).
- 6. Food Journal of Thailand. National Food Institute (2002).
- 7. FDA Guidance Documents.
- 8. Compliance Policy Guide 540.600.
- 9. Food and Agricultural Import Regulations and Standards.
- 10. Fish Products Inspection Manual, Fisheries and Oceans, Canada, Chapter 10, Amend. No. 5 BR-1, 1995.
- 11. Regulation No. 588 on 15 June 2018 (Government Gazette No. 41704) published under the Foodstuffs, Cosmetics and Disinfectants Act, 1972 (Act 54 of 1972).

Table 6.6 Regulations relating to the maximum levels for metals in mussels (wet weight) in different countries and in South Africa. Values indicated red bolded text are the revised median guideline limits that have been applied to the SOB samples collected since January 2021.

Country	Cu (ppm)	Pb (ppm)	Zn (ppm)	As (ppm)	Cd (ppm)	Hg (ppm)
South Africa ¹					2.0	
Canada ²					2.0	
Australia & NZ ³		2.0		1	2.0	0.5
European Commission ⁴		1.5			1.0	0.5
China ⁵		1.5		0.5	2.0	0.5
Revised median guideline limits	None	1.5	None	1	2	0.5

- 1. Regulation No. 588 of 2018 (Government Gazette No. 41704) published under the Foodstuffs, Cosmetics and Disinfectants Act, 1972 (Act 54 of 1972).
- 2. Codex (2019). Codex Standard 193-1995 the general standard for contaminants and toxins in food and feed. Codex Alimentarius Commission. www.codexalimentarius.org.
- 3. Australia New Zealand Food Standards Code Schedule 19 Maximum levels of contaminants and natural toxicants. 2021. legislatioin.gov.au.
- 4. European Commission 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union, 364(365–324).
- FAS Beijing Staff. Food and Agricultural Import Regulations and Standards Country Report. 2020. Peoples Republic of China. Network, United States Department of Agriculture Foreign Agriculture Service and Global Agriculture Information Network. FAIRS Annual Country Report. Report Number: CH2019-0198.

To facilitate comparison with food quality guidelines, trace metal levels in bivalves in the 'State of the Bay' are presented relative to wet weights of bivalve tissue. Lead concentrations mostly exceeded the regulatory limit of 0.5 for foodstuffs at most locations over the past two decades (Figure 6-33). With the recent revision of the maximum concentrations of lead permitted in foodstuff by several countries, the median guideline limit has now increased threefold to 1.5 ppm (Figure 6-34). Saldanha Bay North experienced a slight decrease in lead concentrations while Portnet, the mussel raft and Iron Ore experienced an increase since 2020. No sites sampled during 2021 exceed the newly established median guideline limit for lead. Lead concentrations in mussel tissue collected from the Iron Ore Jetty and Mussel raft 27/28 near the mouth of Small Bay are comparatively lower than that recorded at the other sites, presumably due to better flushing when compared to sites further north in Small Bay. Mussels collected at the Portnet site have historically had high concentrations of lead in their tissue and although values in the last seven years have not been as high as historical peaks, they remain high relative to the other sites, with concentrations even reaching values close to that of the newly established median guideline limit. The high levels of lead are almost certainly linked to the export of lead ore from the multipurpose quay, which is situated near the Portnet site. The average concentration of lead in the tissues of mussels collected at the five sites within Small Bay has fluctuated from 0.9 ppm to 1.7 ppm over the last six years with an average of 0.8 ppm in 2021. This indicates that the lead pollution situation in Small Bay overall has not improved much. The level of lead in mussels at the Portnet site and Saldanha Bay north sites have frequently exceeded the limit considered safe for human consumption over the past six years. This is based on the previously limit of 0.5 ppm and even the recently established guideline limit of 1.5 ppm. This remains extremely concerning considering that mussels farmed within Small Bay are sold for human consumption (although trace metals in farmed mussels is consistently below that found in wild mussels on the shore, see Section 6.10.2).

Despite cadmium concentrations having decreased slightly since 2020 at three of the sites, the concentrations recorded during 2021 still border the 1.0 ppm median guideline limit (Figure 6-33 and Figure 6-35). Average cadmium levels in mussels from all sites over the period 2015 – 2021 ranged between 1.0 and 1.6 ppm and have decreased steadily from an average of 1.3 ppm in 2018 to 0.7 ppm in 2021. Cadmium concentrations rarely ever exceeded the maximum limit of 2.0 ppm, only exceeding this limit at the two southern-most sites. Historically, a maximum value of 10.9 ppm was recorded in April 2007 at the Mussel Raft. The only other times the levels exceeded legal limits, were in 2018, also at the Mussel Raft (3.7 ppm) and in 2001 and 2006 at the Iron Ore Jetty (3.0 and 2.9, respectively). Since 2019, cadmium concentration in mussel tissue from all five sites sampled within Small Bay fell below the maximum legal limit.

Average zinc concentrations recorded in 2021, and historically at nearly all sites, were much lower than the 150 ppm regulatory limit previously listed by the Canadian Authorities (Figure 6-33 and Figure 6-36). This metal only rose above this limit once at the Saldanha Bay north site (165 ppm in 2016), which was also elevated in 2019 & 2020 at this site and in 2017 at both the Portnet and Mussel Raft sites, albeit not above the regulatory limit as specified for those periods (Figure 6-36). The recent revision of the maximum concentrations of metals permitted in foodstuff have, however, recently excluded zinc from this list, meaning there is now no longer a maximum specified limit.

Historically, the maximum legal limit of copper in food was listed as 70 ppm in Canada. These limits have since been removed, mainly as copper naturally occurs in high concentrations in certain foodstuff

(Figure 6-37). Regardless, copper concentrations have never exceeded 5 ppm at any of the sites over the entire sampling period. There appears to be no spatial or temporal trend in the level of copper in mussel samples.

No regulatory limits exist for manganese in mollusc flesh as elevated levels have not been shown to have an adverse effect on marine life. Manganese is an important micronutrient in the oceans and there is evidence that manganese deficiency may limit phytoplankton productivity in some oceanic upwelling systems (Sunda 1989, Brand et al. 1983). Historically concentrations were highest at the Portnet site, and this was again the case in 2021 where levels peaked at just over 3 ppm, matching the all-time high recorded in 2019 (Figure 6-38). Manganese export volume has been steadily increasing from 95 000 tonnes in 2013/2014 to just over 4.5 million tonnes in 2017/2018 (see Chapter 3). There was, however, a slight decrease in export during the 2020/2021 period, although annual fluctuations in export volumes are common. Despite a slight decrease in manganese concentration in mussel tissue at the Portnet site from 2020 to 2021, manganese concentrations are relatively higher compared to that recorded in mussels at the other sites. Concentrations recorded at Portnet seem to coincide with the export volumes of manganese. Transnet Port Terminal is in the process of applying for permission to expand its operations and so increase the annual throughput of manganese to 8 million tons in the near future. Although the manganese loading terminal is midway between the General Purpose Quay at the base of the Iron Ore Jetty and the Iron Ore Terminal, currents and onshore winds will cause manganese dust to move towards the base of the jetty and accumulate in this area. As this trend appears to be ongoing, and with the anticipated increased in manganese storage and handling, measures should be put in place to prevent excessive amounts of manganese dust from entering the Bay. In 2020, the Minister of Environmental Affairs instructed Transnet NPA to address the issue of manganese storage and pollution at the export terminal.

Iron concentrations in mussel tissue have always fluctuated, although average concentrations appear to be higher over the period 2014 – 2021 (30 ppm) compared to concentrations over the 1997 – 2007 period (19 ppm) (Figure 6-39). This trend may reflect increases in iron ore export volumes, despite dust mitigation measures implemented over time. The data is, however, not equivocal with some years e.g., 2000, recording high concentrations at all sites and 2019 recording very low concentrations at all sites. Iron concentrations are typically highest at Portnet and Saldanha Bay North sites and lowest at the Mussel Raft site, which probably reflects the effects of the prevailing southerly wind and the more retentive (less flushed) nature of the former sites. In 2020, a historical high of 87 ppm was recorded in the tissue of mussels collected at the Saldanha Bay north site. As there are no official limits outlined for the safe concentration of iron present in foodstuffs, it is not possible to comment on the suitability of these mussels for consumption based on this trace metal. Iron poisoning may be associated with the ingestion of more than 10 - 20 mg/kg of human body weight, but no cases of acute toxicity from regular foodstuffs (excluding supplements) has been recorded. Large volumes of iron ore is shipped from Saldanha Bay and iron ore residue is apparent on all structures downwind of the ore jetty and in the vicinity of the Saldanha Steel processing plant, it is therefore recommended that the concentration of this metal in the flesh of bivalves continue to be monitored.

Arsenic and mercury concentrations within mussel tissues were measured for the first time in 2015 and 2016, respectively (Figure 6-40 and Figure 6-41). To date, mercury concentrations in mussels have not exceeded 0.2 ppm which is well below the median guideline limit of 0.5 ppm. Mussels collected during the 2021 survey had some of the lowest mercury concentrations, with values not exceeding

0.007 ppm. Since it was first recorded, arsenic concentrations at the five sites have fluctuated between 0.5 and 2.3. When considering the historical guideline limit of 3.0 ppm, arsenic levels were always well below this threshold. When applying the revised limit, however, it frequently exceeded the acceptable limit of 1.0 ppm. The highest concentration (2.3 ppm) was recorded from mussels collected at Portnet in 2019.

The high level of lead in bivalve flesh remains a human health concern in Small Bay. This was also reported by Firth *et al.* (2019) who collected mussel samples from a Small Bay aquaculture farm every two months over a two-year period. Lead concentrations in excess of the previous South African guideline (0.5 ppm) were detected four times. These authors do note that this historical South African guideline for lead is set for "fish", and not specifically for bivalves. The European Commission has set a higher limit (1 ppm) and Australia an even higher limit (2 ppm) for bivalves which implies that farmed mussels from Saldanha Bay are in most cases actually safe for human consumption (Table 6.6). Nonetheless, Firth *et al.* (2019) do recommend that it is "imperative to better control and regulate sources of lead pollution within Saldanha Bay". Wild mussels harvested from the shore do appear to accumulate higher levels of trace metals than farmed mussels probably due to better flushing and faster growth rates at farms. Signboards warning of the health risks of consuming coastal mussels in this area and discouraging their collection should be posted in areas where these bivalves are easily accessible (e.g., Hoedjiesbaai).

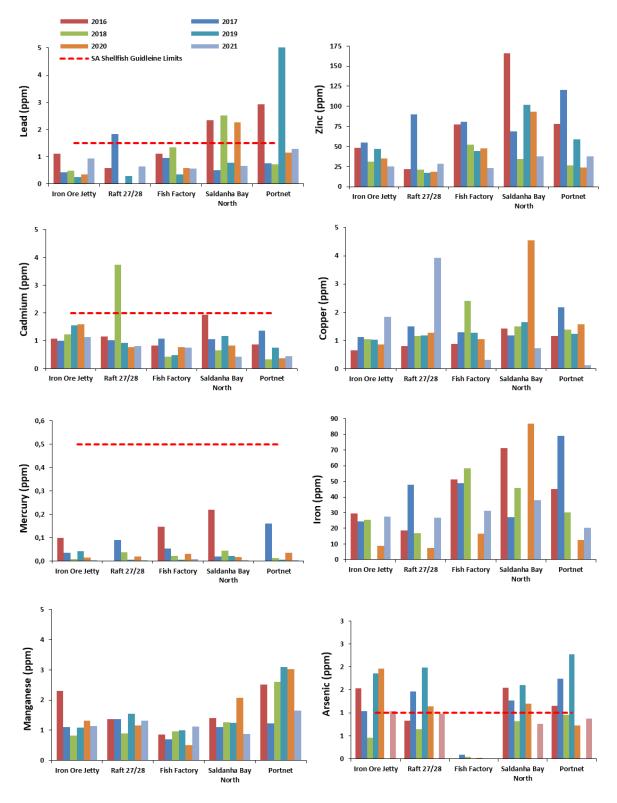


Figure 6-33 Lead, zinc, cadmium, copper, mercury, iron, manganese and arsenic concentrations in wet mussel flesh collected by Anchor from five sites in Saldanha Bay in autumn 2016 to 2021. The recommended maximum limits or maximum guideline limits for the respective metals are shown as dotted red lines.

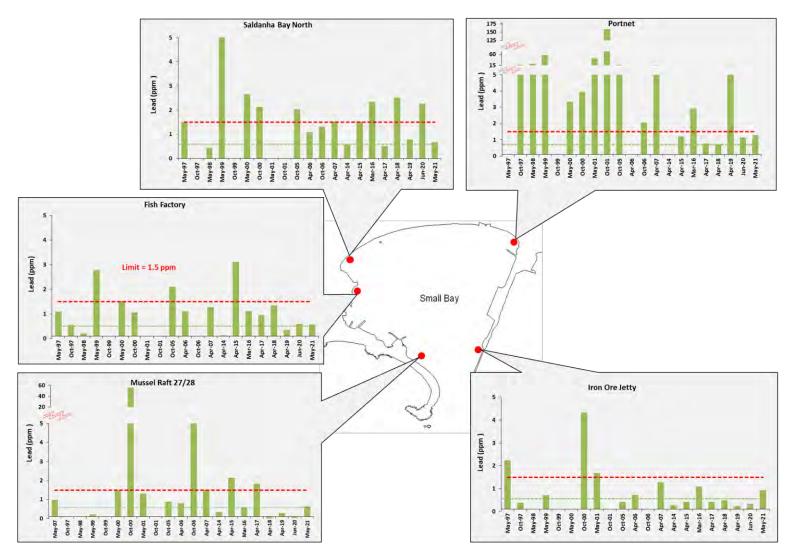


Figure 6-34 Lead concentrations in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. The current maximum guideline limit for lead in mussels is 1.5 ppm (dotted red line), while the historic guideline limit was 0.5 ppm (dotted green line). Note the scale breaks for Portnet and Mussel Raft graphs.

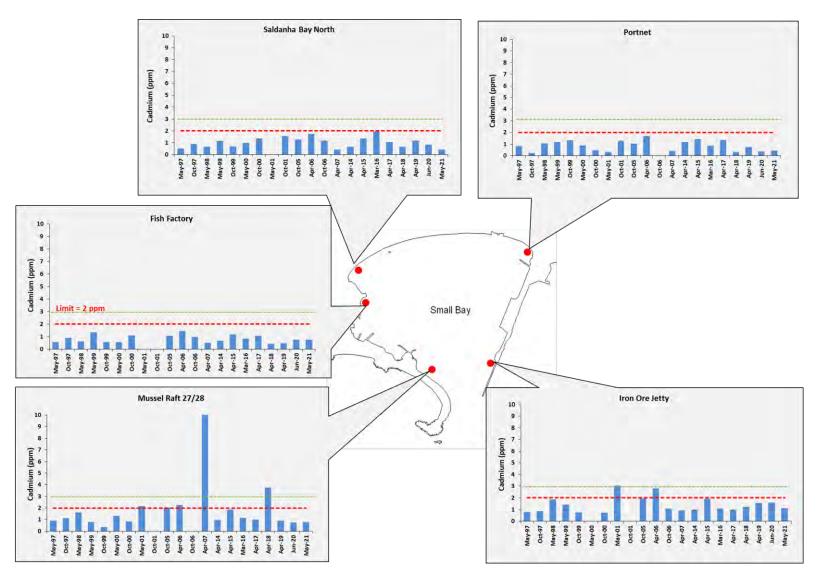


Figure 6-35 Cadmium concentrations in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. The recommended maximum limit for cadmium in seafood is 2 ppm (dotted red line), while the historic guideline limit was 3 ppm (dotted green line)..

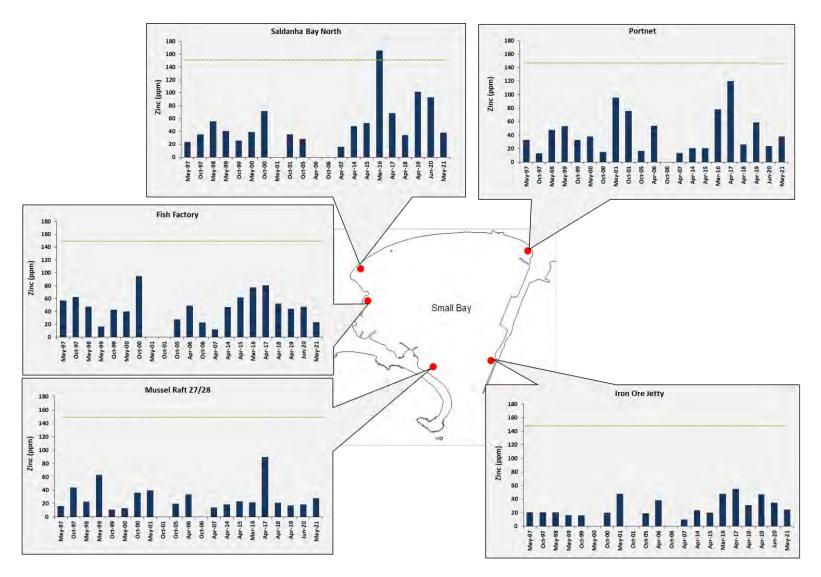


Figure 6-36 Zinc concentrations in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. No limits are currently specified for zinc in seafood, although the historic guideline limit was 150 ppm (dotted green line)..

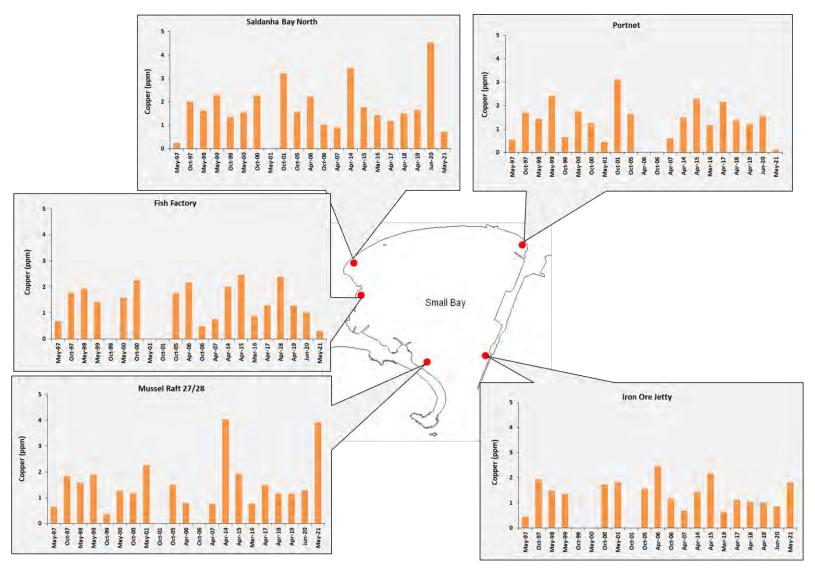


Figure 6-37 Levels of Copper in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. No limits are specified for copper in seafood.

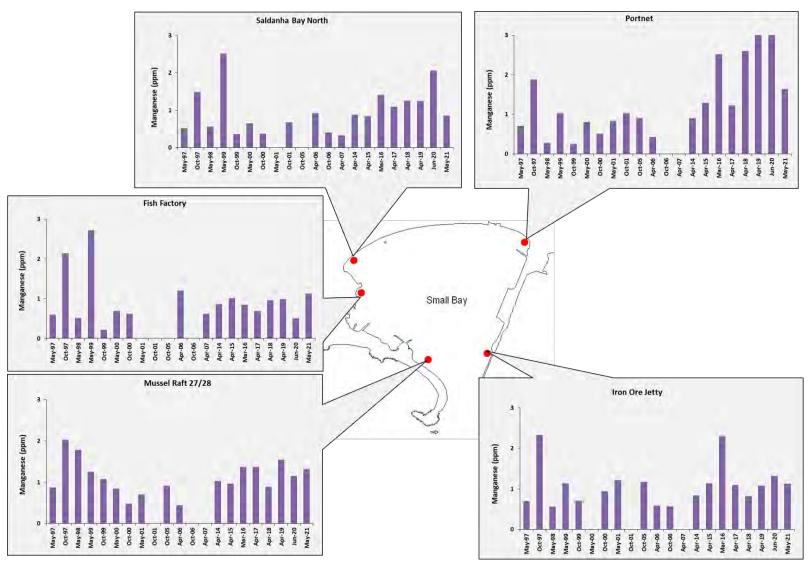
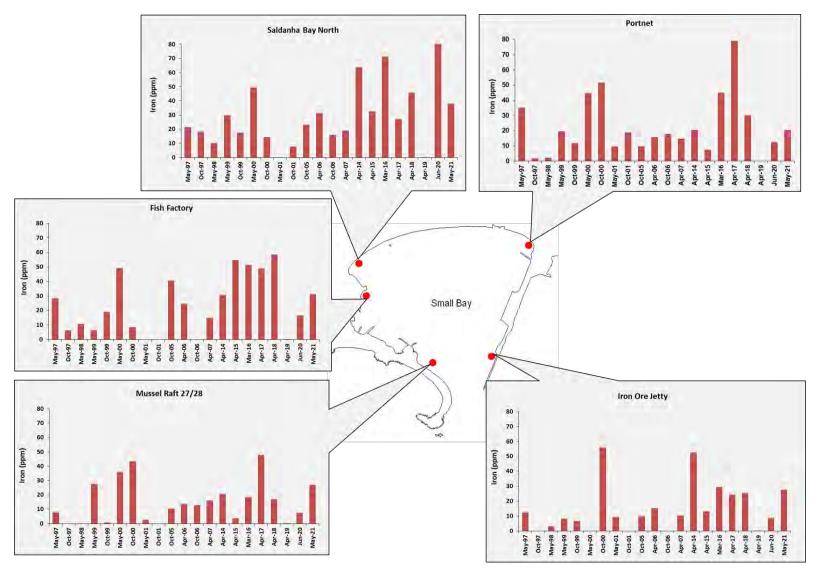



Figure 6-38 Levels of Manganese in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. No limits are specified for manganese in seafood.

Evels of Iron concentrations in mussels (wet weight) collected from five sites in Saldanha Bay as part of the Mussel Watch Programme from 1997 – 2007 by G. Kiviets, DEA and from 2014 – 2021 by Anchor. No limits are specified for iron in seafood.

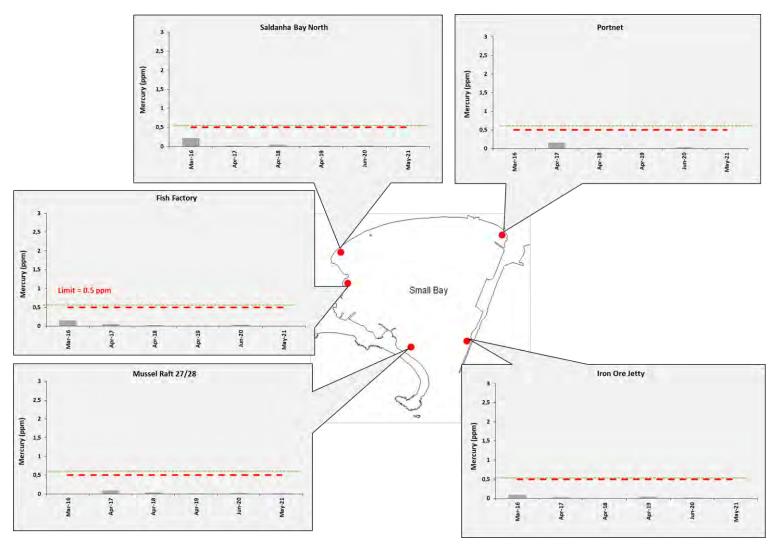


Figure 6-40 Levels of Mercury in mussels (wet weight) collected by Anchor at five sites from 2016 – 2021 as part of the Mussel Watch Programme. The current (dotted red line) and historic (dotted green line) maximum guideline limit for Mercury in mussels is 0.5 ppm.

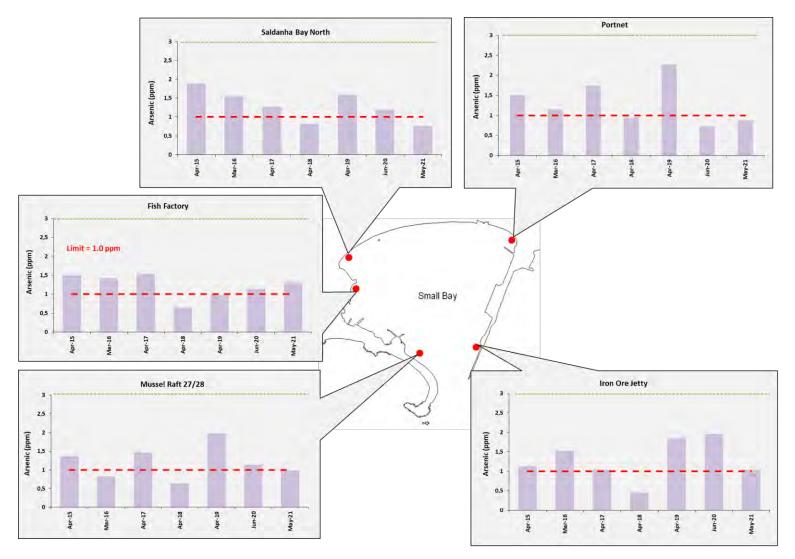


Figure 6-41 Levels of Arsenic in mussels (wet weight) collected by Anchor at five sites from 2015 – 2021 as part of the Mussel Watch Programme. The maximum guideline limit for Arsenic in mussels is 1 ppm (dotted red line), while the historic guideline limit was 3 ppm (dotted green line)..

6.10.2 Mariculture bivalve monitoring

A combined 884 ha of sea space are currently available for aquaculture production in Saldanha Bay. This includes space in Big Bay, Small Bay and Outer Bay North (North Bay). According to the Marine Aquaculture Rights Register, approximately 318.2 ha were leased to 28 individual mussel, oyster, finfish and algae mariculture operators (see Chapter 3 for the layout of concession areas) during 2020, although only 15 of these were actively operational at that time. As at September 2021, 27 aquaculture farms were registered, with 24 being actively operational. South African rights holders engaged in mussel and oyster culture are required to report on trace metal concentrations and bacterial indicators in harvested organisms on an annual basis. The DFFE therefore collects oysters and mussels from the aquaculture farms annually whereafter it is sent to an independent laboratory to test their flesh for four trace metal indicators (lead, cadmium, mercury and arsenic). Data has been obtained for mussels for the period 2009 to 2021 (Figure 6-42) and for oysters for the period 2005 to 2021 (Figure 6-43). Gaps in the data exist depending on the frequency of monitoring, the year each company was founded and whether the company was operational in that year or not. For comparative purposes, independent research data are also displayed on the graphs. For mussels, this includes data from research surveys by Bezuidenhout et al. (2015) and Pavlov et al. (2015) for the period 2014 – 2015, the Mussel Watch Programme by the DAFF (1997 – 2007), and the SOB monitoring Programme conducted by Anchor (2014 – 2021). For oysters, data from a monitoring programme initiated by Transnet Port Terminals (TPT) for the period June 2018 to June 2020, were included. This programme encompassed deploying oyster baskets at channel marker buoys adjacent to the ore jetty and multipurpose quay. Oyster samples were harvested and stocked from these baskets at threemonth intervals and analysed for the four trace metals. Closed triangles represent data recorded from aquaculture farms, whereas open circles represent data recorded during research studies. While the Mussel Watch and SOB samples have only been collected within Small Bay, samples by Bezuidenhout et al. (2015) and Pavlov et al. (2015) were also collected from Langebaan Lagoon and Danger Bay, in addition to Small Bay. Research samples were collected from a variety of locations including the shore, port (oil jetty, multipurpose quay, channel markers), and mariculture infrastructure (mussel rafts, oyster longlines) and are collected close to the surface.

6.10.2.1 Trace metals in mussels farmed in Saldanha Bay

Bezuidenhout *et al.* (2015) and Pavlov *et al.* (2015) sampled mussels on six occasions between March 2014 and March 2015. Distinct seasonal patterns were observed, with mussels accumulating higher metal concentrations in winter than in summer (Figure 6-39). This seasonal pattern has been reported in other studies and is thought to be associated with seasonal reproductive patterns, metabolic rate fluctuation and food type and availability associated with upwelling (increased bioavailability of cadmium is correlated with increased dissolved organic carbon which is elevated when diatom blooms decay) (Sparks *et al.* 2018). Bezuidenhout *et al.* (2015) suggested that the observed seasonal dynamics of trace metal concentrations could be a result of the spawning that takes place in summer; with the subsequent large release of gametes (Van Erkom Schurink & Griffiths 1991); effectively eliminating any trace metal accumulation in the gametes from the mussel's bodies. Lead and cadmium were the most prevalent trace metals in mussel tissue (Figure 6-33, Figure 6-39). Wild mussels typically had higher concentrations of lead, cadmium, arsenic and mercury than those that were farmed. Higher concentration of cadmium, were, however, reported from farmed mussels in samples collected

recently since 2018 from Outer Bay North and Small Bay (Figure 6-42). Concentrations of lead were especially high close to the Iron Ore Jetty where ores are loaded onto vessels in the Port (Bezuidenhout *et al.* 2015, Pavlov *et al.* 2015). This concurs with the results of the Mussel Watch and ongoing SOB monitoring reported above (see Section 6.10.1).

Since the start of the sampling campaign, concentrations of lead in farmed mussels were generally below the historical guideline limit of 0.5 ppm, although mussels from some farms continued to exceed this limit on occasion. The highest levels of lead were recorded in 1988 where concentrations reached 5 ppm on two occasions. With the recent revision of the maximum concentrations of lead permitted in foodstuff by several countries, a new guideline limit of 1.5 ppm has been adopted for the purpose of this study. When applying this new limit to both historical and present data, lead concentrations in farmed mussels have rarely exceeded this threshold. In fact, lead concentrations in farmed mussels have not exceeded 1.5 ppm in the last five years. The reported concentration of lead in farmed mussels are typically much lower than that measured in research samples collected from the nearshore (the "mussel watch" sample results described above). Both research and farm data do show lower lead concentration in mussel tissue samples collected from Big Bay and Outer Bay North than in mussel samples from Small Bay (Figure 6-34). The lower lead concentrations in mussels collected by researchers from Danger Bay when compared to the higher concentrations in Small Bay, does indicate higher lead pollution within Small Bay, particularly in nearshore environments that are not well flushed.

Data received from mussel farms until June 2018, showed that cadmium concentrations in Small Bay never exceeded the prescribed historical limit of 3 ppm (limit applicable until June 2018) (Figure 6-42). Similarly, cadmium concentrations in mussel tissue collected from a Small Bay farm on 10 occasions between March 2015 and February 2017 ranged between 0.57 – 1.4 ppm, remaining below the limit in all samples (Firth et al. 2019). This regulatory limit was only exceeded once in May 2018 in a sample collected from Outer Bay North. Mussels collected by researchers, including the former DAFF and Anchor, from both the shore in Small Bay and off Mussel Raft 27/28 had concentrations that frequently exceeded this limit (Figure 6-42). This is confirmed by analyses run on mussels collected in 2014 and 2015 by Bezuidenhout et al. (2015). In June 2018, the regulatory limit was decreased to 2 ppm. In recent samples collected since 2018, cadmium concentrations regularly exceeded the limit at aquaculture farms in Outer Bay North and in one sample each from Big Bay and Small Bay. Reasons for this discrepancy are still to be determined, although as described above, high levels exceeding prescribed limits have previously been recorded in research samples from Small Bay. Cadmium naturally occurs in high concentrations within the sediments of near-shore upwelling environments such as the southern Benguela (Griffiths et al. 2004, Summers 2012). High levels of cadmium within the mussels in previous studies have been attributed to disturbances such as dredging, causing trace metals buried in sediment to become re-suspended in the water. The link between cadmium concentration in mussel tissue and dissolved organic carbon associated with decaying diatom blooms described by Sparks et al. (2018), may also play a role in these periodic peaks in cadmium in mussel tissue collected from different localities.

Mercury concentrations submitted to the DAFF have largely been within the regulatory limit of less than 0.5 ppm, apart from four samples collected in 1994 and one in 2009, all of which were collected from Small Bay. Since 2009, no exceedance has been recorded and all samples collected contained less than 0.02 ppm of mercury (Figure 6-42). Research samples have also all been below the

prescribed limit, but as with the other trace metals, mercury concentrations in research samples have generally been higher than farm samples. Mussel samples from aquaculture farms were analysed for arsenic for the first time in 2012. Scant data exist for 2012 and 2013 and arsenic was dropped from the suite of aquaculture farm measurements in September 2013, except for one measurement that was made in 2018. As no regulatory limit for arsenic in shellfish has been published for South Africa, a guideline limit of 3 ppm was adopted and applied to samples. This value was based on the limit for arsenic in fish as published in Regulation R.500 of 2004. All of the aquaculture farms assessed over this period met the historical regulatory requirements (< 3 ppm). Monitoring of arsenic in mussels was, however, continued for shore-based research samples. For the purpose of this study, a median guideline limit of 1.0 ppm for arsenic (based on that adopted for other countries) in shellfish was applied to samples collected since 2021. Mussel tissue collected at all sites sampled for research since 2013 have not exceeded the historical or new guideline limit (Figure 6-42).

Overall, data from the mussel farms discussed above indicates that trace metal contamination in the deeper parts of Saldanha Bay, where the aquaculture farms are located, is in most cases lower than in the nearshore coastal waters. Mussels are filter feeders which extract particulate matter out of the water column for food; thus, it is expected that organisms filtering clean water advected into the Bay from offshore will accumulate fewer toxins than mussels filtering potentially contaminated water close to the shore. The reasons for the lower concentrations of trace metals in farmed mussels compared with those on the shore may also be linked to the different depths at which these mussels occur and are collected. Mussels collected during research surveys are collected from intertidal zones close to the surface and are therefore exposed to air and other stressors for part of the tidal cycle. Farmed mussels, on the other hand, are permanently submerged several meters below the surface. This allows them to feed for extended periods of time per day, resulting in higher growth rates. The availability of phytoplankton in deeper areas of the Bay may also facilitate faster growth rates. Faster growth results in less time for the accumulation of toxins within the mussel tissue over the lifetime of the animal.

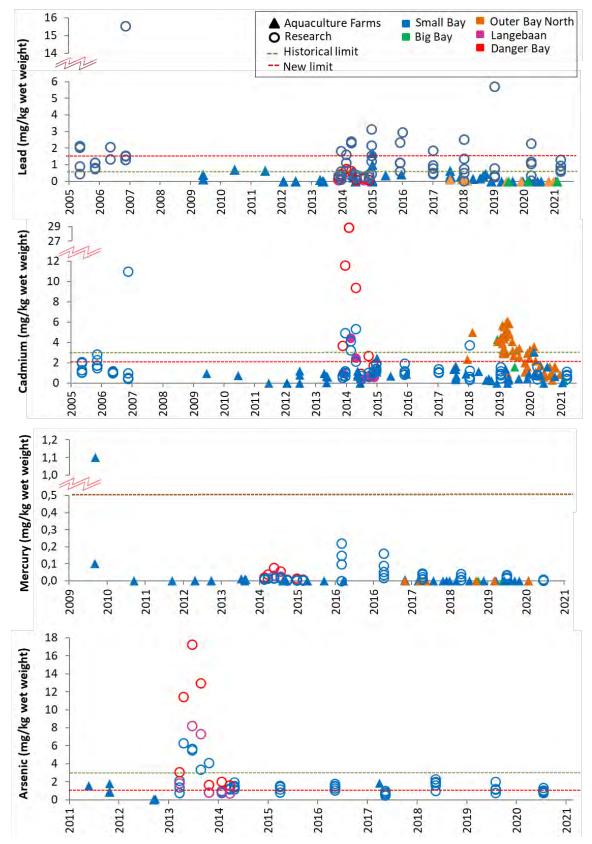


Figure 6-42 Trace metal concentrations (wet weight) in mussel tissue provided by aquaculture facilities (triangles) and samples collected by researchers, primarily from the shore (circles). The green lines indicate the historical guideline limits applied to samples collected until 2018 for cadmium and 2021 for lead, mercury and arsenic. The red line indicates the revised guideline limits for all metals as applied since 2021.

6.10.2.2 Trace metals in oysters farmed in Saldanha Bay

As no regulatory limits for metals in oysters have been implemented in South Africa, the median guideline limits for mussels were applied. Lead concentration in farmed oyster tissue from both Small Bay and Big Bay occasionally exceeded the historical guideline value of 0.5 ppm, most recently in 2015 (Figure 6-43), where is reached 1.78 ppm. Research samples collected as part of the Anchor Oyster Monitoring Programme over the period 2018 to 2020, from locations much closer to ore loading facilities than the mariculture farms, also largely show compliance with guideline levels (97%) with only two samples from Small Bay exceeding the historical 0.5 ppm limit (Figure 6-43). When applying the revised median guideline limit of 1.5 ppm, both research and farm samples, fall within the limits, except for the one sample in 2015. The oysters collected from aquaculture farms during recent years have lower lead concentrations when compared to those collected during previous years. Likewise, oysters collected from farms had lower concentrations of lead than oysters collected during research surveys. A large number of the samples collected prior to 2017 would not have met the revised 2018 guideline for cadmium (2 ppm), although nearly all did meet the previous 3 ppm guideline. Farm and research oyster samples collected from 2017 onwards have nearly all met the revised cadmium guideline value of 2 ppm, with just two samples exceeding the limit (Figure 6-43). Cadmium concentration in all research samples collected from Small Bay over the period 2018 to 2021 fell below the 2 ppm guideline, whilst one of the research samples from Big Bay exceeded the guideline. Mercury concentrations in farm and research samples have largely been within the regulatory limit of less than 0.5 ppm, apart from two samples collected in 2007 and 2011 (Figure 6-43). Samples were analysed for arsenic for the first time in 2012. Arsenic concentration in farmed oyster tissue exceeded the historical regulatory requirements (< 3 ppm) on three occasions between 2012 and 2013, whilst reported values since this time have met the guideline (Figure 6-43). Arsenic was dropped from the suite of aquaculture farm measurements in September 2013. Monitoring of arsenic in oysters was, however, continued for shore-based research samples as part of the TPT oyster monitoring programme. All 72 samples analysed as part of this programme over the period June 2018 – June 2020 fell below the regulatory limit for arsenic (Figure 6-43). As the TPT oyster monitoring programme was discontinued in June 2020, no oyster samples were analysed for arsenic during the 2021 survey.

In general, trace metal concentrations in farmed oyster samples have largely met the historical regulatory limits for the four trace metals tested, with high levels of compliance in samples collected since 2016. When applying the revised guideline limits, recent samples collected in 2021 also meet the maximum guideline limits. This is also the case with samples collected as part of the TPT Oyster Monitoring Programme, with the exception of two samples where lead concentration and one where the cadmium exceeded the historical limit. Oysters farmed in Saldanha Bay accumulate trace metals in their tissues at lower levels than mussels, but where occasional exceedance is observed, it is for the same two trace metals, namely lead and cadmium, that are most problematic in mussels.

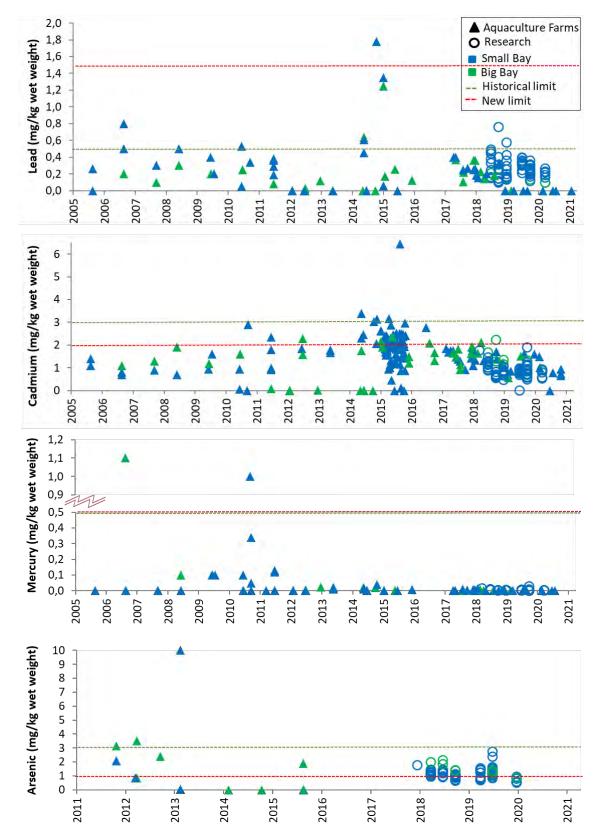


Figure 6-43 Trace metal concentrations (wet weight) in oyster tissue provided by aquaculture facilities and the Anchor Oyster Monitoring Programme (indicated by triangles and circles, respectively). The green lines indicate the historical guideline limits applied to samples collected until 2018 for cadmium and 2021 for lead, mercury and arsenic. The red line indicates the revised guideline limits for all metals as applied since 2021.

6.11 Summary of water quality in Saldanha Bay and Langebaan Lagoon

There are no clear long-term trends evident in the water temperature, salinity and dissolved oxygen data series that solely indicate anthropogenic causes. In the absence of actual discharges of industrially heated sea water into Saldanha Bay, water temperature is unlikely to show any change that is discernible from that imposed by natural variability or long-term warming or cooling due to climate change (notoriously difficult to differentiate from natural variability). What may, however, be detected is an increase in frequency of "uncommon events" e.g., thermocline breakdown with cool water throughout the water column in summer, as observed in 2018. There is unfortunately limited pre-development data (pre-1975) against which to benchmark the prevailing oceanographic conditions. Although it is likely that construction of the causeway and ore/oil jetty has impeded water flow, increased residence time, increased water temperature, decreased salinity and decreased oxygen concentration (particularly in Small Bay); there is little data to support this. Decreased dissolved oxygen in Small Bay after the harbour development is perhaps the clearest signal. The increase in the frequency of Small Bay hypoxic events occurred after the major harbour development in the 1970s, and the situation does not appear to have changed much since with similar data collected by continuous dissolved oxygen measurements around the turn of the century to those collected during the autumn-winter period in 2020. Natural, regional oceanographic processes (wind driven upwelling or downwelling and extensive coast to bay exchange), rather than internal, anthropogenic causes, appear to remain the major factors affecting physical water characteristics in Saldanha Bay. New data show that hypoxic and near anoxic conditions in the lower part of the water column are frequent occurrences during summer-autumn season in Big and Small Bay (pointing to an external upwelled source of low oxygen water); whilst in Small Bay anthropogenic organic loading, appears to exacerbate the situation with decreased dissolved oxygen measured at sites under mariculture farms than at control sites. The construction of physical barriers (the iron ore/oil jetty and the Marcus Island causeway) has changed current strengths and circulation within Small Bay, resulting in increased residence time (decreased flushing rate), enhanced clockwise circulation and enhanced boundary flows. There has also been an increase in sheltered and semi-sheltered wave exposure zones in both Small and Big Bay subsequent to harbour development.

The microbial monitoring program provides evidence that while chronic problems with faecal coliform pollution were present in the early parts of the record; conditions have improved considerably since this time with the remaining areas of concern in the region of the Hoedjies Bay Hotel and Pepper Bay. The remaining 18 monitoring stations in the Bay and Lagoon are rated as having "Fair" (5 stations), "Good" (2 stations) or "Excellent" (13 stations) water quality based on the 2019 - 2020 data. The two beach sites in the vicinity of the Bok River Mouth are rated as "Fair" and "Good" representing a sustained improvement over most earlier samples collected at these sites. This likely reflects improved treatment at the wastewater treatment works after upgrades in 2018 and high levels of wastewater reuse for industrial and irrigation purposes. It is a concerning that faecal coliform levels at the Hoedjiesbaai Beach remain elevated with "poor" water quality recorded at this site for the last three years; as is the decline in water quality at the Pepper Bay-Big Quay station over the 2019 - 20 period. Local authorities are advised to try determining the sources of this pollution. Faecal coliform counts at all four sites in Big Bay were within the $80^{\rm th}$ percentile limits for mariculture in 2020. In Small Bay, however, the $80^{\rm th}$ percentile values for mariculture were still exceeded at most sites along the

northern shore of Small Bay. Given the current importance and likely future growth of both the mariculture and tourism industries within Saldanha Bay, it is imperative that whatever efforts have been taken in recent years (e.g., upgrading and reuse of sewage and storm water facilities to keep pace with development and population growth) to combat pollution by harmful microbes, (for which *E. coli* and faecal coliforms are indicators), in Small Bay should continue to be implemented. Continued monitoring of bacterial indicators (intestinal *Enterococci* in particular), to assess the effectiveness of adopted measures, is also required and should be undertaken at all sites on a bimonthly basis.

Concentrations of lead have regularly exceeded the historical food safety limits in mussels and oysters collected from certain locations in Saldanha Bay since the start of the monitoring campaigns. When considering the revised regulations, only the shore-based samples occasionally exceed the guideline limit while those collected from farms mostly fall within the accepted limit. Bivalve samples collected during the latest 2021 survey show an improvement in lead concentrations when compared to those collected during previous years, all falling below the threshold. Lead concentrations in shellfish collected from the deeper water at the mariculture farms are overall lower than those recorded from shore-based samples and in nearly all cases within the food safety guideline limits as stipulated for that year. This may be linked to higher growth rates of farmed mussels, and the fact that the cultured mussels feed on phytoplankton blooms in freshly upwelled, uncontaminated water, whilst mussels along the shore are more exposed to land-based pollutants.

Similar to lead, cadmium levels in mussels and oysters have regularly exceeded the guideline limit (when considering both the historical and revised limit) at various locations in the Bay since the monitoring started. Higher concentrations of cadmium were recorded in mussel samples collected from farms in Outer Bay North between 2018 and 2020 than those collected from farms in Small and Big Bay and from shore-based research samples. Although cadmium concentrations have mostly been within guideline limits for recently collected bivalve samples, the cadmium levels border on the acceptable limit and is a concern.

Historically, arsenic concentrations in shellfish have mostly been below the guideline limit, apart from a few samples collected between 2012 and 2014. When considering the revised guideline limit, however, arsenic concentrations become problematic in that it regularly exceeds food safety guidelines, even in recent samples. Mercury concentration in both mussels and oysters have remained well below the food safety limits in almost all cases throughout the monitoring campaign.

The research further suggests that concentrations of trace metals are elevated at sites along the shore within Small Bay particularly for lead at the Portnet and Saldanha Bay-North sites and arsenic at the Iron Ore Jetty and Fish factory sites) and at farms in Outer Bay North.

Exceedance of food safety limits for lead, cadmium and arsenic in bivalves collected for research from the shore and the aquaculture farms throughout the Bay, points to the need for management interventions, as metal contamination poses a serious risk to the health of people harvesting mussels.

7 SEDIMENTS

7.1 Background

Sediment quality is a measure of the extent to which the nature of benthic sediments (particle size composition, organic content and contaminant concentrations) has been altered from its natural state. This is important as it influences the types and numbers of organisms inhabiting the sediments and is in turn, strongly affected by the extent of water movement (wave action and current speeds), mechanical disturbance (e.g., dredging) and quality of the overlying water. Sediment parameters respond quickly to changes in the environment but are able to integrate changes over short periods of time (weeks to months) and are thus good indicators for short to very short-term changes in environmental health.

Coastal erosion is one of the main contributing factors that largely influences shoreline stability (Lopez *et al.* 2017). It is often gradual, but occasionally, rapid removal of sediments from the shoreline. Coastal erosion can be caused by natural processes such as storm surges, extreme seasonal and tide changes, sediment morphology, as well as via anthropogenic factors in the form of harbour construction (i.e., dredging activities) (Lopez *et al.* 2017, Woodworth *et al.* 2019). Coastal erosion effectively reshapes the shoreline and directly impacts the fauna/flora inhabiting these areas and can potentially threaten coastal property. Coastal erosion is a major problem in Saldanha Bay, affecting beach mostly in Big Bay and at the entrance to Langebaan Lagoon.

The particle size composition of the sediments is strongly influenced by wave energy and circulation patterns in the Bay. Coarser or heavier sand and gravel particles are typically found in areas with high wave energy and strong currents as the movement of water in these areas suspends fine particles (mud and silt) and flushes these out of these areas. Disturbances to the wave action and current patterns, which reduce the movement of water, can result in the deposition of mud in areas where sediment were previously much coarser. The quantity and distribution of different sediment grain particle sizes (gravel, sand and mud) influences the status of biological communities and the extent of organic and contaminant loading that may occur.

Organic matter (TOC/TON) is one of the most universal pollutants affecting marine life and it can lead to significant changes in community composition and abundance, particularly in semi-enclosed or closed bays where water circulation is restricted, such as Saldanha Bay. High organic loading typically leads to eutrophication, which can lead to a range of different community responses amongst the benthic macrofauna. These include increased growth rates, disappearance of species due to anoxia, changes in community composition and reduction in the number of species following repeat hypoxia and even complete disappearance of benthic organisms in severely eutrophic and anoxic sediments (Warwick 1993).

Trace metals occur naturally in the marine environment and some are important in fulfilling key physiological roles. Disturbance to the natural environment by either anthropogenic or natural factors can lead to an increase in metal concentrations occurring in the environment. Contaminants are predominantly associated with fine sediment particles (mud and silt) as fine-grained particles have a relatively larger surface area for pollutants to adsorb and bind to. Higher proportions of mud, relative to sand or gravel, can thus lead to high trace metal contamination. Disturbance to the sediment (e.g.,

dredging) can lead to re-suspension of the mud component from underlying sediments, along with the associated organic pollutants and metals. An increase in metal concentrations above natural levels, or at least above established safety thresholds, can result in negative impacts on marine organisms, especially filter feeders like mussels that tend to accumulate metals in their flesh. High concentrations of metals can also render these species unsuitable for human consumption.

7.2 Sediment particle size composition

The particle size composition of the sediments occurring in Saldanha Bay and Langebaan Lagoon are strongly influenced by wave energy and circulation patterns in the Bay. Coarser or heavier sand and gravel particles are typically found in areas with high wave energy and strong currents as the movement of water in these areas suspends fine particles (mud and silt) and flushes these out of these areas. Disturbances to the wave action and current patterns, which reduce the movement of water, can result in the deposition of mud in areas where sediments were previously much coarser. Since 1975, industrial developments in Saldanha Bay (Marcus Island causeway, Iron Ore Terminal, multipurpose terminal and establishment of a yacht harbour) have resulted in some changes to the natural patterns of wave action and current circulation prevailing in the Bay. The quantity and distribution of different sediment grain particle sizes (gravel, sand and mud) through Saldanha Bay influences the status of biological communities and the extent of contaminant loading that may occur in Saldanha Bay. The extent to which changes in wave exposure and current patterns has impacted on sediment deposition and consequently on benthic macrofauna (animals living in the sediments), has been an issue of concern for many years.

Contaminants such as metals and organic toxic pollutants are predominantly associated with fine sediment particles (mud and silt). This is because fine grained particles have a relatively larger surface area for pollutants to adsorb and bind to. Higher proportions of mud, relative to sand or gravel, can thus lead to high organic loading and trace metal contamination. It follows then that with a disturbance to natural wave action and current patterns, an increase in the proportion of mud in the sediments of Saldanha Bay, could result in higher organic loading and dangerous levels of metals retention (assuming that these pollutants continue to be introduced to the system). Furthermore, disturbance to the sediment (e.g., dredging) can lead to re-suspension of the mud component from underlying sediments, along with the associated organic pollutants and metals. It may take several months or years following a dredging event before the mud component that has settled on surface layers is scoured out of the Bay by prevailing wave and tidal action. Changes in sediment particle size in Saldanha Bay is therefore of particular interest and are summarised in this section.

A recent study by Henrico & Bezuidenhout (2020) compared a two-time bathymetric data series (before and after the harbour construction in the early seventies) and found that this major construction activity radically changed the hydrodynamic sedimentation process within Saldanha Bay (Figure 7-1). Results of the study revealed that due to the culmination of the harbour construction, the average depth of the Bay had increased by around 0.8 m between 1957 and 1977, the bottom of the Bay became more evenly smooth, and hydrological movement drastically changed as a result of physical structures and bathymetry changes. These apparent alterations have almost certainly influenced wave action and tidal movement in the Bay and by inference, sediment structure in the

Bay as well. The "hole" created as a result of dredging sediment from the pro-delta at the entrance to Langebaan Lagoon highlighted by Flemming (2016) is clearly evident on the bathymetry charts prepared by Henrico & Bezuidenhout (2020, Figure 7-1) and does lend some support to his hypothesis.

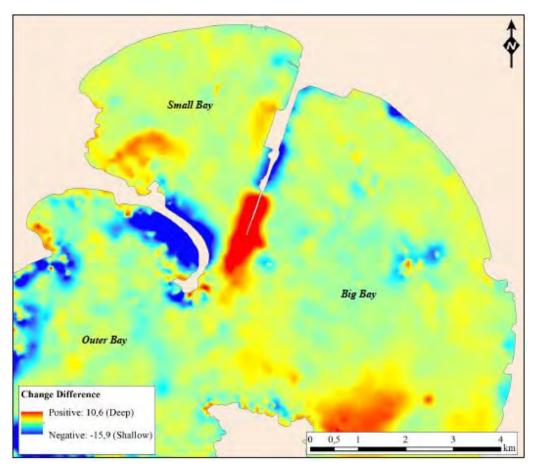


Figure 7-1 Changes in bathymetry in Saldanha Bay from before (1957) to after (1977) harbour construction. Source: Henrico & Bezuidenhout (2020).

The earliest detailed study on the sediments of Saldanha Bay and Langebaan Lagoon was conducted by Flemming (1977) based on a large number of samples (n \approx 500) collected from the Bay and Lagoon in 1974, prior to large scale development of the area (Figure 7-2). He found that sediments in Saldanha Bay were comprised mostly of fine (0.125 – 0.25 mm) or very fine sand (0.063 – 0.125 mm). Significant amount of medium and coarse sand were also present but coarse (0.5 – 1.0 mm) and very coarse sand (1 – 2 mm) was rare, as was mud (< 0.063 mm) (Figure 7-3). Sediments in Langebaan Lagoon were comprised mostly of medium, fine and very fine sand, with significant amounts of coarse and very coarse sand near the entrance of the lagoon, but again very low levels of mud (Figure 7-4).

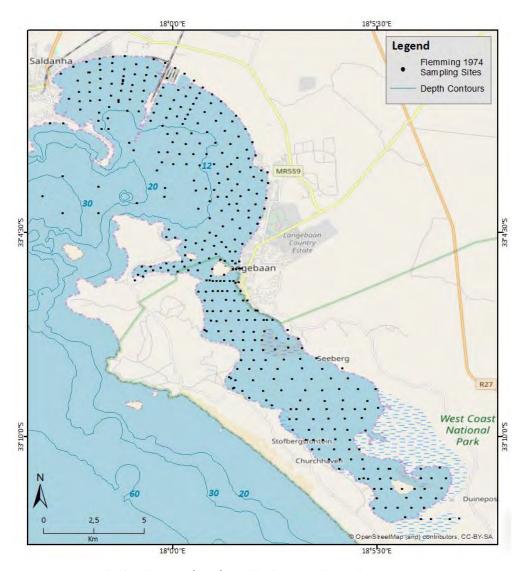


Figure 7-2 Stations sampled by Flemming (1977) in Saldanha Bay and Langebaan Lagoon in 1974.

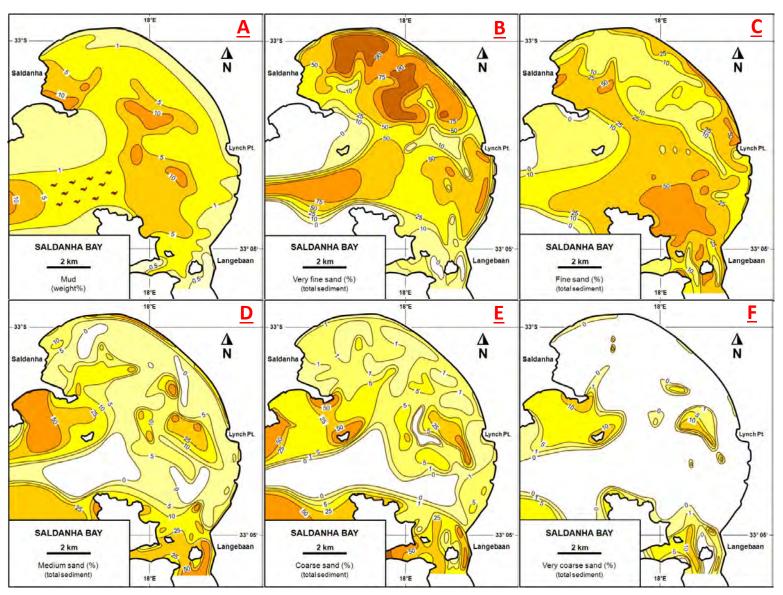


Figure 7-3 Distribution of different sediment types (% of total) in Saldanha Bay in 1975: (A) mud (< 0.063 mm), (B) very fine sand (0.063 – 0.125 mm), (C) fine sand (0.125 – 0.25 mm), (D) medium sand (0.25 – 0.5 mm), (E) coarse sand (0.5 – 1.0 mm), (F) very coarse sand (1 – 2 mm). Source: Flemming (2015).

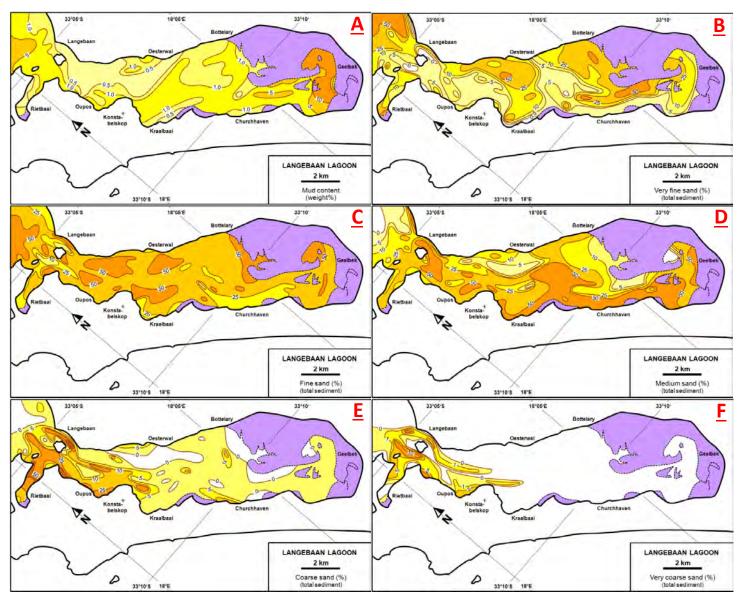


Figure 7-4 Distribution of different sediment types (% of total) in Langebaan Lagoon in 1975: (A) mud (< 0.063 mm), (B), very fine sand (0.063 – 0.125 mm), (C) fine sand (0.125 – 0.25 mm), (D) medium sand (0.25 – 0.5 mm), (E) coarse sand (0.5 – 1.0 mm), (F) very coarse sand (1 – 2 mm). Source: Flemming (2015).

Due to concern about deteriorating water quality in Saldanha Bay, sediment samples were collected again in 1989 and 1990 (Jackson & McGibbon 1991). At the time of the Jackson & McGibbon study, the Iron Ore Terminal had been built, dividing the Bay into Small Bay and Big Bay, the multi-purpose terminal had been added to the ore terminal, various holiday complexes had been established on the periphery of the Bay and the mariculture industry had begun farming mussels in the sheltered waters of Small Bay. Sampling was only conducted at a limited number of stations in 1989 and 1990 but results suggested that sediments occurring in both Small Bay and Big Bay were still primarily comprised of sand particles, but that mud now made up a noticeable, albeit small, component at most sites (Figure 7-5).

Sampling of sediment in Saldanha Bay as part of the State of the Bay monitoring programme commenced in 1999 (nearly a decade later) and was followed by two further sampling events in 2000 and 2001. However, immediately preceding this (in 1997/98) an extensive area adjacent to the ore terminal was dredged, resulting in a massive disturbance to the sediments of the Bay. Data from the 1999 study, where sampling was conducted in Small and Big Bay (Figure 7-5, Figure 7-6) suggested that there had been a substantial increase in the proportion of mud in sediments in the Bay, specifically at the multi-purpose terminal, the end of the ore terminal, the Yacht Club Basin and in the Mussel Farm area. Two sites least affected by the dredging event were the North Channel site in Small Bay and the site adjacent to the Iron Ore Terminal in Big Bay. The North Channel site is located in shallow water where the influence of strong wave action and current velocities are expected to have facilitated in flushing out the fine sediment particles (mud) that are likely to have arisen from dredging activities. Big Bay remained largely unaffected by the dredging event that occurred in Small Bay and fine sediments appear to be removed to some extent by the scouring action of oceanic waves in this area. Subsequent studies conducted in 2000 and 2001, which were restricted to Small Bay only, indicated that the mud content of the sediment remained high but that there was an unexplained influx of coarse sediment (gravel) in 2000 followed by what appears to be some recovery over the 1999 situation (Figure 7-5).

Sampling as part of the State of the Bay programme was conducted again in 2004 and encompassed the whole of the Bay and Lagoon for the first time since 1974. Data collected as part of this sampling event indicated an almost complete recovery of sediments over the 1999 situation, to a situation where sand (as opposed to mud) made up the bulk of the sediment at most of the six sites assessed in this study (Figure 7-5). The only site where a substantial mud component remained was at the multi-purpose terminal. The shipping channel adjacent to the terminal is the deepest section of Small Bay (artificially maintained to allow passage of vessels) and is expected to concentrate the denser (heavier) mud component of sediment occurring in the Bay.

The next survey, conducted in 2008, revealed that there had been an increase in the percentage of mud at most sites in Small and Big Bay, most notably in the Yacht Club Basin and at the multi-purpose terminal. This was probably due to the maintenance dredging that took place at the Mossgas and multi-purpose terminals at the end of 2007/beginning of 2008. The Yacht Club basin and the Small Bay side of the multi-purpose terminal are sheltered sites with reduced wave energy and are subject to long-term deposition of fine-grained particles. The benthic macrofauna surveys conducted between 2008 and 2011 revealed that benthic health at both the Yacht Club basin and adjacent to the multi-purpose terminal was severely compromised, with benthic organisms being virtually absent from the former.

Smaller dredging programmes were also undertaken in the Bay 2009/10, when 7 300 m³ of material was removed from an area of approximately 3 000 m² between Caisson 3 and 4 near the base of the Iron Ore Terminal on the Saldanha side, and a 275 m² area in Salamander Bay was dredged to accommodate an expanded SANDF Boat park. The former programme seems to have had a minimal impact on the Bay while the latter appears to have had a more significant impact and is discussed in detail below.

The percentage mud in sediments declined at most sites in Small Bay over the period 2008 to 2016¹⁰. This bay-wide progressive reduction in mud content suggested a shift in the balance between the rate at which fine sediments are suspended and deposited and the rate at which currents and wave activities flushed fine sediments from the Bay. This is certainly a positive development as it suggests that sediments in the Bay may be reverting back to a more natural condition where sediments were comprised of mostly sand with a very small mud fraction.

The paucity of data on variations in sediment grain size composition in Langebaan Lagoon do not allow for such a detailed comparison as for the Bay. Available data do suggest, however, that sediments in Langebaan Lagoon have changed little over time and continue to be dominated by medium to fine grained sands with a very small percentage of mud. It is important to note though that the absence of any data between 1974 and 2004 does not allow us to assess what happened during the period between 1999 – 2001 when levels of mud in sediments in the Bay rose to such critically high levels and may mask a corresponding spike in mud levels in the Lagoon as well.

Data for six key sites surrounding the Iron Ore Terminal and in Small Bay are shown on Figure 7-5. The reader is referred to individual State of the Bay reports for each year for more detail on this.

_

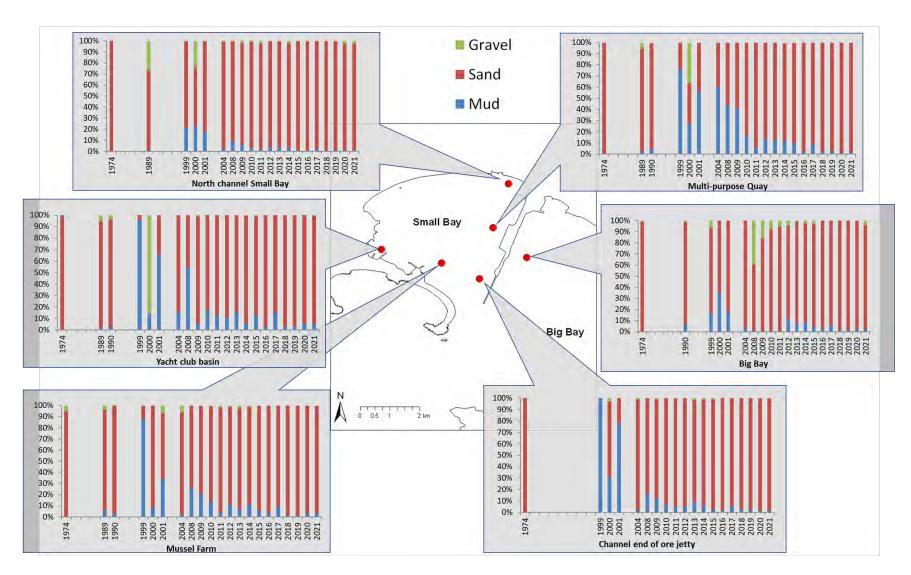


Figure 7-5 Particle size composition (percentage gravel, sand and mud) of sediments at six localities in the Small and Big Bay area of Saldanha Bay between 1974 and 2021. Data sources: 1974: Flemming (1977); 1899 – 1990: Jackson & McGibbon (1991); 1999 – 2021: SBWQFT.

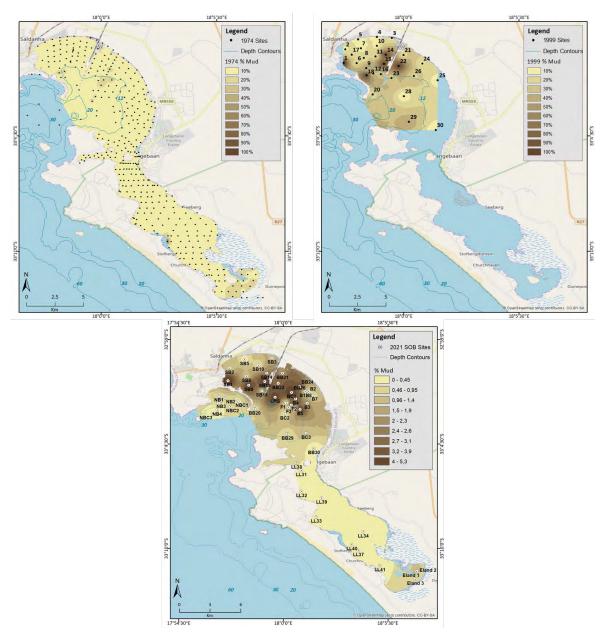


Figure 7-6 Change in the percentage mud in sediments in Saldanha Bay and Langebaan Lagoon between 1974 (left), 1999 (right) and 2021 (bottom) survey results.

Sediment samples were collected from a total of 31 sites in Saldanha Bay and Langebaan Lagoon in 2021, as part of the annual State of the Bay sampling programme (Figure 7-7). This included 10 sites in Small Bay, 9 in Big Bay, and 12 in Langebaan Lagoon. Data were also available for a further 27 sites that were sampled as part of the Saldanha ADZ monitoring programme in March/April 2021 (14 Sites in Big Bay, 7 in Outer Bay North and 6 within Small Bay) (Dawson *et al.* 2021, Figure 7-7).

Data suggest that sediments in Saldanha Bay and Langebaan Lagoon are comprised predominantly of sand (particle size ranging between 63 μ m and 2000 μ m). Sites located in Small Bay had on average the highest proportion of mud (2.25%), followed by Big Bay (2.20%) (Table 7.1). There is some evidence of an overall increase in mud percentage in both Small and Big Bay sites compared to last

year. Furthermore, small fractions of gravel were detected in the current survey, more so in Small Bay (i.e., SB2 with 14.21%) and even Langebaan Lagoon (i.e., LL38 with 18.34%, Figure 7-5).

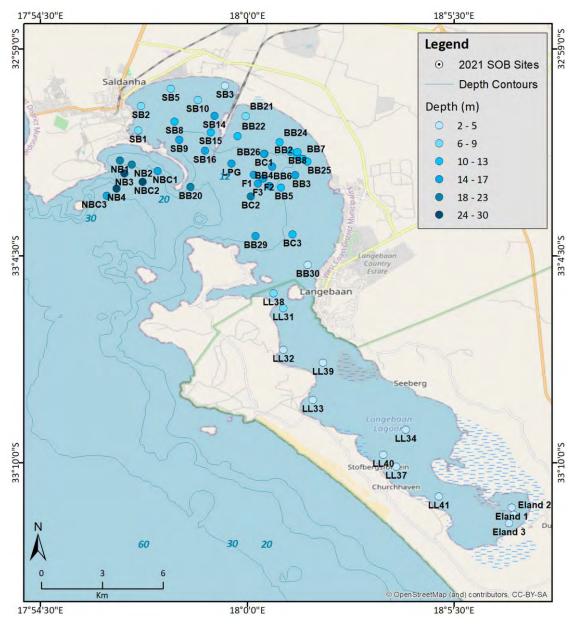


Figure 7-7 Sediment sampling sites and respective depth ranges (m) in Saldanha Bay, Langebaan Lagoon and Elandsfontein for 2021

Table 7.1 Particle size composition and percentage total organic carbon (TOC) and total organic nitrogen (TON) in surface sediments collected from Small Bay, Big Bay, Langebaan Lagoon, Elandsfontein and ADZ sites in 2021 (Particle size analysed by Scientific Services and TOC and TON analysed by the Council for Scientific and Industrial Research).

Region	Sample	Gravel (%)	Sand (%)	Mud (%)	TOC (%)	TON (%)	C:N
	SB1	0.36	94.23	5.41	2.55	0.27	11.03
	SB2	14.21	84.99	0.81	0.18	0.02	10.68
	SB3	2.33	96.40	1.27	0.09	0.02	5.25
	SB5	0.14	99.72	0.14	0.09	0.02	5.37
a A	SB8	0.00	99.10	0.90	0.17	0.04	5.05
Small Bay	SB9	0.65	94.87	4.48	0.39	0.06	7.64
Sm	SB10	0.27	99.46	0.27	0.15	0.03	5.72
	SB14	0.48	97.22	2.30	0.12	0.03	4.63
	SB15	0.51	94.17	5.32	0.75	0.09	9.75
	SB16	0.11	98.31	1.58	0.44	0.06	8.63
	Average	1.90	95.85	2.25	0.49	0.06	7.37
	BB20	3.73	95.66	0.61	0.65	0.07	10.82
	BB21	0.23	97.75	2.01	0.28	0.04	8.14
	BB22	3.87	93.65	2.48	0.43	0.06	8.30
	LPG	0.18	94.97	4.85	0.45	0.07	7.50
Big Bay	BB24	0.00	96.32	3.68	0.20	0.03	7.93
Big	BB25	0.06	99.49	0.45	0.20	0.03	7.62
	BB26	0.48	94.32	5.20	0.51	0.06	9.86
	BB29	0.25	99.29	0.46	0.14	0.02	8.05
	BB30	0.00	99.97	0.03	0.16	0.02	9.22
	Average	0.98	96.83	2.20	0.33	0.04	8.60
	LL31	0.00	99.92	0.08	0.08	0.02	4.38
	LL32	0.17	99.75	0.08	0.17	0.04	5.08
<u> </u>	LL33	0.00	99.90	0.10	0.11	0.02	6.18
ggoc	LL34	0.27	99.54	0.19	0.19	0.04	5.43
Langebaan Lagoon	LL37	0.28	99.58	0.14	0.11	0.02	6.24
e paa	LL38	18.34	81.10	0.57	0.24	0.05	5.53
ange	LL39	0.45	99.55	0.00	0.07	0.02	3.97
ت	LL40	0.58	99.28	0.14	0.08	0.02	4.55
	LL41	0.55	99.35	0.09	0.10	0.04	3.03
	Average	2.29	97.55	0.16	0.13	0.03	4.93
ë	Eland 1	0.11	98.75	1.13	0.25	0.03	9.68
font	Eland 2	0.12	99.14	0.75	0.16	0.03	6.11
Elandsfontein	Eland 3	0.12	99.01	0.87	0.14	0.02	8.11
Ea	Average	0.12	98.96	0.92	0.18	0.03	7.97
	B1	0.12	98.58	1.30	0.52	0.05	12.13
	B2	0.00	98.98	1.02	0.18	0.04	5.28
	В3	0.00	97.76	2.24	0.44	0.05	10.17
ADZ	B4	0.00	96.81	3.19	0.30	0.04	8.78
₹	B5	0.87	94.58	4.54	0.49	0.07	8.23
	В6	0.00	99.41	0.59	0.17	0.03	6.77
	В7	0.21	98.93	0.85	0.30	0.04	8.66
	В8	0.00	99.63	0.37	0.26	0.04	7.67

Region	Sample	Gravel (%)	Sand (%)	Mud (%)	TOC (%)	TON (%)	C:N
	F1	0.12	99.65	0.24	0.32	0.04	9.28
	F2	0.00	95.57	4.43	0.60	0.09	7.73
	F3	0.00	99.58	0.42	0.32	0.03	12.60
	BC1	0.48	94.32	5.20	0.51	0.06	9.86
	BC2	0.00	99.94	0.06	0.22	0.04	6.30
	BC3	0.00	98.88	1.12	0.11	0.02	6.36
	NB1	0.10	99.15	0.75	0.16	0.03	6.26
	NB2	0.35	98.71	0.94	0.24	0.02	14.18
	NB3	0.44	99.28	0.28	0.51	0.07	8.45
	NB4	1.41	98.49	0.10	0.48	0.08	6.93
	NBC1	0.47	99.41	0.12	0.16	0.005	36.17
	NBC2	8.70	90.88	0.42	0.80	0.12	7.76
	NBC3	0.00	99.95	0.05	0.10	0.005	22.40

Mud is the most important particle size component to monitor given that fine grained particles provide a larger surface area to which contaminants bind. The sites beneath the mussel farm the lies adjacent to the causeway linking Marcus Island to the mainland, and in the shipping channels adjacent to the Iron Ore Terminal, are the deepest and are expected to yield sediments with a higher mud fraction than elsewhere in the Bay. Long-term sampling confirms these expectations, with the highest proportion of mud recorded in sediments in the vicinity of the Iron Ore Terminal, multi-purpose terminal, the mussel farms and the Yacht Club Basin. The remainder of sites in Big Bay had a relatively moderate to low mud content and Langebaan Lagoon had very low mud content in all recent surveys (Table 7.1).

A two-way crossed PERMANOVA design was performed using Year (twelve levels: 2009 - 2011 and 2013 - 2021) and Region (eight levels: Small Bay, Big Bay, Langebaan Lagoon, Elandsfontein, Sea Harvest, Danger Bay, Liquid Petroleum Gas and ADZ) as fixed factors. The results confirm that both factors have a significant effect on sediment composition (Year: Pseudo- F_{11} = 9.47, p < 0.001; Region: Pseudo- F_7 = 36.90, p < 0.001). However, there was no significant interaction between Region and Year (Region \times Year: Pseudo-F₃₄ = 1.12, p > 0.05) which suggests that the extent of the differences in sediment composition does not vary with region from one year to the next and vice versa. The former results are illustrated in Multidimensional Scaling (MDS) plots (Figure 7-8) which depict the similarities/dissimilarities amongst sediment composition in each region for each year. What is striking, though, is that Langebaan Lagoon has consistently remained different in sediment composition (separate grouping) from the rest of the sites from 2009 - 2021. Sediments in Big Bay and Small Bay are mostly quite similar, but inter-sample variation in Small Bay is clearly much higher than Big Bay or Langebaan Lagoon. Furthermore, there is a clear deviation of the LPG site from its surrounding Big Bay sites (stations 21 and 22) in 2017 as compared to the 2016 survey. This is most likely linked to disturbance (mainly dredging) that occurred near this site at that time. However, sediments at this site have since reverted to a more natural profile in the recent surveys (Figure 7-8).

Sampling for the Sea Harvest environmental monitoring programme was also undertaken at the same time as the SOB survey. The first survey conducted as part of this monitoring programme was undertaken in 2017 (Wright *et al.* 2018) and the recent 2020 – 2021 surveys were conducted after the installation and use of the "new" discharge site (Wright *et al.* 2020, 2021). It is evident from these

data that site SH1 in 2017 and 2020 was distinctly separated from its own SH grouping as well as the rest of Saldanha Bay regional areas (Figure 7-8) due to it being located in close proximity to the quayside (discharge site) and having left over construction material (stone and gravel) in the sediments. In the recent survey, however, site SH1 has joined with the other sites in Small Bay, which is an encouraging development (Wright *et al.* 2021).

Furthermore, particle size distribution sampled at sites within the established ADZ of Saldanha Bay was included within the 2021 SOB programme, as shellfish and finfish mariculture are expected to expand in the Bay (Dawson $et\ al.\ 2021$). Currently, particle size composition at the ADZ sites was not significantly different from the other regions of the Bay (Pair-wise tests, p>0.05), except for Langebaan Lagoon (Pair-wise tests, p<0.05, Figure 7-8). The former is not unexpected considering that finfish farming operations in Big Bay are still at an experimental stage (Dawson $et\ al.\ 2021$). Visually, only NBC2, SB2 and LL38 deviated away from the main SOB cluster and this is largely due to the higher gravel contribution at these sites (see Table 7.1 and Dawson $et\ al.\ 2021$).

In summary, the natural, pre-development state of sediment in Saldanha Bay comprised predominantly of sand particles; however, developments and activities in the Bay (causeway, ore terminal, Yacht Club Harbour and mussel rafts) reduced the overall wave energy and altered the current circulation patterns. This compromised the capacity of the system to flush the Bay of fine particles and led to the progressive accumulation of mud (cohesive sediment) in surface sediments in the Bay which peaked around 2000; and has been followed in more recent times by a reduction in the mud fraction to levels similar to those last seen in 1974. This pattern is very clearly evident in a comparison between the proportions of mud present in sediments in the Bay in 1974, 1999 and 2021 (Figure 7-6).

Dredge events, which re-suspended large amounts of mud from the deeper lying sediments, seem to be a dominant contributor to the elevated mud content in the Bay and results of surveys have shown a general pattern of an increase in mud content following dredge events followed by a recovery in subsequent years. Any future dredging or other such large-scale disturbance to the sediment in Saldanha Bay are likely to result in similar increases in the mud proportion as was evident in 1999, with accompanying increase in metal content.

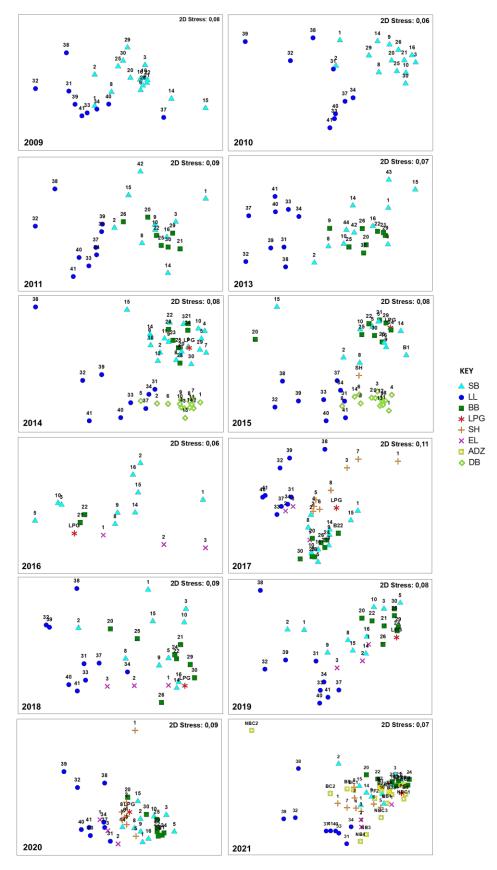


Figure 7-8 MDS plots of particle size distribution (PSD) from samples collected at sites from Saldanha Bay, Langebaan Lagoon and Elandsfontein from 2009 – 2021. Each region (SB: Small Bay, LL: Langebaan Lagoon, BB: Big Bay, SH: Sea Harvest, LPG: Liquid Petroleum Gas, EL: Elandsfontein, DB: Danger Bay and ADZ: Aquaculture Development Zone (within Saldanha Bay)) is represented by a unique symbol and colour.

7.3 Total organic carbon (TOC) and nitrogen (TON)

Total organic carbon (TOC) and total organic nitrogen (TON) accumulates in the same areas as mud as organic particulate matter is of a similar particle size range and density to that of mud particles (size < 60 μ m) and tends to settle out of the water column together with the mud. Hence, TOC and TON are most likely to accumulate in sheltered areas with low current strengths, where there is limited wave action and hence limited dispersal of organic matter. The accumulation of organic matter in the sediments doesn't necessarily directly impact the environment but the bacterial breakdown of the organic matter can (and often does) lead to hypoxic (low oxygen) or even anoxic (no oxygen) conditions. Under such conditions, anaerobic decomposition prevails, which results in the formation of sulphides such as hydrogen sulphide (H₂S). Sediments high in H₂S are characteristically black, foul smelling and toxic for living organisms.

The most likely sources of organic matter in Saldanha Bay are from phytoplankton production at sea and the associated detritus that forms from the decay thereof, fish factory waste discharged into the Bay, faecal waste concentrated beneath the mussel and oyster rafts in the Bay, treated sewage effluent discharged into the Bay from the wastewater treatment works (Saldanha & Langebaan) and stormwater. The molar ratios of carbon to nitrogen (C:N ratio) can be useful in determining the sources of organic contamination. Organic matter originating from marine algae typically has a C:N ratio ranging between 6 and 8, whereas matter originating from terrestrial plant sources exceeds this. Fish factory waste is nitrogen-rich and thus extremely low C:N ratios would be expected in the vicinity of a fish waste effluent outfall. However, nitrogen is typically the limiting nutrient for primary productivity in most upwelling systems including the Benguela, and the discharge of nitrogen-rich waste from fish factories has been linked to algal blooms using stable isotope studies (Monteiro *et al.* 1997). The excess nitrogen in the system is taken up by algae thereby allowing for bloom development. By consuming the nitrogen, the bloom effectively increases the C:N ratio. In addition, phytoplankton production and decomposition will then add to the levels of organic matter within the system.

Historical data on organic carbon levels in sediments in Saldanha Bay are available from 1974 (Flemming 1977), 1989 and 1990 (Jackson & McGibbon 1991), 1999, 2000 and 2001 (CSIR 1999a, 2000, 2001) and for 2004 and 2008 – 2020 from the State of the Bay sampling programme. According to data from Flemming (1977). TOC levels in Saldanha Bay were mostly very low (between 0.2 and 0.5%) throughout the Bay and Lagoon prior to any major development (Figure 7-9 and Figure 7-10).

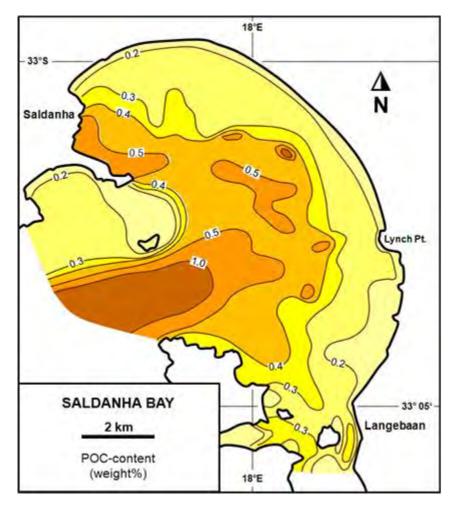


Figure 7-9 Levels of organic carbon in sediments Saldanha Bay in 1974. Source: Flemming (2015).

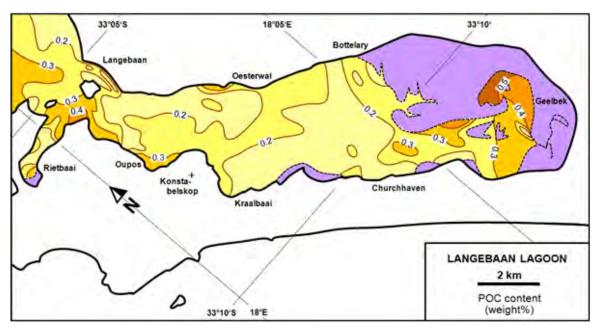


Figure 7-10 Levels of organic carbon in sediments in Langebaan Lagoon in 1974. Source: Flemming (2015).

The next available TOC data was collected in 1989 after the construction of the Iron Ore Terminal and the establishment of the mussel farms in Small Bay. At this stage, all key monitoring sites in the vicinity of the Iron Ore Terminal and in Small Bay had considerably elevated levels of TOC with the greatest increase occurring in the vicinity of the Mussel Farm (Figure 7-11). By the time the next surveys had been undertaken in 1999 (CSIR 1999a, Figure 7-12, Figure 7-11) levels of TOC had increased still further at most sites in the Bay. Results from 2000 and 2001, which were restricted to Small Bay, showed a similar pattern (Figure 7-11). Data from subsequent surveys undertaken in 2004 and between 2008 and 2020 are presented in the individual State of the Bay reports and are summarised in Figure 7-11. Data on the spatial distribution of TOC from 1999, 2020 and the most recent survey (2021) are shown in Figure 7-12. These data suggest that high TOC levels recorded in 1999 particularly at the Yacht Club Basin (SB1) and Multi-Purpose Terminal (SB14) dropped noticeably in the 2020 and recent 2021 survey (Figure 7-12 and Figure 7-11).

Levels of Total Organic Nitrogen (TON) in sediments in the Bay were first recorded in 1999 by the CSIR (CSIR 1999a) at the behest of the SBWQFT. Levels of TON in sediments were assessed again in 2000 and 2001 (CSIR 2000, 2001); and have been monitored annually from 2004 onwards as part of the State of the Bay monitoring programme. TON levels in 1999 were low at most sites (≤ 0.2%) except for those in the Yacht Club Basin and near the mussel rafts in Small Bay (Figure 7-11). Levels were slightly or even considerably elevated at all sites in 2000 and 2001 (Figure 7-11). Sampling conducted in 2004 spanned a large number of sites in Small Bay, Big Bay and Langebaan Lagoon and results indicated that levels remained elevated at sites near the Yacht Club Basin, Mussel Raft and Iron Ore Terminal in Small Bay, near the Iron Ore Terminal and in the deeper depositional areas in Big Bay; but were low elsewhere, especially in the Lagoon (Figure 7-11, see also the 2004 State of the Bay report). Results from the State of the Bay surveys conducted between 2008 and 2021 suggest that levels have dropped off slightly at many of the key sites in Small Bay but have remained more or less steady in other parts of the Bay and in the Lagoon (Figure 7-11). There was a clear increase in TON in 2018 compared to 2017 for Big Bay, but levels dropped again in 2019 – 2021 (Figure 7-11). Additionally, increased TON levels were observed in 2020 in Small Bay at the North Channel, of which similar increases were also evident at the Yacht Club Basin and Mussel farm, albeit to a lesser degree. However, TON concentrations at these localities have decreased in the recent survey. Spatial variation in TON levels recorded in the sediments in Saldanha Bay and Langebaan Lagoon in 1999, 2020 and 2021 are presented in Figure 7-12. Once again, concentrations are generally higher in Small Bay, particularly at the Yacht Club Basin and along the Iron Ore Terminal. TON concentrations were similar in both the 2020 and 2021 surveys, mirroring the patterns observed for TOC levels in the Bay (Figure 7-12). Overall, levels of TON at remaining sites in Small Bay remain low relative to levels recorded in 1999 and this is certainly encouraging.

Sources of organic nitrogen in Small Bay include fish factory wastes, biogenic waste from mussel and oyster culture as well as sewage effluent from the wastewater treatment works. Elevated levels of TON in Small Bay are considerably linked to the discharge of waste from the fish processing plants in this area, along with faecal waste accumulating beneath the mussel rafts and dredging operations at the Multi-Purpose Terminal.

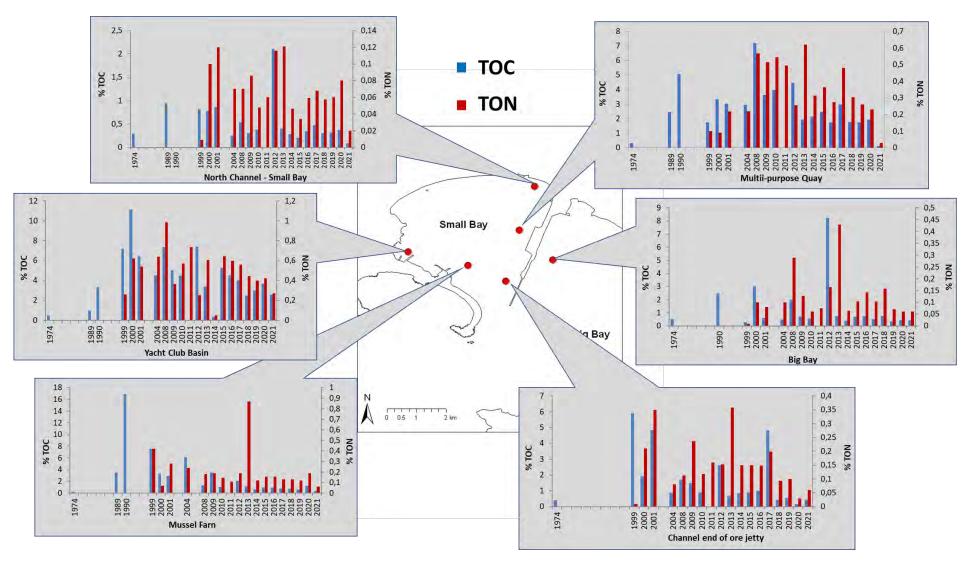


Figure 7-11 Total organic carbon and nitrogen in sediments of Saldanha Bay at six locations between 1974 and 2021. Data sources: 1974: Flemming (1977); 1899 – 1990: Jackson & McGibbon (1991); 1999 – 2021: SBWQFT.

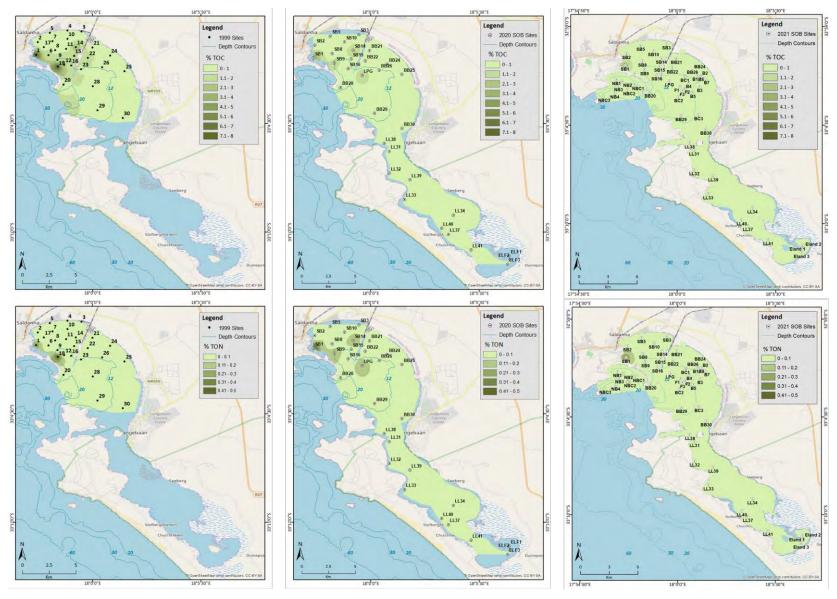


Figure 7-12 Total organic carbon (TOC, top) and total organic nitrogen (TON, bottom) levels in sediments in Saldanha Bay in 1999 (Source: CSIR 1999a), 2020 and 2021.

The ratio between TOC and TON in marine sediments is also important and provides an indication of the source of the organic matter present in sediment. The C:N ratio results in 2019 were similar, where majority of sites were within the expected range of marine production. However, the Yacht Club Basin (SB1) was consistently above the expected range during the last three surveys. It is likely that this is not associated with terrestrial inputs but rather with nitrogen depletion (denitrification) in this area (Figure 7-13). Whilst majority of the sites within Small Bay as well as Big Bay and Langebaan Lagoon were below the range of marine production during the 2019 survey; the latter pattern did not follow through to the recent 2020 – 2021 surveys (Figure 7-13). It is clearly evident that all of the sites within Big Bay (except BB24, BB25 and LPG), the Yacht Club Basin along with other Small Bay sites surrounding the multipurpose terminal were above the expected C:N range in 2021(Figure 7-13).

There are two possible reasons for elevated C:N ratios observed in 2021; the first being that the organic matter found in these areas originated from terrestrial sources. The alternate explanation is that natural decomposition processes reduced the amount of nitrogen present thereby elevating the C:N ratio (see low levels of TON across the Bay in Table 7.1). This process is known as denitrification and it occurs in environments where oxygen levels have been depleted (anoxic or hypoxic) and nitrates are present. Under these conditions, denitrifying bacteria dominate as they are able to substitute oxygen, which is normally required for organic matter degradation, with nitrate reduction (Knowles 1982, Tyrrell & Lucas 2002). In areas where photosynthetic rates are very high, such as in upwelling systems, or where there is a high degree of organic input, a high biological oxygen demand deeper in the water column and sediments can lead to complete oxygen utilisation. Denitrification may be responsible for the elevated C:N ratios in the deeper areas where a high TOC content was recorded, and stratification is possible. It is, however, highly unlikely that this process is responsible for the elevated C:N ratios at Langebaan sites in 2020, given that many of the sites with high C:N ratios are in highly exposed, shallow areas with low organic content. It thus seems likely the organic matter in many areas of the system originates from a terrestrial source.

The low C:N ratio values recorded in 2019 for the northern sites within Small and Big Bay are most likely due to the shallow water and/or high wave action and current patterns experienced at these sites resulting in a considerable amount of organic carbon being flushed out (Atkinson *et al.* 2006). Another alternative explanation for the reduced C:N ratios in 2019 compared to the recent 2020 – 2021 surveys is related to the low mud content present in the Bay. Previous studies have revealed that organic carbon content in terrestrial soils and marine sediments is often positively correlated with mud content (Baptista *et al.* 2000, Falco *et al.* 2004, Leipe *et al.* 2011, Serrano *et al.* 2016). Progressive reductions in the amount of fine material (mud) in the Bay in recent years may thus account for corresponding reductions in the C: N ratios. The observed temporal variability of C:N ratios in Saldanha Bay may well also reflect changes in upwelling intensity and benthic productivity over the summer period that precedes the annual surveys in April.

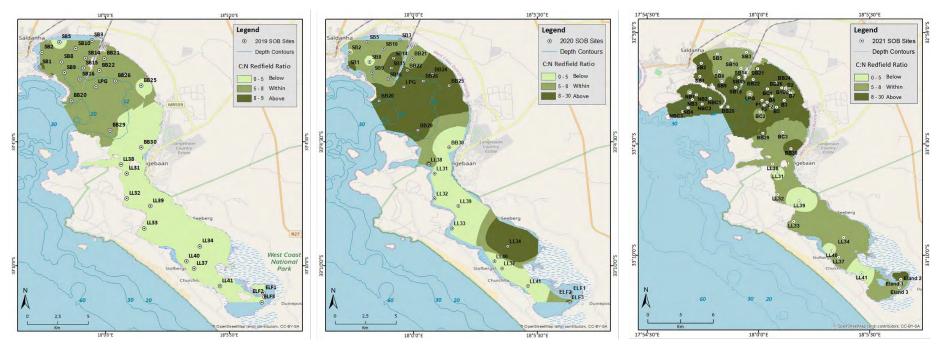


Figure 7-13 C:N ratios at different sites surveyed in Saldanha Bay, Langebaan Lagoon and Elandsfontein in 2019, 2020 & 2021 (dark green = exceeds the range expected for marine production; mild green = within the range expected for marine production and light green = below range expected for marine production).

7.4 Trace metals

Trace metals occur naturally in the marine environment and some are important in fulfilling key physiological roles. Disturbance to the natural environment by either anthropogenic or natural factors can lead to an increase in metal concentrations occurring in the environment, particularly sediments. An increase in metal concentrations above natural levels, or at least above established safety thresholds, can result in negative impacts on marine organisms, especially filter feeders like mussels that tend to accumulate metals in their flesh. High concentrations of metals can also render these species unsuitable for human consumption. Metals are strongly associated with the cohesive fraction of sediment (i.e., the mud component) and with TOC. Metals occurring in sediments are generally inert (non-threatening) when buried in the sediment but can become toxic to the environment when they are converted to the more soluble form of metal sulphides. Metal sulphides are known to form as a result of natural re-suspension of the sediment (strong wave action resulting from storms) and from anthropogenic induced disturbance events like dredging activities.

The Benguela Current Large Marine Ecosystem (BCLME) program reviewed international sediment quality guidelines in order to develop a common set of sediment quality guidelines for the coastal zone of the BCLME (Angola, Namibia and west coast of South Africa) (Table 7.2). The BCLME guidelines cover a broad concentration range and still need to be refined to meet the specific requirements of each country within the BCLME region (CSIR 2006). There are thus no official sediment quality guidelines that have been published for the South African marine environment as yet, and it is necessary to adopt international guidelines when screening sediment metal concentrations. The National Oceanic and Atmospheric Administration (NOAA) have published a series of sediment screening values which cover a broad spectrum of concentrations from toxic to non-toxic levels as shown in Table 7.2.

The Effects Range Low (ERL) represents the concentration at which toxicity may begin to be observed in sensitive species. The ERL is calculated as the lower 10th percentile of sediment concentrations reported in literature that co-occur with any biological effect. The Effects Range Median (ERM) is the median concentration of available toxicity data. It is calculated as the lower 50th percentile of sediment concentrations reported in literature that co-occur with a biological effect (Buchman 1999). The ERL values represent the most conservative screening concentrations for sediment toxicity proposed by the NOAA and ERL values have been used to screen the Saldanha Bay sediments.

Table 7.2 Summary of Benguela Current Large Marine Ecosystem and National Oceanic and Atmospheric Administration metal concentrations in sediment quality guidelines.

Metal (mg/kg dry wt.)	BCLME region (South A	NOAA					
	Special care	Prohibited	ERL	ERM			
Cd	1.5 – 10	> 10	1.2	9.6			
Cu	50 – 500	> 500	34.0	270.0			
Pb	100 – 500	> 500	46.7	218.0			
Ni	50 – 500	> 500	20.9	51.6			
Zn	Zn 150 – 750		150.0	410.0			
1(CSIR 2006) ; 2 (Long et al. 1995, Buchman 1999)							

Dramatic increases in trace metal concentrations, especially those of cadmium and lead after the start of the iron ore export from Saldanha Bay, raised concern for the safety and health of marine organisms, specifically those being farmed for human consumption (mussels and oysters). Of particular concern were the concentrations of cadmium which exceeded the lower toxic effect level published by NOAA. Both lead and copper concentrates are exported from Saldanha Bay, and it was hypothesised that the overall increase of metal concentrations was directly associated with the export of these metals. The concentrations of twelve different metals have been evaluated on various occasions in Saldanha Bay; however, the overall fluctuations in concentrations are similarly reflected by several key metals throughout time. For the purposes of this report, five metals that have the greatest potential impact on the environment were selected from the group. These are cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn).

The earliest data on metal concentrations in Saldanha Bay were collected in 1980, prior to the time at which iron ore concentrate was first exported from the ore terminal. The sites sampled were 2 km north of the multi-purpose terminal (Small Bay) and 3 km south of the multi-purpose terminal (Big Bay) and metals reported on included lead (Pb), cadmium (Cd) and copper (Cu). Concentrations of these metals in 1980 were very low, well below the sediment toxicity thresholds. Subsequent sampling of metals in Saldanha Bay (for which data is available) only took place nearly 20 years later in 1999. During the period between these sampling events, a considerable volume of ore had been exported from the Bay, extensive dredging had been undertaken in the Bay (1997/98) along with the Mussel Farm and the small craft harbour (Yacht Club Basin) being established (1984). As a result of these activities, the concentrations of metals in 1999 were very much higher (up to 60-fold higher) at all stations monitored. This reflects the accumulation of metals in the intervening 20 years, much of which had recently been re-suspended during the dredging event and had settled in the surficial (surface) sediments in the Bay. Concentrations of most metals in Saldanha Bay were considerably lower in the period 2000 - 2010. This closely mirrors changes in the proportion of mud in the sediments and most likely reflects the removal of fine sediments together with the trace metal contaminants from the Bay, by wave and tidal action. Monitoring surveys between 2001 and 2019 indicates that with a few exceptions, metal concentrations have continued to decline over time which is encouraging.

Sediments were analysed for concentrations of aluminium (AI), iron (Fe), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and manganese (Mn). Metals in the sediments were analysed by Scientific Services using a nitric acid (HNO_3) / perchloric acid ($HClO_3$)/ hydrogen peroxide (H_2O_2)/ microwave digestion and JY Ultima Inductively Coupled Plasma Optical Emission Spectrometer. Trace metal concentrations recorded in the sediments of Saldanha Bay are shown in Table 7.3 and the sections dedicated to each of the trace metals below.

In 2021, only cadmium and copper concentrations were highest and exceeded ERL guidelines in the vicinity of the Yacht Club Basin (Table 7.3). Compared to previous years, cadmium concentrations had noticeably dropped to less than 1 mg/kg at the rest of the monitoring sites; except for sites SB15, BB24 and BB26, however, these did not exceed guideline levels. Levels of other trace metals were all lower than in previous years and did not exceed ERL guidelines, except for copper. Although lead did not exceed ERL guidelines, concentrations were considerably elevated adjacent to the Multi-Purpose Terminal. The latter was also observed at the Yacht Club Basin for manganese. Comparing these results to the ERL guidelines provides a useful indication of areas in the Bay that may be toxic to living

organisms. However, this comparison does not provide an indication of whether the build-up of a trace metal is due directly to anthropogenic contamination of the environment with that particular metal or whether it is an indirect result of other environmental influences — for high levels of mud or organic carbon.

Table 7.3 Concentrations (mg/kg) of metals in sediments collected from Saldanha Bay in 2021. Values that exceed sediment quality guidelines are highlighted in red font.

	Sample	Al	Fe	Cd	Cu	Ni	Pb	Mn
*ERL Guideline (mg/kg)		-	-	1.2	34	20.9	46.7	56.50
	SB1	10977	11356.30	2.93	49.89	13.90	23.26	53.59
	SB2	1789	3157.90	< 1.0	7.29	2.40	6.59	16.91
	SB3	1542	2328.74	< 1.0	3.08	1.74	15.20	25.45
	SB5	1004	2337.29	< 1.0	4.14	1.29	3.49	15.43
Const. Dav.	SB8	1723	2439.96	< 1.0	1.87	2.11	6.92	17.05
Small Bay	SB9	3768	6137.08	< 1.0	4.88	4.62	9.44	32.54
	SB10	1609	3110.48	< 1.0	1.63	1.77	8.41	20.61
	SB14	3231	4174.51	< 1.0	10.29	4.25	25.20	45.81
	SB15	5003	6189.28	1.02	11.95	9.02	25.05	41.73
	SB16	2690	3602.00	< 1.0	6.03	4.54	6.70	29.01
	BB20	1040	1597.11	< 1.0	2.84	1.93	3.06	11.15
	BB21	2391	2922.98	< 1.0	2.08	2.69	5.04	19.73
	BB22	3084	4671.45	< 1.0	4.73	4.32	7.41	31.30
	LPG	3237	4309.33	< 1.0	8.10	4.95	7.79	27.21
Big Bay	BB24	2380	2873.41	1.09	6.51	3.54	4.74	19.15
	BB25	1106	1585.20	< 1.0	4.59	1.66	3.14	12.26
	BB26	4902	6931.78	1.01	7.25	7.81	8.99	37.64
	BB29	1655	2005.88	< 1.0	1.87	1.74	2.93	15.58
	BB30	900	1399.50	< 1.0	1.34	1.35	3.22	10.19
	LL31	1585	2886.07	< 1.0	2.61	1.84	4.73	18.13
	LL32	1576	4063.26	< 1.0	6.02	1.70	4.40	16.80
	LL33	1298	2520.27	< 1.0	9.83	< 1.0	3.38	16.16
	LL34	1858	2744.64	< 1.0	1.21	1.68	2.35	18.13
Langebaan Lagoon	LL37	1700	2481.14	< 1.0	4.84	1.50	1.60	18.10
	LL38	5563	8945.05	< 1.0	7.12	7.01	5.13	69.41
	LL39	1006	2060.67	< 1.0	< 1.0	0.97	3.54	15.71
	LL40	1633	3462.93	< 1.0	2.29	1.76	3.17	34.00
	LL41	980	2322.01	< 1.0	< 1.0	1.49	3.85	17.45
	Eland 1	3072	3814.26	< 1.0	1.41	2.64	4.12	21.44
Elandsfontein	Eland 2	-	-	-	-	-	-	-
	Eland 3	-	-	-	-	-	-	-
	BC1	0.49	6931.78	1.01	1.17	7.81	8.99	37.64
	BC2	0.05	1157.74	< 1.0	< 1.0	< 1.0	1.89	10.33
ADZ	BC3	0.15	2794.42	< 1.0	< 1.0	1.85	2.11	22.09
AUL	FF1	0.08	2150.21	< 1.0	< 1.0	1.48	3.45	19.82
	FF2	0.41	4769.31	< 1.0	< 1.0	5.73	4.94	38.95
	FF3	0.10	2155.09	< 1.0	< 1.0	1.94	4.60	20.22

The concentrations of metals in sediments are affected by grain size, total organic content and mineralogy. Since these factors vary in the environment, one cannot simply use high absolute concentrations of metals as an indicator for anthropogenic metal contamination. Metal concentrations are therefore commonly normalized to a grain-size parameter or a suitable substitute for grain size; and only then can the correct interpretation of sediment metal concentrations be made (Summers *et al.* 1996a).

A variety of sediment parameters can be used to normalize metal concentrations, and these include aluminium (Al), iron (Fe) and total organic carbon. Aluminium or iron are commonly used as normalisers for trace metal content as they ubiquitously coat all sediments and occur in proportion to the surface area of the sediment (Gibbs 1994); they are abundant in the earth's crust and are not likely to have a significant anthropogenic source (Gibbs 1994, Summers *et al.* 1996a); and ratios of metal concentrations to Al or Fe concentrations are relatively constant in the earth's crust (Summers *et al.* 1996a). Normalized metal/aluminium ratios can be used to estimate the extent of metal contamination within the marine environment and to assess whether there has been enrichment of metals from anthropogenic activities. Due to the known anthropogenic input of iron from the iron ore quay and industrial activity in Saldanha Bay; metal concentrations were normalized against (divided by) aluminium and not iron.

Another means of evaluating the extent of contamination of sediments by metals is to calculate the extent to which the sediments have been enriched by such metals since development started. Metal enrichment factors were calculated for cadmium, lead and copper relative to the 1980 sediments (Table 7.4). Unfortunately, historic enrichment factors could not be calculated for nickel and manganese as no data were available for these elements in 1980. Enrichment factors equal to (or less than) 1 indicate no elevation relative to pre-development conditions, while enrichment factors greater than 1 indicate a degree of metal enrichment within the sediments over time. The extent of contamination for cadmium, copper, nickel and lead is discussed below using both metal concentrations and the metal enrichment factors.

Table 7.4 Enrichment factors for cadmium, copper and lead in sediments collected from Saldanha Bay in 2021 relative to sediments from 1980. ND indicates no data.

	Sample	Cd	Cu	Pb
	1980 average	0.075	0.41	0.8
	SB1	39.01	121.68	29.07
	SB2	ND	17.78	8.24
	SB3	ND	7.50	19.00
>	SB5	ND	ND	4.37
Small Bay	SB8	ND	4.57	8.65
a <u>a</u>	SB9	ND	11.91	11.80
S	SB10	ND	3.97	10.51
	SB14	ND	25.10	31.50
	SB15	ND	29.16	31.31
	SB16	ND	14.70	8.37
	BB20	ND	6.92	3.83
	BB21	ND	5.08	6.30
	BB22	ND	11.53	9.26
<u>></u>	LPG1	ND	19.75	9.74
Big Bay	BB24	ND	15.87	5.92
<u>:</u>	BB25	ND	ND	ND
	BB26	ND	17.69	11.24
	BB29	ND	4.57	3.66
	BB30	ND	3.26	ND

7.4.1 Spatial variation in trace metals levels in Saldanha Bay

7.4.1.1 *Cadmium*

Sediments from sites located alongside the Iron Ore Terminal within Small Bay displayed low cadmium concentrations (< 1.02 mg/kg); whereas the area within the vicinity of the Yacht Club Basin revealed the highest concentration of cadmium (2.93 ml/kg). Furthermore, high concentrations of cadmium were also detected in Big Bay, particularly at site BB24, despite not exceeding the ERL limit (Figure 7-14, Table 7.3). Cadmium is a trace metal used in electroplating, in pigment for paints, in dyes and in photographical process. The likely sources of cadmium to the marine environment are in emissions from industrial combustion processes, from metallurgical industries, from road transport and waste streams (OSPAR 2010). A common source for cadmium contamination in the marine environment is storm water runoff. Cadmium is toxic and liable to bioaccumulation and is thus a concern for both the marine environment and human consumption (OSPAR 2010). Given the spatial pattern it is unlikely that the contamination of cadmium in the Bay is a result of storm water drainage, but rather that the cadmium contamination is resulting from shipping and boating. The area where this is particularly concerning is site SB1 (near the Yacht Club Basin) as the level of contamination at this site frequently exceeds the ERL limits. Furthermore, the enrichment values for this site since 1980 are high, indicating significant contamination of these areas with cadmium since 1980 (Table 7.4).

7.4.1.2 Copper

Copper concentrations were highest along the Iron Ore Terminal and near the Saldanha Bay Yacht Club within Small Bay (Figure 7-14, Table 7.3). This suggests that there may be a source of copper pollution affecting the Small Bay region. Copper is used as a biocide in antifouling products as it is very effective for killing marine organisms that attach themselves to the surfaces of boats and ships. Anti-fouling paints release copper into the sea and can make a significant contribution to copper concentrations in the marine environment (Clark 1986). The areas with elevated, normalized copper values also correspond with those with high levels of boat traffic. It is thus likely that anti-fouling paints used on boats may have been contributing copper to the system. It must be noted that no sites are situated in close proximity to Mykonos and the yacht club in Langebaan Lagoon. It is possible that both these areas have also been contaminated by copper. The copper concentration at the Yacht Club Basin in Saldanha Bay exceeded the ERL guideline, the normalized value (Table 7.5) indicates the pollution source was anthropogenic and the enrichment factor was also alarmingly high in 2021 (Table 7.4).

7.4.1.3 Nickel

Nickel values measured in 2021 were elevated at the yacht club and alongside the Iron Ore Terminal within Small Bay. However, one site, LL38, in Langebaan Lagoon appeared to have relatively greater nickel concentrations as opposed to the rest of the Bay (Figure 7-14, Table 7.3). Nickel is introduced to the environment by both natural and anthropogenic means. Natural means of contamination include windblown dust derived from the weathering of rocks and soils, fires and vegetation (Cempel & Nickel 2006). Common anthropogenic sources include the combustion of fossil fuels and the incineration of waste and sewerage (Cempel & Nickel 2006). Contamination of the Bay by nickel is not of great concern as concentrations are well below the ERL guideline limits.

7.4.1.4 Lead

Elevated lead concentrations were recorded in Small Bay particularly in the vicinity of the Multi-Purpose Terminal and the Saldanha Bay Yacht Club (Figure 7-14, Table 7.3). Lead pollution is a worldwide problem and is generally associated with mining, smelting and the industrial use of lead (OSPAR 2010). Lead is a persistent compound which is toxic to aquatic organism and mammals and thus, the contamination is of concern for the marine environment and human consumption (OSPAR 2010). The area adjacent to the multi-purpose terminal had the highest lead values indicating that this area is subject to high levels of lead pollution. The enrichment factor for the site nearest to the multi-purpose terminal was very high (31.50), however, the concentration of lead was below recommended ERL toxicity limits (Table 7.3). Normalized metal/aluminium ratios revealed that lead contamination was high at numerous sites in Small Bay (Table 7.5). Areas of concern corresponded with sites where high metal concentrations and metal enrichment were indicated.

7.4.1.5 Manganese

Manganese concentrations were highest near the Yacht Club Basin and along the Iron Ore Terminal within Small Bay; despite being below the ERL toxicity thresholds (Figure 7-14, Table 7.3). This suggests that there may be a source of manganese pollution affecting these areas of the Small Bay region. Manganese is naturally ubiquitous in the marine environment, although it can become harmful through its tendency to accumulate in certain organisms such as shellfish. The concentration of manganese recorded is possibly associated with the export of manganese (Section 3.3).

Table 7.5 Normalized values for cadmium, copper, nickel, lead and manganese in sediments collected from Saldanha Bay and Langebaan Lagoon in 2021. ND indicates no data.

	Sample	Cd:Al	Cu:Al	Mn: Al	Ni:Al	Pb:Al
	SB1	2.67	45.45	48.82	12.66	21.19
_	SB2	ND	40.73	94.52	13.40	36.83
	SB3	ND	19.95	165.05	11.29	98.57
	SB5	ND	ND	153.59	12.87	34.78
Small Bay	SB8	ND	10.87	98.96	12.23	40.14
m all	SB9	ND	12.96	86.36	12.27	25.05
S	SB10	ND	10.12	128.10	11.03	52.25
	SB14	ND	31.85	141.78	13.14	77.99
	SB15	ND	23.89	83.41	18.04	50.07
	SB16	ND	22.41	107.84	16.87	24.89
	BB20	ND	27.28	107.24	18.52	29.43
	BB21	ND	8.71	82.52	11.24	21.08
	BB22	ND	15.32	101.50	14.01	24.03
>	LPG	ND	25.02	84.06	15.30	24.08
Big Bay	BB24	ND	27.34	80.47	14.86	19.90
<u></u>	BB25	ND	ND	110.77	14.96	ND
	BB26	ND	14.80	76.78	15.93	18.35
	BB29	ND	11.32	94.11	10.52	17.71
	BB30	ND	14.86	113.22	14.96	ND
	LL31	ND	16.49	114.42	11.60	29.85
	LL32	ND	ND	106.62	10.78	27.89
uo	LL33	ND	ND	124.57	ND	ND
Langebaan Lagoon	LL34	ND	6.53	97.54	9.03	12.64
aan	LL37	ND	ND	106.49	8.82	ND
geb	LL38	ND	12.80	124.78	12.60	9.23
Lang	LL39	ND	ND	156.20	9.63	ND
	LL40	ND	14.00	208.29	10.81	ND
	LL41	ND	ND	178.13	15.17	ND
	BC1	2.05	14.80	76.78	15.93	18.35
	BC2	ND	ND	202.35	ND	37.08
7	BC3	ND	16.79	144.65	12.08	13.84
ADZ	FF1	ND	ND	247.13	18.48	43.00
	FF2	ND	14.86	96.03	14.12	12.19
	FF3	ND	ND	201.08	19.31	45.71

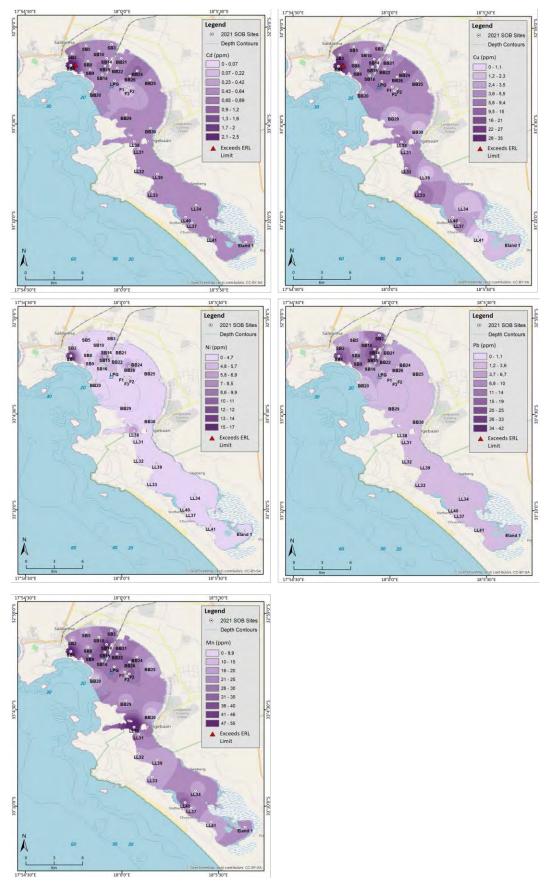


Figure 7-14 Spatial interpolation of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb) and manganese (Mn) values measured in sediments in Saldanha Bay in 2021. Red triangles indicate sites that exceed the ERL limit.

7.4.2 Temporal variation in trace metal levels in Saldanha Bay

The temporal variation in the concentration of trace metals in the most heavily contaminated areas (Small Bay and along the Iron Ore Terminal in Big Bay) relative to the ERL guidelines is discussed below.

7.4.2.1 *Cadmium*

There was a considerable increase in the concentration of cadmium detected in the sediments of Saldana Bay between 1980 and 1999. In 1999, the levels of cadmium recorded at the Mussel Farm, the Yacht Club Basin and the Channel End of the Iron Ore Terminal exceeded the ERL toxicity threshold of 1.2 mg/kg established by NOAA (Figure 7-15). Cadmium concentrations have shown a progressive and dramatic decrease in the period 1999 – 2010; however, the results between 2010 and 2013 indicated a steady increase again in the cadmium concentrations at the Yacht Club Basin and Multipurpose Quay. At the time of the 2014 survey, cadmium concentrations had decreased to below the ERL toxicity threshold within the Yacht Club Basin, but since 2015, levels have remained high. Concentrations at the multi-purpose terminal have shown a steady decrease since 2014 and reached its lowest to < 1.0 mg/kg in 2020. Low cadmium concentrations such as the latter were also detected across the majority of the key sites in the Bay in the year 2020. However, the latter pattern did not persist in the recent survey, whereby cadmium levels increased rapidly at all of the key sites in the Bay, particularly at the Yacht Club Basin; where concentrations exceeded the ERL threshold. Up until the current survey, the Channel end ore jetty and the north channel sites in Small Bay are the two sites where cadmium concentrations remained consistently low over the previous years (Figure 7-15).

7.4.2.2 Copper

The total concentration of copper in the sediments has remained well below the ERL threshold consistently since 1980; with the exception of the Yacht Club Basin, which has exceeded the ERL in most years (Figure 7-16). Apart from the low levels recorded in 2014, copper concentrations at the Yacht Club Basin have remained high (above the ERL guideline) over the past twelve years. In the recent 2021 survey, there has been a noticeable increase in copper concentrations across all sites, particularly at the Yacht Club Basin (Figure 7-16).

7.4.2.3 Nickel

The concentration of nickel was the highest at the Yacht Club Basin and the Mussel Farm in 1999 where it exceeded the ERL threshold (Figure 7-17). Since 1999, nickel concentrations have declined markedly at both sites, never again exceeding the ERL threshold. Peak nickel concentration at the remaining four sites were observed in 2000, though concentrations did not exceed the ERL threshold. Since 2000, levels of nickel have declined at all four of these sites and remained relatively constant to present date up to the 2018 survey. From 2019 onwards, nickel concentrations have been fluctuating at all six localities, with the Yacht Club Basin having a noticeable increase in the current 2021 survey compared to the rest of the sites (Figure 7-17).

7.4.2.4 Lead

The concentration of lead peaked and exceeded the ERL threshold at the Yacht Club Basin and Mussel farm site in 1999 (Figure 7-18). The concentration of lead at these sites has not exceeded the ERL level since this time. Lead concentrations in sediments adjacent to the multi-purpose terminal have frequently exceeded the ERL threshold over the last 17 years. This result suggests that industrial and shipping activities taking place at the multi-purpose terminal continue to contaminate the adjacent marine environment with lead. The 2021 survey indicated elevated levels in lead concentrations at most of the localities, most of which were subtle (Figure 7-18).

7.4.2.5 Manganese

The temporal variation in manganese concentrations in sediments around the ore terminal in Saldanha Bay is shown in Figure 7-19. Manganese concentrations at sites located along the ore terminal within Small Bay have fluctuated over recent years. High concentrations of manganese were recorded at the Small Bay sites in 2014 but have gradually decreased over the last four years, however, the manganese concentrations are greatly elevated in 2019 for all three sites within Small Bay. The latter pattern was also evident for the two sites located along the ore terminal within Big Bay for 2019. However, in the current survey, manganese concentrations have declined across all key sites in the Bay (Figure 7-19). The latter development is in spite of the recent growth of manganese exports in Saldanha Bay (See Chapter 3).

7.4.2.6 Iron

The temporal variation in the concentration of iron in sediments around the ore terminal in Saldanha Bay is shown in Figure 7-20. The concentration of iron increased between 1999 and 2004 at sites SB14 and SB15 which are in closest proximity to and on the downwind side (of the predominant southerly winds) of the multi-purpose terminal. This may have been due to increases in volumes of ore handled or increases in losses into the sea over this period, or simply reflects accumulation of iron in the sediments over time. There was a reduction in the concentration of iron in the sediments at most sites on the Small Bay side of the ore terminal between 2004 and 2010. Dredging took place at the multi-purpose terminal in 2007 and the removal of iron rich sediment at SB15 is probably the reason for the dramatic decrease in iron concentration recorded at this station between 2008 and 2009 sampling. Sediment iron concentration at this site did increase in 2009, but decreased again in 2010 samples. The 2011 survey revealed that iron concentrations had increased at most sites around the ore terminal despite reductions in the mud contents at all sites. This suggests that fluctuations in iron content are a result of iron inputs rather than the flushing experienced at the sites.

Transnet has implemented a number of new dust suppression measures in recent years (SRK 2009, Viljoen *et al.* 2010). Dust suppression mitigation measures implemented since mid-2007 include conveyer covers, a moisture management system, chemical dust suppression and surfacing of roads and improved housekeeping (road sweeper, conveyor belt cleaning, vacuum system, dust dispersal modelling and monitoring) amongst others. The volume of ore handled at the bulk quay has increased from around 4.5 million tonnes per month during 2007 – 2008 to around 6.5 million tonnes during 2009 – 2010 (~50% increase); yet the concentration of iron in the sediments at sites adjacent to the

ore terminal remained fairly stable or decreased between 2009 and 2010. Relatively small fluctuations in the concentration of iron were seen at five of the six sites between 2010 and 2021 (Figure 7-20). However, the concentration of iron at SB15 has fluctuated dramatically since 2012, but has shown an overall decrease in the last eight years. This does suggest that the improved dust control methods implemented since 2007 have been successful in reducing the input to the marine environment. Although in 2019, there was a significant increase in lead concentration at SB1 as well in the recent survey compared to 2020. Overall, iron concentrations have increased noticeably across all sites (except for SB14) in the present survey. Ongoing monitoring of sediment iron concentration will reveal whether the increase recorded across these sites will continue with the anticipated higher volumes of ore handling.

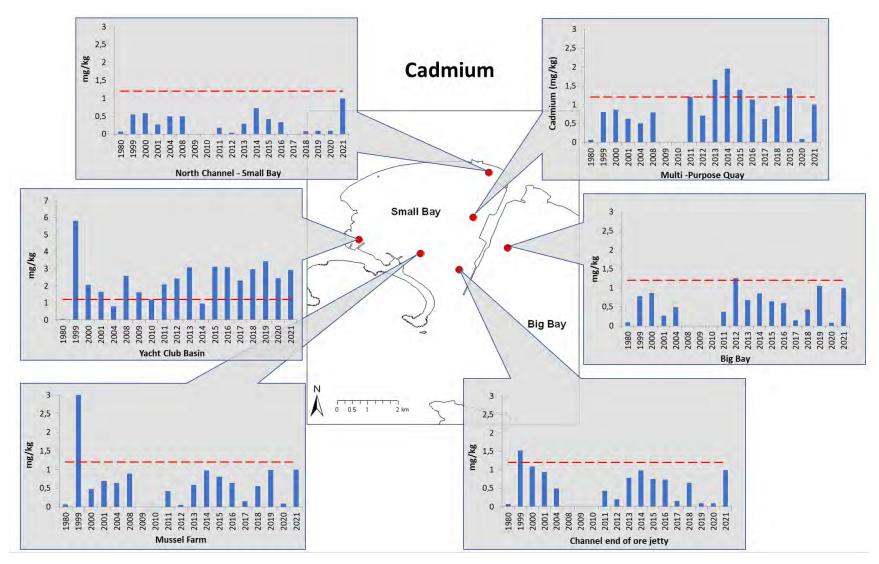


Figure 7-15 Concentrations of cadmium (Cd) in mg/kg recorded at six sites in Saldanha Bay between 1980 and 2021. Dotted lines indicate Effects Range Low values for sediments.

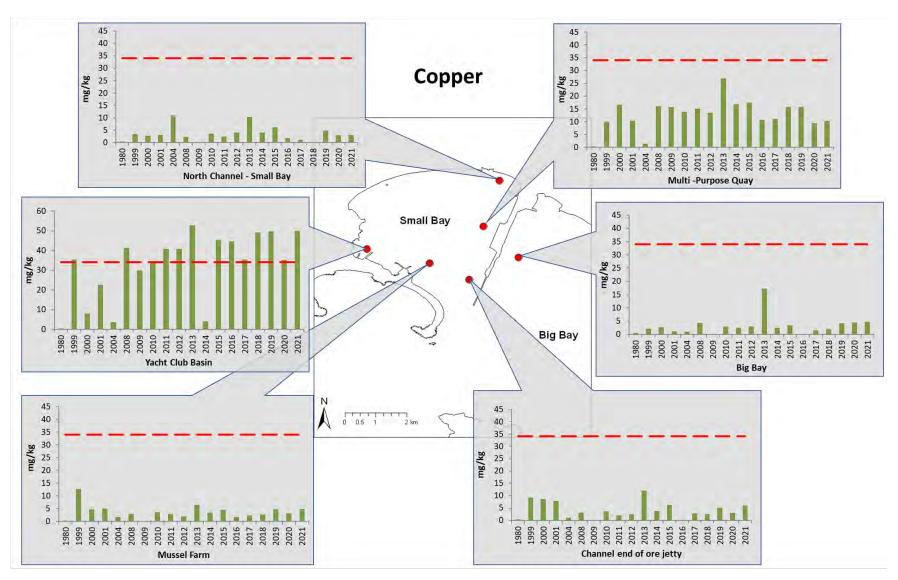


Figure 7-16 Concentrations of copper (Cu) in mg/kg recorded at six sites in Saldanha Bay between 1980 and 2021. Dotted lines indicate Effects Range Low values for sediments.

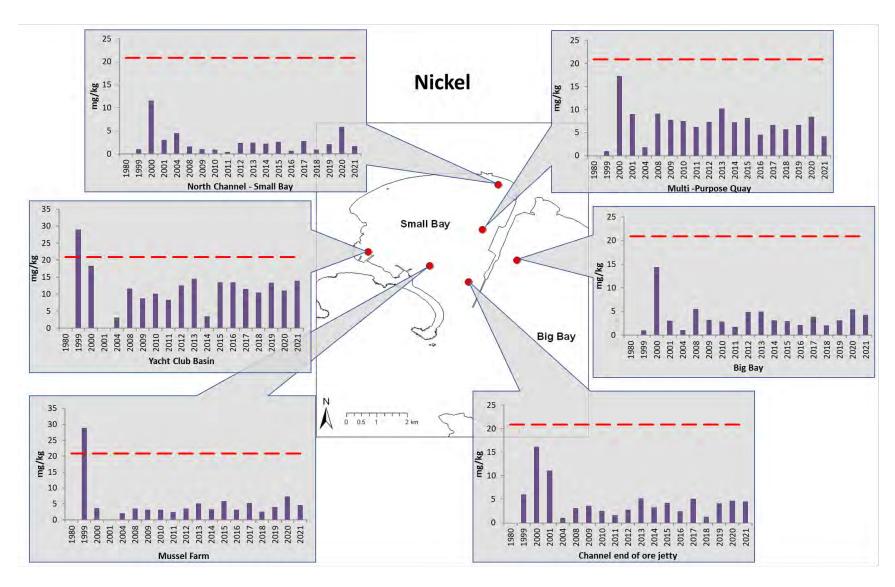


Figure 7-17 Concentrations of nickel (Ni) in mg/kg recorded at six sites in Saldanha Bay between 1980 and 2021. Dotted lines indicate Effects Range Low values for sediments.

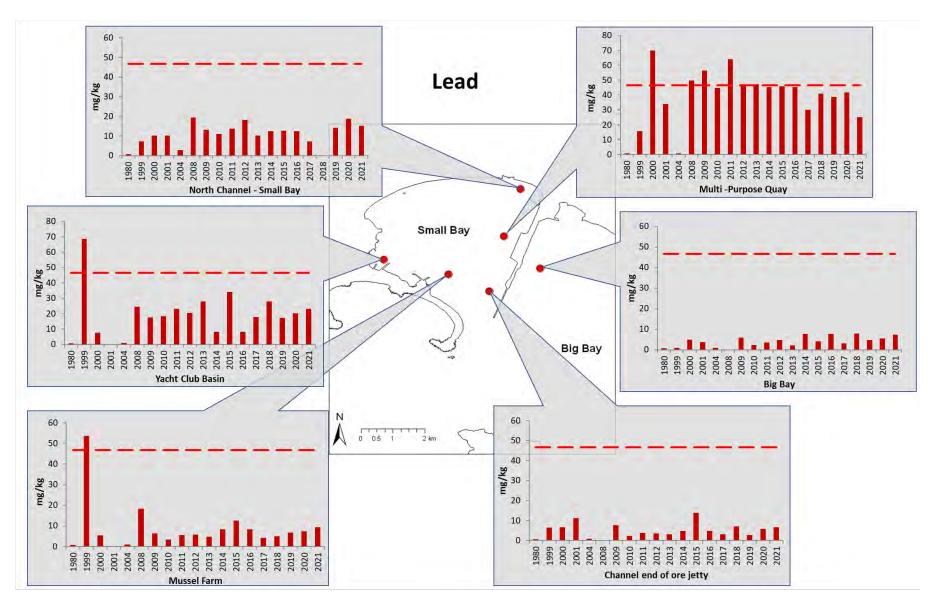


Figure 7-18 Concentrations of lead (Pb) in mg/kg recorded at six sites in Saldanha Bay between 1980 and 2021. Dotted lines indicate Effects Range Low values for sediments.

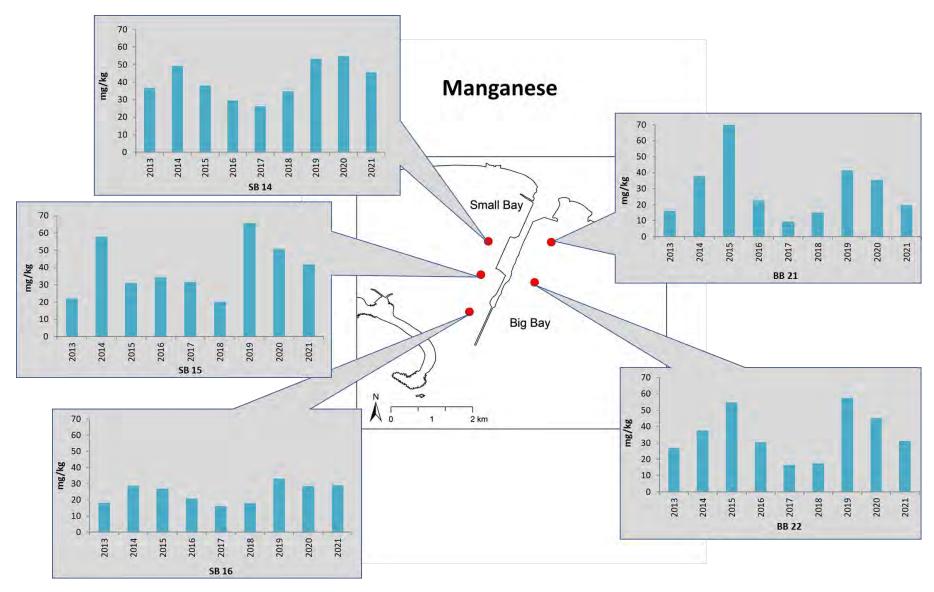


Figure 7-19 Concentration of manganese (Mn) in mg/kg recorded at five sites in Saldanha Bay between 2013 and 2021.

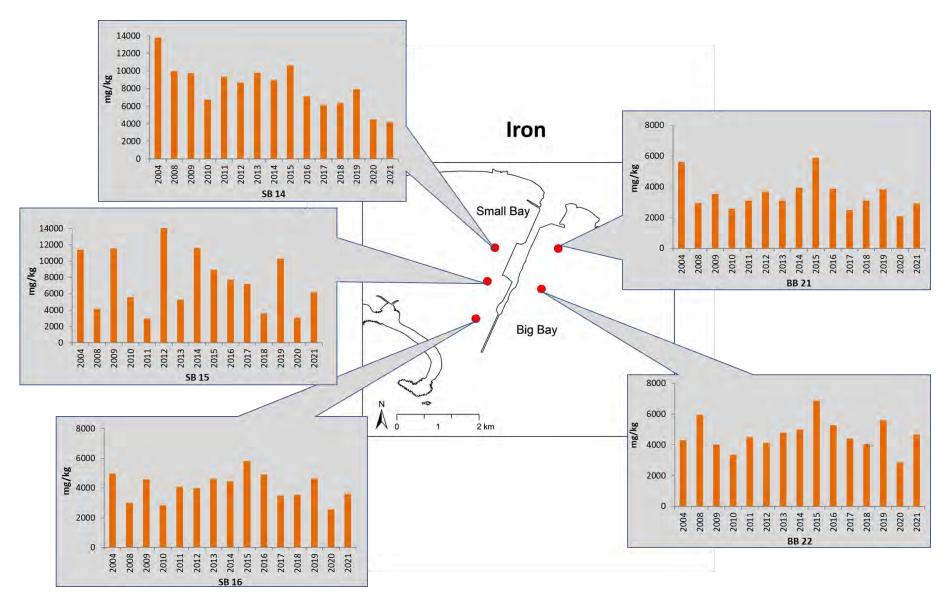


Figure 7-20 Concentrations of iron (Fe) in mg/kg recorded at five sites in Saldanha Bay between 2004 and 2021.

7.5 Hydrocarbons

Poly-aromatic hydrocarbons (PAH) (also known as polynuclear or polycyclic-aromatic hydrocarbons) are present in significant amounts in fossil fuels (natural crude oil and coal deposits), tar and various edible oils. They are also formed through the incomplete combustion of carbon-containing fuels such as wood, fat and fossil fuels. PAHs are one of the most wide-spread organic pollutants and they are of particular concern as some of the compounds have been identified as carcinogenic for humans (Nikolaou *et al.* 2009). PAHs are introduced to the marine environment by anthropogenic (combustion of fuels) and natural means (oil welling up or products of biosynthesis) (Nikolaou *et al.* 2009). PAHs in the environment are found primarily in soil, sediment and oily substances, as opposed to in water or air, as they are lipophilic (mix more easily with oil than water) and the larger particles are less prone to evaporation. The highest values of PAHs recorded in the marine environment have been in estuaries and coastal areas as well as in areas with intense vessel traffic and oil treatment (Nikolaou *et al.* 2009).

Marine sediment samples from Saldanha Bay were analysed for the presence of hydrocarbons in 1999. No PAHs were detectable in the samples, but low levels of contamination by aliphatic (straight chain) molecules, which pose the lowest ecological risk, were detected. This suggested that the main source of contamination is the spilling and combustion of lighter fuels from fishing boats and recreational craft (Monteiro *et al.* 1999). Sediment samples from five sites in the vicinity of the oil terminal in Saldanha Bay were tested for PAH contamination in April 2010. PAH concentrations at all five sites were well below ERL values stipulated by NOAA. From 2011 to 2014 PAH levels were not tested due to the continual low levels. However, analysis of total petroleum hydrocarbon (TPH) concentrations was continued.

Table 7.6 Total petroleum hydrocarbons (mg/kg) in sediment samples collected over the period 2011 – 2021 from five stations in Saldanha Bay. Values in red indicate exceptionally high total petroleum hydrocarbon levels.

ND indicates no data available.

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
SB14	< 20	34	130	19	< 38	< 38	< 38	< 38	< 38	< 38	< 22
SB15	< 20	35	ND	53	< 38	< 38	< 38	< 38	< 38	< 38	< 22
SB16	< 20	24	28	14 649	< 38	< 38	< 38	< 38	< 38	< 38	< 22
BB21	< 20	20	32	20	< 38	< 38	< 38	< 38	< 38	< 38	< 22
BB22	< 20	17	27	<0.2	< 38	< 38	< 38	< 38	< 38	< 38	< 22

PAH levels have been well below the guideline limits and despite there being no guideline limits to determine the toxicological significance of TPH contamination there have been considerable fluctuations in contamination levels since 2011. TPH levels recorded in 2011 were below the detection limit of 20 mg/kg while slight increases were recorded at all sites in 2012 and 2013 (Table 7.6). TPH levels at site SB14 decreased from 130 mg/kg to 19 mg/kg in 2014, however, there was the extreme increase at site SB16 from 28 mg/kg to 14 649 mg/kg. The most likely explanation for the high TPH levels recorded is that a pollution incident associated with shipping activities took place. Alternatively, a pollution incident or routine operational activities on the jetty itself could be the root of this

contamination. Since 2015, TPH concentrations have been below the detection limit and have remained at this level at all five sites to present.

Sediment samples collected in 2021 had low PAH levels across all sites (Table 7.7). While the TPH and PAH findings present no major concern, it is recommended that TPH monitoring within the vicinity of the ore terminal is continued annually in order to identify the frequency of occurrence of pollution incidents; like that recorded in 2014 and assess the ecological implications to the Bay.

Table 7.7 Sediment Quality guidelines and Poly-aromatic hydrocarbons concentrations measured in sediment samples collected from Saldanha Bay in April 2021.

Hydrocarbon (mg/kg)	ERL*	ERM**	SB14	SB15	SB16	BB21	SB22
Acenaphthene	0.016	0.5	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Acenaphthylene	0.044	0.64	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Anthracene	0.0853	1.1	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Benzo(a) anthracene	0.261	1.6	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Benzo(a) pyrene	0.43	1.6	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Benzo(b+k) flouranthene	-	-	<0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Benzo (g.h.i) perylene	-	-	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Crysene	0.384	2.8	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Dibenzo (a.h) anthracene	0.0634	0.26	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Flouranthene	0.6	5.1	< 0.002	0.0044	< 0.002	< 0.002	< 0.002
Flourene	0.019	0.54	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Indeno (1.2.3-c.d) pyrene	-	-	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Naphthalene	0.16	2.1	< 0.004	< 0.004	< 0.004	0.0043	< 0.004
Phenanthrene	0.24	1.5	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Pyrene	0.665	2.6	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Total PAH	4	44.7	-	-	-	-	-

^{*}Effects Range Low guideline stipulated by NOAA below which toxic effects rarely occur in sensitive marine species.

^{**}Effects Range Median guideline stipulated by NOAA above which toxic effects frequently occur in sensitive marine species.

8 AQUATIC MACROPHYTES IN LANGEBAAN LAGOON

8.1 Community composition and distribution

Three distinct intertidal habitats exist within Langebaan Lagoon: seagrass beds, such as those of the eelgrass *Zostera capensis*; salt marsh dominated by cordgrass *Spartina maritima* and *Sarcocornia perennis*, and the dune slack rush *Juncus kraussi*, and unvegetated sandflats dominated by the sand prawn, *Kraussillichirus krausii* and the mudprawn *Upogebia capensis* (Siebert & Branch 2005). The other major vegetation type present in the upper lagoon area, particularly where groundwater inflow occurs, are reed beds dominated by common reed *Phragmites australis*. The most recent, detailed vegetation map¹¹ of the area surrounding Langebaan Lagoon dates to 2013 (Figure 8-1) (van der Linden 2014).

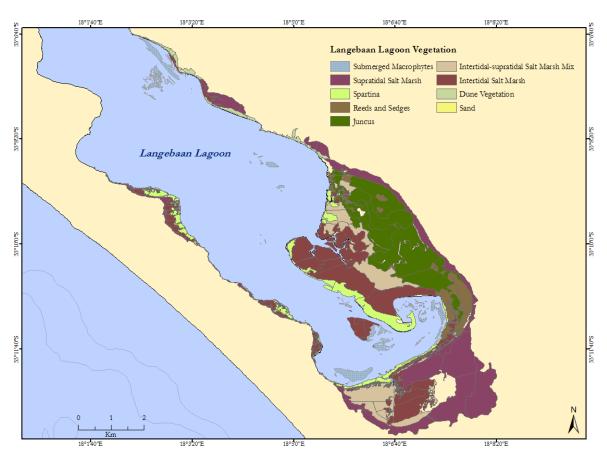


Figure 8-1 Vegetation and habitat structure at Langebaan Lagoon. (Source: Shapefiles provided by van der Linden 2014).

Salt marsh communities are generally comprised of herbaceous plants, shrubs and grasses within areas that are tidally inundated (Nybakken 2001). Within traditional salt marshes, plant communities occur along distinct zones following a tidal gradient and elevation pattern (Hughes & Paramor 2004,

¹¹ In this map, eelgrass falls within the submerged macrophyte category.

Perry & Atkinson 2009). Salt marsh species occur in a hostile environment, and as few species are able to cope in such environments, species diversity is low. Salt marshes tend to be associated with euhaline (30 to 35 ppt) conditions that many salt marsh species are able to cope with, however, growth rates tend to decrease as salinity increases and germination occurs only when the surrounding water salinity decreases (Smart & Barko 1980, Price *et al.* 1988).

The primary abiotic factors influencing salt marsh distributions are salinity and water availability (Pan et al. 1998). Salt marshes growing in areas with high water availability (high rainfall and intertidal zones) are influenced by sediment salinity more than by water availability in terms of zonation patterns (Krüger & Peinemann 1996). Sediment moisture limits the growth of xerohalophytes (those that occur in drier soils) (Zedler et al. 1986), which in turn is dependent on the depth of the water table (Bornman et al. 2008). Salt marsh communities often show a distinct zonation pattern along tidal inundation and salinity gradients, whereby different plant species and different vegetation colours are seen (Adams & Ngesi 2002). Salt marshes are often separated into three zones, subtidal, intertidal and supratidal (Figure 8-1). Zonation is influenced by biotic interactions and by spatial and temporal gradients in physical variable such as salinity and soil moisture (Noe & Zedler 2001, Rogel et al. 2001). Subtidal and intertidal zones are generally structure by stress tolerances, especially by high salt gradients, while the supratidal zone may be characterised by competition (Emery et al. 2001).

Sand and mud pawns are considered ecosystem engineers as their feeding and burrowing activities modify the local environmental conditions, which in turn modify the composition of the faunal communities (Rhoads & Young 1970, Woodin 1976, Wynberg & Branch 1991, Siebert & Branch 2006). Seagrass beds and salt marshes perform an opposite and antagonistic engineering role to that of the sand and mud prawns as the root-rhizome networks of the seagrass and salt marsh plants stabilize the sediments (Siebert & Branch 2005). In addition, the three-dimensional leaf canopies of the seagrass and salt marsh plants reduce the local current velocities thereby trapping nutrients and increasing sediment accretion (Kikuchi & Perez 1977, Whitfield et al. 1989, Hemmingra & Duarte 2000). The importance of seagrass and salt marsh beds as ecosystem engineers has been widely recognized. The increased food abundance, sediment stability, protection from predation and habitat complexity offered by seagrass and salt marsh beds provide nursery areas for many species of fish and invertebrates. These habitats support, in many cases, a higher species richness, diversity, abundance and biomass of invertebrate fauna compared to unvegetated areas (Kikuchi & Peres 1977, Whitfield et al. 1989, Hemmingra & Duarte 2000, Heck et al. 2003, Orth et al. 2006, Siebert & Branch 2007). It is therefore surprising that recent research in the Langebaan Lagoon by Pillay et al. (2011) showed that the opposite was true when comparing sediment penetrability and species richness between habitats dominated by the sandprawn K. kraussi and cordgrass S. maritima. Bioturbation by the sandprawn loosened the sediment, resulting in less anoxic conditions, enhanced organic content and colonisation of burrowing species. It was speculated that the sandprawn may aid in increasing food availability to higher trophic levels. Seagrass and salt marsh beds are also important for waterbirds, some of which feed directly on the shoots and rhizomes, forage amongst the leaves or use them as roosting areas at high tide (Baldwin & Lovvorn 1994, Ganter 2000, Orth et al. 2006).

8.2 Long-term changes in aquatic macrophytes in Langebaan Lagoon

8.2.1 Reed and sedge communities

No long-term changes in reeds and sedges in and around Langebaan Lagoon has been conducted. However, concern has recently been voiced about potential impacts that the use of groundwater from the Langebaanweg and Elandsfontein aquifers may be having on groundwater quality and flows to Langebaan Lagoon. Langebaan Lagoon is not fed by overland streams or rivers and it has been suggested that groundwater plays a significant role in sustaining the marsh ecosystems at the head of the lagoon (Valiela et al. 1990, Burnett et al. 2001). Diagnostic plants indicate significant contributions of groundwater (Adams & Bate 1994). For example, reeds (P. australis and Typha capensis) occur at discrete points on the shoreline surrounding Langebaan lagoon (Figure 8-2). These plants can only survive in water or at least damp soil and are only able to tolerate salinity levels up to a maximum of 20 – 25 PSU (Adams & Bate 1994, Nondoda 2012). The salinity of the water in the lagoon is generally the same (or occasionally higher) than that of seawater — i.e., 35 ppt, and these species are only found at sites where freshwater is seeping into the lagoon (i.e., the main groundwater input sites in the south east of the lagoon along the shoreline at Geelbek). The fauna and flora in the Lagoon are mostly marine and estuarine in nature, and while some are euryhaline and are able to tolerate salinity (salt) levels anywhere between fresh water (i.e., 0 ppt) and normal seawater (35 ppt), most species are not tolerant of salinities in excess of 35 PSU.



Figure 8-2 Reeds and sedges as classified by van der Linden (2014) at Langebaan Lagoon (Source: Shapefiles provided by van der Linden 2014).

Reducing freshwater inflow into Langebaan Lagoon that may result from groundwater use could result in the development of more extreme hypersaline conditions in the upper lagoon, killing flora and fauna sensitive to salinities in excess of normal seawater. To mitigate impacts on groundwater flow, it was suggested that where possible, as in the case of the phosphate mining operation conducted by Kropz at their Elandsfontein site, the extracted water is injected back into the aquifer system via boreholes downstream of the mining site. This mining method is predicted to use only a small proportion of the extracted water for mining and processing and thus have little to no impact on the marsh habitat at Geelbek (Conrad 2014).

While it has been established from a groundwater assessment undertaken by Conrad (2014) that the proposed mining operations are highly unlikely to have any impact on the groundwater quality and flow (see Groundwater Chapter 5 for more details on this), Kropz Elandsfontein have opted to take a precautionary approach and carefully monitor any potential impacts on Langebaan Lagoon in association with the Saldanha Bay Water Quality Forum Trust (SBWQFT). The State of the Bay monitoring activities undertaken by the SBWQFT have thus been expanded to incorporate monitoring of various biological and physico-chemical variables to establish an appropriate baseline against which any potential future changes in the Lagoon can be benchmarked. This includes monitoring of water level, temperature, salinity (Chapter 5), reeds and sedges (this chapter) and biota (Chapter 9) at the top of the lagoon.

Results of our 2020 analysis suggests that variation in reed cover over time is relatively modest, having remained more or less constant over the last 31 years (1989 - 2020, Figure 8-3). The biggest perturbations in reed cover correspond with the two largest droughts that have been experienced in the region in this period (a 1:20 year event that occurred in the period 2002 - 2003) and an even more intense drought that occurred recently (a 1:100 year event in the period 2015 - 2017).

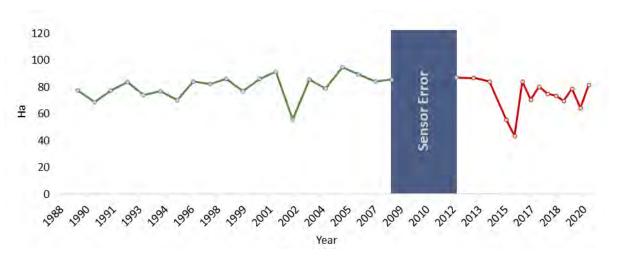


Figure 8-3 Phragmites australis trends between 1989 and 2020 as per the unsupervised classification performed in 2020. Green indicates annual Landsat imagery values, red indicates biannual Sentinel-2 imagery.

8.2.2 Seagrass

Seagrass beds are particularly sensitive to disturbance and are declining around the world at rates comparable to the loss of tropical rainforests, placing them amongst the most threatened ecosystems on the planet (Waycott *et al.* 2009). The loss of seagrass beds is attributed primarily to anthropogenic impacts such as deterioration in water quality through nutrient enrichment or eutrophication, alterations to food webs caused by the overexploitation of predatory fish, modified sediment dynamics associated with coastal and harbour development and direct physical damage through bait collection (Waycott *et al.* 2009, Pillay *et al.* 2010). Most recently, research has shown that warmer temperatures and longer exposure to air resulted in significantly lower biomass of seagrass in the Langebaan Lagoon (University of Cape Town, Cloverly Lawrence, *pers. comm.* 2014).

The loss of seagrass meadows has been shown to have profound implications for the biodiversity associated with them, including loss of invertebrate diversity, fish populations that use the sheltered habitat as nurseries, and waterbirds that use the seagrass meadows as foraging grounds during their non-breeding period (Hughes *et al.* 2002). Loss of seagrass is also associated with increased fragmentation of large seagrass beds, which leads to the reduced species diversity. For example, Källén *et al.* (2012) demonstrated that large seagrass beds were home to significantly greater epifaunal richness and abundance of *Assiminea globules. A. globules* is a gastropod which favours seagrass bed edges. Species composition was found to differ between the edges and the interior of seagrass beds and interestingly, it was shown that species composition was more homogenous in more fragmented seagrass beds (Källén *et al.* 2012).

Long-term changes in seagrass beds in Langebaan Lagoon have been investigated by Angel *et al.* (2006) and Pillay *et al.* (2010). Angel *et al.* (2006) focused on long-term trends at Klein Oesterwal and Bottelary, and was able to show that the width of the *Z. capensis* beds changed substantially between 1972 and 2004, with three major declines evident in this period (Figure 8-4).

The first occurred in the late 1970s, and was followed by a slow recovery in the early 1980s, the second occurred between 1988 and 1993 and the third between 2002 and 2004 (Angel *et al.* 2006). Mirroring this decline were substantial fluctuations in the abundance of the small endemic limpet *Siphonaria compressa*, which lives on the leaves of *Z. capensis* and is completely dependent on the seagrass for its survival. The densities of *S. compressa* collapsed twice in this period to the point of local extinction, corresponding with periods of reduced seagrass abundance (Figure 8-4). At Bottelary, the width of the seagrass bed and densities of *S. compressa* followed the same pattern as at Klein Oesterwal, with a dramatic collapse of the population between 2002 and 2004, followed by a rapid recovery in 2005 (Angel *et al.* 2006). The first decline in seagrass cover coincided with blasting and dredging operations in the adjacent Saldanha Bay, but there is no obvious explanation for the second decline (Angel *et al.* 2006).

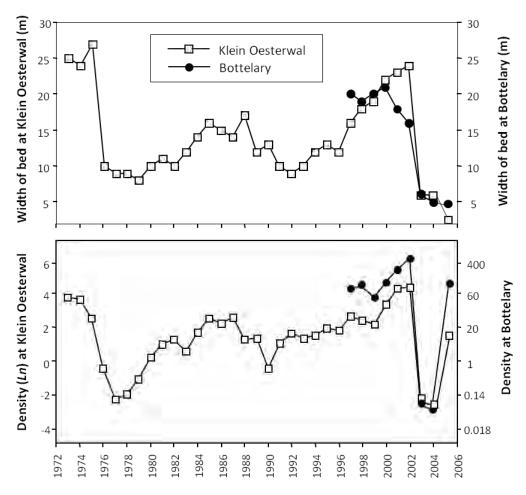


Figure 8-4 Width of the *Zostera capensis* beds and density of *Siphonia* sp. at Klein Oesterwal and Bottelary in Langebaan Lagoon, 1972 – 2006. Source: Angel *et al.* (2006).

Pillay et al. (2010) documented changes in seagrass Z. capensis abundance at four sites in the Lagoon — Klein Oesterwal, Oesterwal, Bottelary and the Centre banks using a series of aerial photographs covering the period 1960 to 2007. During this time, the total loss of Z. capensis amounted to 38% or a total of 0.22 km² across these sites. The declines were most dramatic at Klein Oesterwal where close to 99% of the seagrass beds were lost during this period, but were equally concerning at Oesterwal (82% loss), Bottelary (45% loss) and Centre Bank (18% loss) (Pillay et al. 2010). Corresponding changes were also observed in densities of benthic macrofauna at these sites, with species that were commonly associated with Zostera beds such as the starfish Parvulastra exiqua, the limpets S. compressa and Fisurella mutabilis and general surface dwellers such as the gastropods Assiminea globules, Littorina saxatilis, and Hydrobia sp. declining in abundance. Species that burrowed predominantly in unvegetated sand, such as amphipods Urothoe grimaldi and the polychaetes Scoloplos johnstonei and Orbinia angrapequensis increased in density over that same period. Pillay et al. (2010) were also able to show that the abundance of at least one species of wading bird, the Terek Sandpiper Xenus cinereus (which feeds exclusively in Z. capensis beds) was linked to changes in the size of these beds, with population crashes in this species coinciding with periods of lowest seagrass abundance at Klein Oesterwal. By contrast, they were able to show that populations of wader species that do not feed in seagrass beds were more stable over time.

While the precise reasons for the loss of *Z. capensis* beds remain speculative, the impact of human disturbance cannot be discounted, particularly at Klein Oesterwal where bait collection and in the last decade, kite surfing, has become very popular (Pillay *et al.* 2010). Most recent research in the Langebaan Lagoon shows that seagrass morphometric growth patterns are mainly controlled by temperature, followed closely by turbidity as a proxy for light levels. It was found that cooler temperatures and less tidal exposure time favour higher seagrass biomass than warmer more exposed areas. This finding could partly explain the distribution patterns in the lagoon as determined from aerial photography (University of Cape Town, Cloverly Lawrence, *pers. comm.* 2014).

By 2007 the intertidal habitat at Klein Oesterwal had been transformed from a seagrass bed community to an unvegetated sand flat which was colonized by the burrowing sandprawn K. kraussi and other sandflat species that cannot live in the stabilized sediments promoted by the seagrass (Pillay et al. 2010). The burrowing sandprawn turns over massive quantities of sediment and once established effectively prevents the re-colonization of seagrass and the species associated with it (Siebert & Branch 2005, Angel et al. 2006). The long-term effects of the loss of seagrass at Klein Oesterwal, and to a lesser degree at Bottelary and the Central banks, are not yet fully understood. However, studies suggest that the reduced seagrass bed coverage and the associated changes to macro-invertebrates may have cascading effects on higher trophic levels (Whitfield et al. 1989, Orth et al. 2006). Alterations to fish species diversity and abundance, and changes in the numbers of water birds that forage or are closely linked to seagrass beds may be seen in Langebaan Lagoon as a result of seagrass bed decline (Whitfield et al. 1989, Orth et al. 2006). To date, however, despite more than a decade of monitoring, changes in fish and bird communities (with the exception of the Terek Sandpiper) in Langebaan that can be attributed to seagrass loss have not been detected. This may be due to several reasons; certainly the timing of seagrass loss predated the State of the Bay monitoring that started in 2005 and any significant changes in the community compositions of fish and birds had already occurred. The relatively modest scale of seagrass loss throughout the lagoon may also explain the undetected impacts on higher trophic level species, despite Pillay et al. (2010) recording a reduction to nearly 25 ha, van der Linden (2014) mapped the area of submerged macrophytes (Z. capensis) at 85.8 ha indicating that substantial Z. capensis habitat remains in the Lagoon (Adams 2016). Alternatively, more severe impacts on fish and bird populations (e.g., fishing and hunting) may be masking the effect of seagrass loss on higher trophic level species. This does not imply that the loss of seagrass beds in Langebaan is not concerning, as site specific changes in associated macrofauna and at least one wader species were clearly documented by Pillay et al. (2010). Also important to note, is the fact that the Terek Sandpiper is a summer migratory bird and its decline is occurring globally (see Chapter 12). However, continued loss of seagrasses could cause a "tipping point" beyond which major ecosystem changes would occur throughout the lagoon.

8.2.3 Salt marshes

Salt marshes in Langebaan are an important habitat and breeding ground for a range of fish, bird and invertebrate species (Christie 1981, Day 1981, Gericke 2008). Langebaan Lagoon incorporates the second largest salt marsh area in South Africa, accounting for approximately 30% of this habitat type in the country, being second only to that in the Knysna estuary (Adams *et al.* 1999).

Long-term changes in salt marshes in Langebaan Lagoon were investigated by Gericke (2008) using aerial photographs taken in 1960, 1968, 1977, 1988 and 2000. He found that overall salt marsh area had shrunk by only a small amount between 1960 and 2000, losing on average 8 000 m² per annum. Total loss during this period was estimated at 325 000 m², or 8% of the total (Figure 8-5). Most of this loss has been from the smaller patches of salt marsh that existed on the seaward edge of the main marsh. This is clearly evident from the change in the number of salt marsh patches in the lagoon over time, which has declined from between 20 and 30 in the 1960s and 70s, to less than 10 in 2000 (Figure 8-6). Gericke (2008) attributed the observed change over time to increases in sea level that would have drown the seaward edges of the marshes or possibly reduced sediment inputs from the terrestrial edge (i.e., reduced input of aeolian sand due to stabilization by alien vegetation and development).

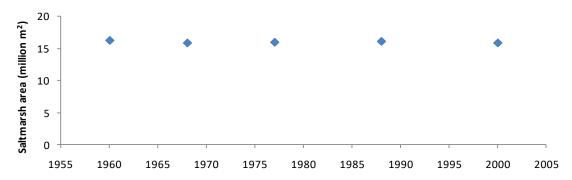


Figure 8-5 Change in salt marsh area over time in Langebaan Lagoon (Data from Gericke 2008).

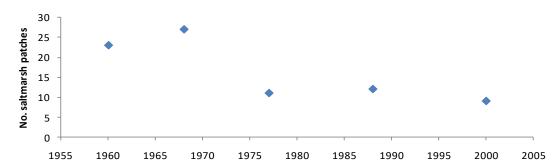


Figure 8-6 Change in the number of discrete salt marsh patches over time in Langebaan Lagoon (Data from Gericke 2008).

8.3 Mapping recent changes in aquatic macrophyte distribution using remotely sensed data and satellite imagery: Approach for 2020 – 2021

Satellite and aerial image data offer a unique opportunity to identify areas where change in surface properties can be mapped and linked to land condition variability. Within the last decade, these efforts have increased as resources become more readily available through open-source databases and catalogues and increased spatial and temporal resolution of remotely sensed data (Figure 8-7). Taking advantage of these new developments, a framework has been created as part of the State of the Bay monitoring programme to assess and visualize spatial variability in vegetation communities surrounding Langebaan Lagoon using an open-source geospatial platform called Google Earth Engine (GEE). GEE is a cloud-based geospatial processing platform centred on processing satellite imagery and derivates. The platform is often applied in global- or regional-scale environmental monitoring and analysis efforts, especially where large quantities of data and/or over long time periods are required. This web-based platform provides access to publicly available remote sensing imagery, as well as high-speed parallel processing and machine learning algorithms using Google's computational infrastructure. Within this infrastructure, a library of Application Programming Interfaces (APIs) can be utilised and modified for a multitude of environmental analysis (Tamiminia *et al.* 2020).

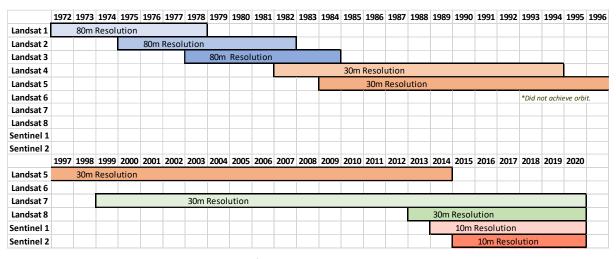


Figure 8-7 Differences in spatial resolution (m²) for the various satellites launched by the LANDSAT and Sentinel earth observation from space campaigns from 1972 – 2020. The highest resolution imagery available to date is from the most recent Sentinel 1 and 2 satellites which were deployed in 2014 and 2015, respectively.

In 2020 we used GEE to conduct a novel approach to assess changes in the common reed cover variability at the pixel level, at a nominal spatial resolution of 10 - 30 m (high to moderate). We illustrate our approach using over three decades of Landsat 5,7 and 8 as well as Sentinel-2 satellite imagery (1989 to 2020). Common reed dominates the flora of the reedbeds where groundwater inflow occurs. At Langebaan Lagoon this is predominantly along the southern and south-eastern shores, near Geelbek. We needed to refine our study area in which to conduct analyses and thus used the vegetation cover shapefile developed by van der Linden (2014) of nine habitat types in the area around Langebaan Lagoon prepared using aerial photography. We excluded permanent water (and

derived transition classes) from this by eliminating permanent water using an existing method for dynamic reference cover with the Global Surface Water (GSW) dataset (Pekel *et al.* 2016) from 1984 – 2015. A stable permanent water class (i.e., permanent water throughout the period) was delineated and used as an exclusion shapefile for spatial analyses of coastal and land vegetation classes (common reed and salt marsh), and as the processing extent for aquatic vegetation classification (seagrass beds). Sentinel-2 MSI: Multispectral Instrument Level -2A (Sentinel-2) imagery for 2015 – 2020 was temporally aggregated into seasonal composites of Summer (September to March), and Winter (March to September) using the colour infrared band combination (8,4,3) which emphasises different vegetation spectral signatures. Landsat 8 (2013 – 2014), 7 (1999 – 2012) and 5 (1989 – 1998) imagery were temporally aggregated into annual composites using the same band combination. All temporal aggregation was done by determining the medoid of a season or a year of the imagery, creating a specific data point instead of an averaged or blended value (Flood 2013) utilising only images with cloud cover of 10% or less. The end result creates a regular temporal sequence by minimizing missing data and cloud contaminations.

In the approach adopted in 2020, we undertook an unsupervised (computer-based automated rather than user-influenced and defined) classification approach once the temporal imagery sequence was generated. We used a statistical machine learning method known as "clustering". This can be defined as a case where a statistical relationship is established between the spectral bands or frequencies used and the variable measured (field-based) without there necessarily being a causal relationship (Holloway & Mengersen 2018). Clustering is an unsupervised learning method that attempts to combine objects into clusters based on similarity criteria of input variables without training data (Holloway & Mengersen 2018). We specified ten groups (clusters) and assumed that a permanent water class was excluded from this cluster assignment due to the methodology mentioned previously. Per temporal aggregation, each clustering effort was then exported from GEE into GeoTIFF (.tiff) format and overlaid on the respective imagery composites within ArcGIS.

This year we have expanded on last year's efforts with the development of a supervised image classification scheme and subsequent expansion of this assessment to other vegetation classes (specifically seagrass beds and salt marsh). For the years 2015 - 2021, we utilised the highest resolution imagery available to date (10 m resolution, Sentinel 2) to map the level and extent of spatial variability per vegetation class over time. Supervised classification entails manually isolating or segmenting remotely sensed imagery such as satellite imagery into different unique classes. In this way, pixels with similar characteristics are grouped together to represent specific features on the earth's surface. Based on a preliminary desktop analysis which queried all cloud-free Sentinel satellite imagery of the Bay and lagoon for January 2020 to July 2021, the months of June and July provided sufficient cloud free images and showed the greatest sub-monthly difference in coastal vegetative spectral reflectance. This difference in spectral reflectance is linked to the change from dry-rainy season, where common reed and salt marsh were observed to be more spectrally similar to surrounding vegetation in November to May. Due to low rainfall during summer season, much of the low-lying ground cover is characteristically brown which subsequently turns green with the coming rainy season. When viewed from satellite imagery, grassland and low bushland vegetation typically responds almost immediately to increases in rainfall with stark colouration changes (late April to June) and thereby provides enough colour contrast in June at vegetation transition zones to be easily differentiated from larger macrophyte classes both by the naked eye and by a machine learning driven classifier.

To guide the classification process, ground-truthing is a necessary exercise which is facilitated by the aforementioned desktop analysis of satellite imagery. Ground-truthing is the process of collecting direct observation or field data to be used to guide analysis, rather than inferring remotely. For this assessment, the ground-truthing exercise, conducted in June 2021, involved drawing a series of transects through areas of known and suspected common reed and annotating vegetation types along these transects with the aid of a handheld global positioning system (GPS) device (Figure 8-8). GPS locations with annotations of different vegetation, water or other land cover characteristics were recorded. The results of an *in-situ* survey were then loaded into geographical information system (GIS) software and used as training points which were manually expanded to training polygons to classify areas on satellite imagery. During the ground-truthing survey, it was of particular interest to find a large area of the intended macrophyte type to circumnavigate (> 100 m in length and/or width) to be used as a reference area so that minor variations in spectral reflectance of the same vegetation type could be accounted for. Such a patch was then used as a template for visually identifying the potential areas of vegetation class from satellite imagery. Note that ground-truthing was not explicitly conducted for seagrass or salt marshes.

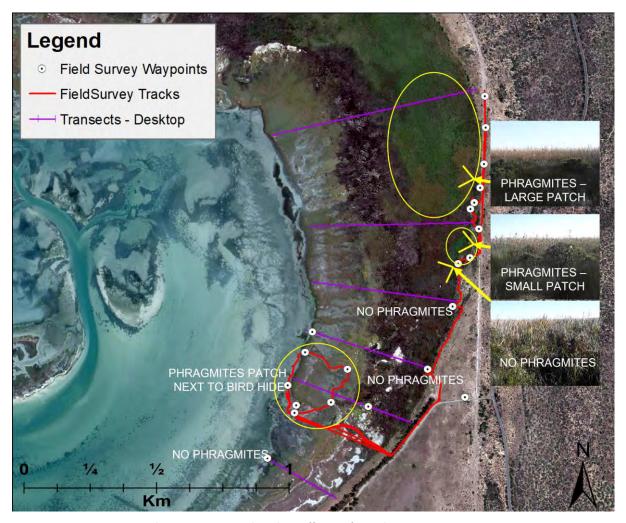


Figure 8-8 Common reed occurrence ground-truthing effort performed in June 2021.

The results of the ground-truthing effort greatly aided the placement of random spectral profile training points within patches of known vegetation, land, or water type. However, where there were no *in-situ* data available, it was still possible to conduct a desktop driven unvalidated supervised classification effort. Where field data were not available to guide this process, multiple years of satellite imagery were overlain in GIS software to determine the spatio-temporal variability of a particular class, and training points were placed in areas which were the most consistently similar over time for a class of interest. A series of random points were also placed in other vegetation, land, and water classes and the spectral profiles of all training points were plotted against each other to identify the imagery band combination best suited for viewing a macrophyte class of interest, while drawing classifier training samples (polygons).

Following ground-truthing, one training sample set was drawn per coastal macrophyte class of interest (common reed, salt marsh and seagrass) and was used for every supervised classification task per year of imagery (2016 – 2021). The sub-annual variability of water courses, channels, level, and sub-daily tidal variability during satellite image sampling, in addition to the highly variable deposition of sediment along the lagoon and shallow water areas, required unique training samples to be drawn for each year of analysis for the classification of aquatic macrophytes (seagrass beds). Using these samples, a supervised classifier isolated all satellite imagery pixels (of 10 m resolution) within each band that were within the specified class ranges and reclassified them into a single value raster surface. The surfaces were summed, and the pixels which had a value in every band were isolated within the study area and were deemed to be likely areas comprising a particular macrophyte class. The results of the supervised classification effort yielded 18 land class rasters, from which each macrophyte class of interest was extracted and overlaid. It is possible to obtain a rough idea at this scale of the minimum age of the current macrophyte or years since loss of macrophyte. This was achieved by isolating the number of years each pixel was classified as being part of that macrophyte class as per a supervised classification effort. The metadata (attribute table) of each raster depicted the classification value assigned to each pixel in the image based on the spectral profile. A logical reference index was developed per macrophyte class, per raster, per pixel value per year to show how many successive years each raster cell either did, or did not exhibit characteristics of a particular class. By combining the raster layers in this way, we were able to generate a map showing pixels where there were no macrophytes of interest in the current year, i.e., where there had been a recent loss of cover (shown in the maps in red), and areas with current cover (shown in the maps in green). Darker areas of each show older vegetation and lighter colours indicated newer growth (for areas with current growth) or years of limited growth in the case of areas that had lost the said vegetation cover. The accuracy of classification increases with the area of each contiguous patch of classified vegetation.

Reed and sedge communities

Due to the terrain of the environment, dense vegetation, and limited foot-access points, it was not possible to reach every interval marked on the desktop-drawn transects. However, photo and video observations were made along the vegetation transition boundaries, and a large patch of common reed was circumnavigated with a circumference of approximately 800 m (Figure 8-8). This known patch was then used as a guide for identifying the potential areas of common reed around Geelbek from satellite imagery.

Random training points were then placed within these patches (colourful points in Figure 8-9) and a few random points were placed outside of the polygons (white points in Figure 8-9 to provide further information towards the spectral profile analysis of local vegetation classes.

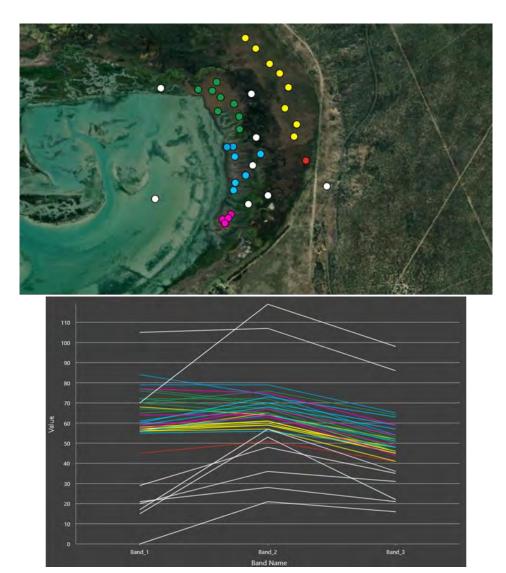


Figure 8-9 Spectral analyses of random points placed within known (pink points) and likely (yellow, blue, red and green points) patches of common reed and several points outside in other vegetation classes (white points).

The spectral profiles were then plotted for each point in a recent satellite image (Figure 8-9). From this exercise it is clear that the spectral signatures or spectral response curves of the known and likely common reed patches differ substantially from the random points around them. For example, all profiles with the exception of the single red point fall within the values 55 - 85 for Band_1, 55 - 80 for Band_2 and 40 - 70 for Band_3. Satisfied with the isolated spectral signature for common reed, we then extracted band values for 13 different frequency bands of the most cloud-free Sentinel-2 satellite images for the years 2016 to 2021. All pixels within each band that were within the ranges were isolated (with the exception of bands 10 and 11 which were not applicable) and reclassified into a single value raster surface. The surfaces were summed, and the pixels which had a value in every band

were isolated within the study area (i.e., terrestrial areas within a certain vicinity of the Langebaan Lagoon) and deemed to be likely areas comprising common reed. This had relatively high agreement with the supervised classification effort undertaken, but no quantitative accuracy assessment has been undertaken at this stage. Further ground-truthing across as much of this range as possible will enhance the accuracy and reliability of the mapping in future, and a more comprehensive effort for mapping common reed is recommended for 2022. This year, the key area of common reed occurrence near Geelbek was retained as the focal area.

The results of the supervised classification effort for common reed mapping yielded a smaller area of positive classification (43.34 ± 1.37 ha) than the unsupervised effort conducted in 2020. Per the 2020 report, the unsupervised classification estimated the mean annual extent of common reed for the period of 1988 - 2020 at 77.76 ± 10.68 hectares (Figure 8-10). This decrease in mean and standard deviation is a result of the *in-situ* survey validation and the use of spectrally validated training samples for the supervised classification. Similar spectral profiles were observed in smaller patches around the lagoon (on average 1 - 5 pixels in size, or approximately 50 m^2), but were manually and intuitively excluded, as in most of these cases there were two or more vegetative classes present within a 10 m^2 pixel and thus deemed a vegetation transition boundary. Additionally, to map the extent of common reed in other parts of the lagoon require a more extensive and exhaustive *in-situ* survey with the aid of a low-flying drone, or a dedicated focused satellite survey with at minimum a panchromatic 2.0 m 4-Band (RGBN) Multispectral imaging sensor and additional GIS spatial and image analytics licenses and capabilities.

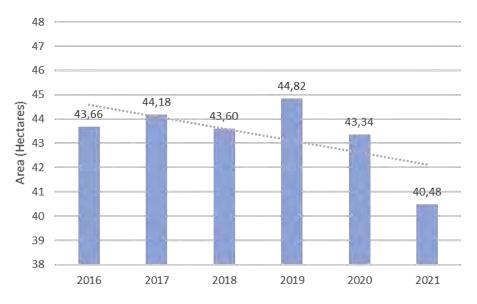


Figure 8-10 Spatial variability in hectares of common reed (2016 – 2021).

Light green pixels indicate currently present new growth common reed, whereas dark green indicate long standing (and currently present) growth (Figure 8-11). Areas which are red show pixels where common reed was not currently present in June 2021 but was present any number of years prior to 2021. Light red areas are pixels which were present for one year between 2016 – 2020, and the darker the red pixel the more years that macrophyte was historically present (i.e., long-term presence lost in

2021). Common reed patches in the south-east of the lagoon, just east of the Geelbek bird hide, are losing their upland dry-shore growth fairly rapidly and are losing their near shore growth at a slower rate but are expanding inwards at a modest rate presumably in response to seasonal variations in rainfall.

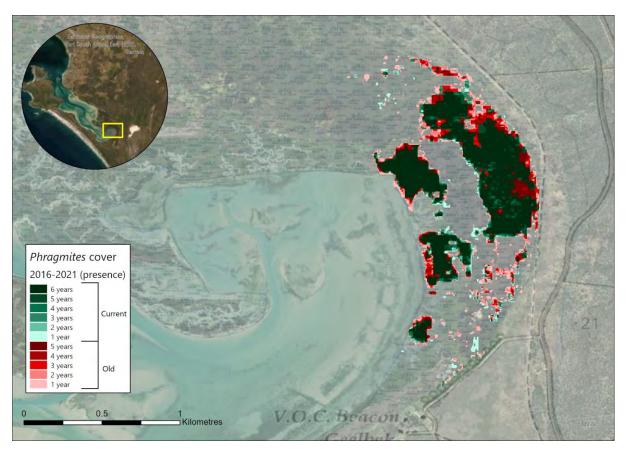


Figure 8-11 Spatio-temporal variability of common reed (10 m spatial, 2016 – 2021 temporal).

Seagrass

The supervised classification effort performed for seagrass beds across Saldanha Bay and Langebaan lagoon is a preliminary, unvalidated (no ground-truthing) attempt to assess general extent and spatial variability of submerged macrophytes over time (Figure 8-12). Seagrass beds show a similar spectral profile to other aquatic classes such as shallow water and water channels for Image Bands 4 and 5 but were unique for Bands 1-3 and 6-9 (Figure 8-13). Satellite imagery was viewed under different combinations of bands (4-3-2, 8-4-3) which enabled the inferred exclusion of transition depth zones and coastal areas which appeared to be seagrass beds to the naked eye.

Change in the extent of seagrass beds in Langebaan Lagoon is a strong indicator that the ecosystem is undergoing a shift, most likely due to anthropogenic disturbances. Additionally, several studies have highlighted the potential for climate driven changes in water temperature and pH to alter seagrass physiology and possibly their distribution and abundance (Duarte 2002, Mead *et al.* 2013). However, information on the temperature and pH tolerance of South African seagrasses is currently lacking and warrants investigation. It is critical that this habitat and the communities associated with it be

monitored in future as further changes are certain to have long-term implications, not only for the invertebrate fauna but also for species of higher trophic levels.

Seagrass beds throughout the lagoon have proven to be highly variable over the last 6 years, with the longest standing current growth at the north of the lagoon, a smaller patch to the mid-east of the Lagoon, and some recently established beds in the south of the Lagoon near Geelbek. The greatest loss of seagrass beds was seen 6 kilometres south-east of Langebaan beach, where long growth beds were not identified through spectral profile analysis or classification efforts in 2021. Light green pixels indicate new growth seagrass, whereas dark green indicate long standing (and currently present) growth. Areas which are red include pixels where seagrass was not present in June 2021 but was present any number of years prior to 2021. Light red areas are pixels which were present for one year between 2016 – 2020, and the darker the red pixels that seagrass bed was historically present in most years (Figure 8-14).

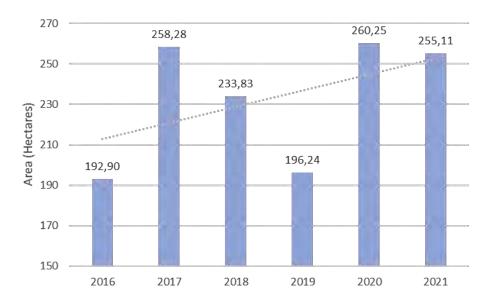


Figure 8-12 Spatial variability in hectares of seagrass beds (2016 – 2021).

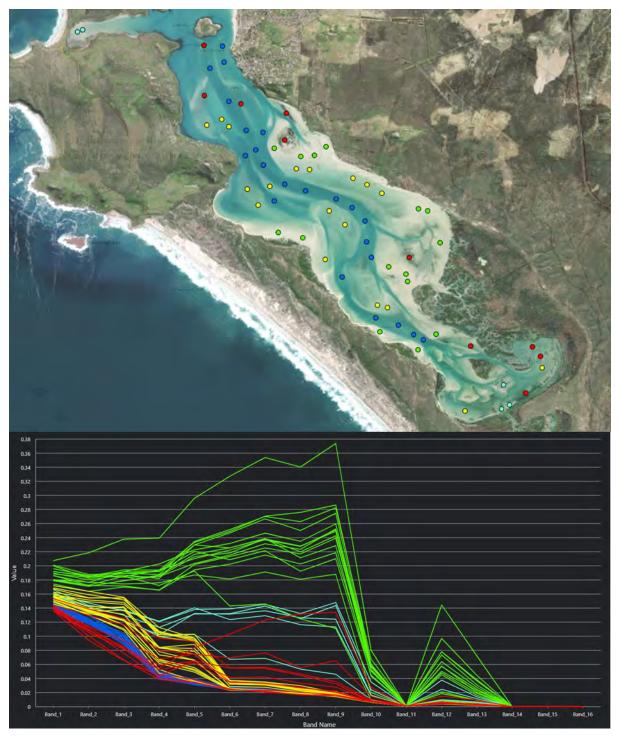


Figure 8-13 Spectral analyses of random points placed within various aquatic classes (dark blue-water channels, yellow — shallow water, green — sand, red — seagrass beds).

Figure 8-14 Spatio-temporal variability of the seagrass beds (10 m spatial, 2016 – 2021 temporal).

Salt marshes

Salt marsh vegetation shows a similar spectral profile (Figure 8-15) to other coastal vegetation classes for Image Bands 1-4 but was unique for Bands 6-9. Satellite imagery was viewed under different combinations of bands (8-4-3) which enabled the inferred exclusion of vegetation boundaries and coastal areas which were perceived to be salt marsh to the naked eye. Salt marsh exhibited a very tight spectral range for Bands 1-4.

Salt marsh extent has been consistent for the period of 2016 – 2020, but has shown a 10.3% increase in extent for 2021 mostly nearshore of Geelbek (Figure 8-16). Light green pixels indicate currently present new growth seagrass beds, whereas dark green indicate long standing (and currently present) growth (Figure 8-17). Red pixels indicate areas where saltmarsh was not present in June 2021 but was present any number of years prior to 2021. Light red areas are pixels were salt marsh was present for one year between 2016 – 2020. The dark red pixels indicate areas where salt marsh was present for many years but was absent in 2021.

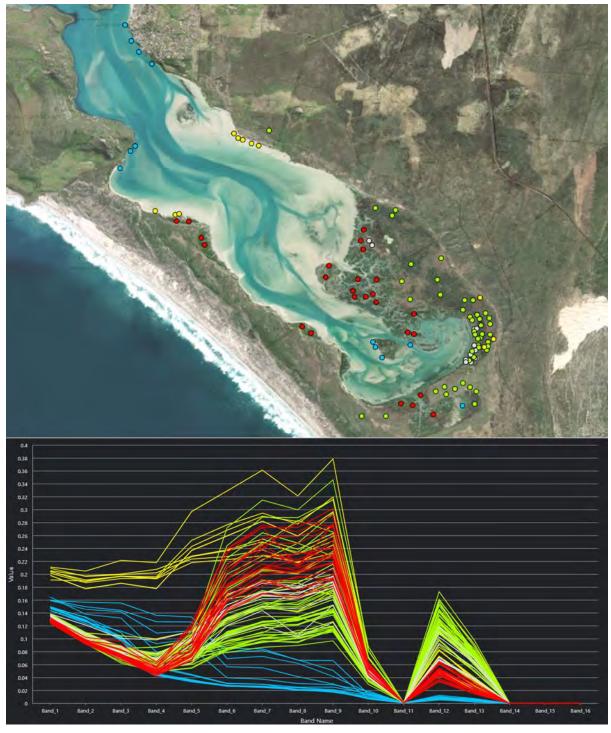


Figure 8-15 Spectral analyses of random points placed within various coastal vegetation classes (blue-water, yellow — sand, green — miscellaneous terrestrial vegetation, grey — coastal grasses and reeds, red — salt marsh).

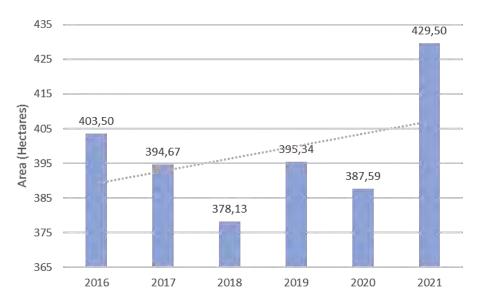


Figure 8-16 Spatial variability in hectares of salt marsh (2016 – 2021).

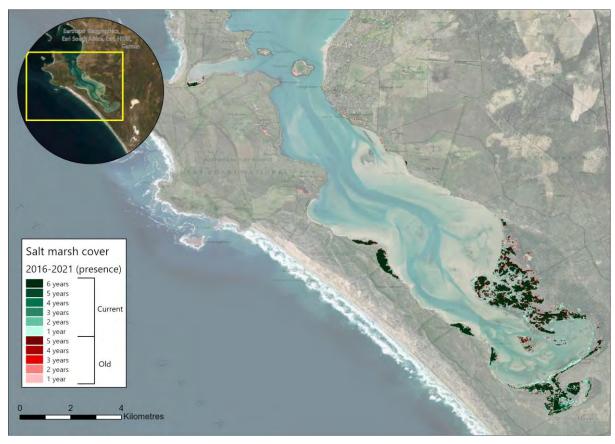


Figure 8-17 Spatio-temporal variability of salt marsh (10 m spatial, 2016 – 2021 temporal).

9 BENTHIC MACROFAUNA

9.1 Background

It is important to monitor biological components of the ecosystem in addition to physico-chemical and eco-toxicological variables, as biological indicators provide a direct measure of the state of the ecosystem at a selected point in space and time. Benthic macrofauna are the biotic component most frequently monitored to detect changes in the health of the marine environment. This is largely because these species are short-lived and, as a consequence, their community composition responds rapidly to environmental changes (Warwick 1993). Given that they are also relatively non-mobile (as compared with fish and birds) they tend to be directly affected by pollution and they are easy to sample quantitatively (Warwick 1993). Furthermore, they are scientifically well-studied compared with other sediment-dwelling components (e.g., meiofauna and microfauna), and taxonomic keys are available for most groups. In addition, benthic community responses to a number of anthropogenic influences have been well documented.

Organic matter is one of the most universal pollutants affecting marine life and it can lead to significant changes in community composition and abundance, particularly in semi-enclosed or closed bays where water circulation is restricted, such as Saldanha Bay. High organic loading typically leads to eutrophication, which can lead to a range of different community responses amongst the benthic macrofauna. These include increased growth rates, disappearance of species due to anoxia, changes in community composition and reduction in the number of species following repeat hypoxia and even complete disappearance of benthic organisms in severely eutrophic and anoxic sediments (Warwick 1993). The community composition of benthic macrofauna is also likely to be impacted by increased levels of other contaminants such as trace metals and hydrocarbons in the sediments. Furthermore, areas that are frequently disturbed by mechanical means (e.g., through dredging) are likely to be inhabited by a greater proportion of opportunistic pioneer species as opposed to larger, longer lived species.

The main aim of monitoring the health of an area is to detect the effects of stress, as well as to monitor recovery after an environmental perturbation. There are numerous indices, based on benthic invertebrate fauna information, which can be used to reveal conditions and trends in the state of ecosystems. These indices include those based on community composition, diversity and species abundance and biomass. Given the complexity inherent in environmental assessment it is recommended that several indices be used (Salas *et al.* 2006).

The community composition, diversity, abundance and biomass of soft bottom benthic macrofauna samples, collected in Saldanha Bay from 1999 to 2021 (with additional sites at Elandsfontein), are considered in this report.

9.2 Historic data on benthic macrofauna communities in Saldanha Bay

The oldest records of benthic macrofauna species occurring in Saldanha Bay date back to the 1940s, prior to the construction of the Iron Ore Terminal and Marcus Island causeway. Due to differences in sampling methodology, data from these past studies are not directly comparable with subsequent studies and as such cannot be used for establishing conditions in the environment prior to any of the major developments that occurred in the Bay. Moldan (1978) conducted a study in 1975 where the effects of dredging in Saldanha Bay on the benthic macrofauna were evaluated. Unfortunately, this study only provided benthic macrofauna data after the majority of Saldanha Bay (Small Bay and Big Bay) had been dredged. A similar study conducted by Christie & Moldan (1977) in 1975 examined the benthic macrofauna in Langebaan Lagoon, using a diver-operated suction hose, and the results thereof provide a useful description of baseline conditions present in the Lagoon from this time.

Studies conducted in the period 1975 – 1990, examined the benthic macrofauna communities of Saldanha Bay and/or Langebaan Lagoon, but are also, regrettably not comparable with any of the earlier or even the more recent studies. Recent studies conducted by the Council for Scientific and Industrial Research (CSIR) in 1999 (Bickerton 1999) and Anchor Environmental Consultants in 2004 and 2008 – 2020 do, however, provide benthic macrofauna data from Saldanha Bay and Langebaan Lagoon that are comparable with those collected in recent years. Direct comparisons to earlier studies are complicated owing to the fact that different equipment was used in the earlier surveys than those undertaken from 1999 to present. The 1975 study, for example, made use of a modified van Veen grab weighted to 20 kg which sampled an area of 0.2 m² from the surface fraction of sediment. Subsequent surveys, from 1999 to present, made use of a diver-operated suction sampler with a sampling area of 0.24 m² to a depth of 30 cm. The former sampling technique (van Veen grab) would be expected to sample a smaller proportion of benthic macrofauna due to its limited ability to penetrate the sediment beyond the surface layers. The suction sampler is effective in penetrating to a depth of 30 cm, which is within range of larger species such as prawns and crabs. The study conducted in 1975 in Langebaan Lagoon (Christie & Moldan 1977), and those conducted for all State of the Bay surveys have all made use of a diver-operated suction sampler which samples an area of 0.24 m². However, in 1975 a depth of 60 cm was sampled while in surveys since 2004 a depth of only 30 cm has been sampled. Thus, considering the differences in sampling techniques employed, it is likely that the changes reflected by the data between the 1975 and 1999 – 2008 in Saldanha Bay and Langebaan Lagoon are a function both of real changes that occurred in the Bay and an artefact of differences in sampling methodology. The location of sites sampled during 1975 and the 1999 – 2020 studies also differed (refer to previous versions of this report), however, the broad distribution of sites throughout the sampling area ensures that the data collected are representative of the study areas concerned and as such, can be compared with one another.

9.3 Approach and methods used in monitoring benthic macrofauna in 2021

9.3.1 Sampling

Benthic macrofauna have been sampled at more than 30 sites in Big Bay (nine sites), Small Bay (ten sites) and Langebaan Lagoon (nine sites) since the inception of the State of the Bay monitoring programme in 2004. As in the previous survey, a further eight sites were sampled in the vicinity of the Sea Harvest Corporation discharge pipe — a requirement in terms of their updated Coastal Waters Discharge Permit (CWDP - Permit Reference Number: 2012/025/WC/Sea Harvest) issued by the Department of Environmental Affairs: Oceans and Coasts. The permit conditions stipulate that the Sea Harvest environmental monitoring samples be collected at the same time as the State of the Bay samples (using the same technique) such that the latter can serve as control points against which potential impacts of the Sea Harvest outfall can be benchmarked.

Further to this, an additional 21 sites were sampled as part of the Saldanha ADZ Monitoring Survey (Dawson $et\ al.\ 2021$): consisting of 11 impact sites within the Big Bay ADZ (three within the fin fish area and eight in the shellfish area), four impact sites within the Outer Bay North ADZ and six reference sites falling outside the ADZ boundaries in Big Bay (n = 3) and Outer Bay North (n = 3). The aim of this particular study is to determine whether the aquaculture operations in these areas are having measurable benthic impacts. The findings from these additional sites are presented here together with the "traditional" suite of State of the Bay monitoring sites — the same sampling technique was applied at all sampling sites.

The localities and water depth ranges of the sites sampled in 2021 are illustrated in Chapter 7. Samples are, by convention, collected using a diver-operated suction sampler, which sampled an area of 0.08 m² to a depth of 30 cm and retained benthic macrofauna in a 1 mm mesh sieve bag. At sites less than 2 m deep, three hand-core samples were taken totalling a sampling surface area of 0.08 m². In 2016 and 2017 Elandsfontein samples were collected using the same hand-core. It was later agreed that the use of a Van Veen grab to collect samples at Elandsfontein was most appropriate and from 2018 onwards a Van Veen grab with a bite size of 0.092 m² was used. It was noted that the grab was more effective at sampling benthic macrofauna in this area, and we recommend this be continued for future monitoring. All macrofauna abundance and biomass data were ultimately standardised per unit area (m²). Samples were stored in plastic bottles and preserved with 5% formalin.

In the laboratory, samples were rinsed of formalin and stained with Rose Bengal to aid sorting of biological from non-biological matter. All fauna were removed and preserved in 1% phenoxyethanol (Ethylene glycol monophenyl ether) solution. The macrofauna were then identified to species level where possible, but at least to family level in all instances. The validity of each species was then checked on The World Register of Marine Species (WoRMS, www.marinespecies.org). The biomass (blotted wet mass to four decimal places) and abundance of each species was recorded for each sample.

9.3.2 Statistical analysis

The data collected from this survey were used for two purposes 1) to assess spatial variability in the benthic macrofauna community structure and composition between sites in 2021 and 2) to assess changes in benthic community structure over time (i.e., in relation to past surveys). Both the spatial and temporal assessments are necessary to provide a good indication of the current state of health of the Bay.

9.3.2.1 Community structure and composition

Changes in benthic species composition can be the first indicator of disturbance, as certain species are more sensitive (i.e., likely to decrease in abundance in response to stress) while others are more tolerant of adverse conditions (and may increase in abundance in response to stress, taking up space or resources vacated by the more sensitive species). Monitoring the temporal variation in community composition also provides an indication of the rate of recovery of the ecosystem following disturbances in different areas of the system. This allows one to more accurately predict the impacts of proposed activities. "Recovery" following environmental disturbance is generally defined as the establishment of a successional community of species which progresses towards a community that is similar in species composition, density and biomass to that previously present (C-CORE 1996 and Newell 1998). The rate of recovery is dependent on environmental conditions and the communities supported by such conditions. Given the spatial variation in environmental conditions (largely influenced by depth and exposure) and anthropogenic disturbance throughout Saldanha Bay and Langebaan Lagoon, it is expected that recovery will vary throughout system.

It has been shown that species with a high fecundity, rapid growth rates and short life-cycles are able to rapidly invade and colonise disturbed areas (Newell 1998). These species are known as "r-strategists", pioneer or opportunistic species and their presence generally indicates unpredictable short-term variations in environmental conditions as a result of either natural factors or anthropogenic activities. In stable environments, the community composition is controlled predominantly by biological interactions rather than by fluctuations in environmental conditions. Species found in these conditions are known as "K-strategists" and are selected for their competitive ability. K-strategists are characterised by long life-spans, larger body sizes, delayed reproduction and low natural mortality rates. Intermediate communities with different relative proportions of opportunistic species and K-strategists are likely to exist between the extremes of stable and unstable environments.

The statistical program, PRIMER 6 (Clarke & Warwick 1993), was used to analyse benthic macrofauna abundance data. Data were root-root (fourth root) transformed and converted to a similarity matrix using the Bray-Curtis similarity coefficient. Multidimensional Scaling (MDS) plots were constructed in order to find 'natural groupings' between sites for the spatial assessment and between years for the temporal assessment. SIMPER analysis was used to identify species principally responsible for the clustering of samples. These results were used to characterise different regions of the system based on the communities present at the sites. It is important to remember that the community composition is a reflection of not only the physico-chemical health of the environment but also the ability of communities to recover from disturbance.

9.3.2.2 Diversity indices

Diversity indices provide a measure of diversity, i.e., the way in which the total number of individuals is divided up among different species. Understanding changes in benthic diversity is important because increasing levels of environmental stress generally decreases diversity. Two different aspects of community structure contribute to community diversity, namely species richness and equability (evenness). Species richness refers to the total number of species present while equability or evenness expresses how evenly the individuals are distributed among different species. A sample with greater evenness is considered to be more diverse. It is important to note when interpreting diversity values that predation, competition and disturbance all play a role in shaping a community. For this reason, it is important to consider physical parameters as well as other biotic indices when drawing a conclusion from a diversity index.

The Shannon-Weiner diversity index (H') was calculated for each sampling location using PRIMER V 6:

$$H' = -\Sigma ipi(log pi)$$
 12

The diversity (H') value for each site was plotted geographically and this was used to interpolate values for the entire system using ArcGIS in order to reveal any spatial patterns. Alpha diversity (total number of species) was also then calculated for the pre-designated locations for past surveys from 1999 to present: Small Bay, Big Bay, Langebaan Lagoon and Elandsfontein.

9.4 Benthic macrofauna 2021 survey results

9.4.1 Species diversity

Variation in species diversity (represented by the Shannon Weiner Index, H') is presented in Figure 9-1. Diversity was highest in Outer Bay North, Langebaan Lagoon, and Big Bay (at sites NBC 1, LL 41, NBC 3, NB4, LL 33, BC 2 and BB 29) and was lowest in Small Bay (SB 1 and SB 8). Other sites where low diversity was recorded include BB 30, LPG, BB 22, SH 6 and SH 2 — the latter located near the Sea Harvest discharge pipe. These findings are most likely attributable to the high levels of anthropogenic disturbance (e.g., dredging) and the presence of elevated levels of contaminants (trace metals, organic material, etc.) in the sediment (mud) collected at these sites. The low diversity observed at site BB 30, however, is almost certainly attributable to the natural wave exposure at this shallow sandbank and is not likely a result of pollution or other anthropogenic disturbance. It is well known that high levels of anthropogenic and/or natural disturbance can allow opportunistic, short-lived or r-selected species to colonize the affected area and prevent a more diverse community comprising longer living k-strategist species from becoming established.

Where p_i is the proportion of the total count arising from the *i*th species. This is the most commonly used diversity measure and it incorporates both species richness and equability.

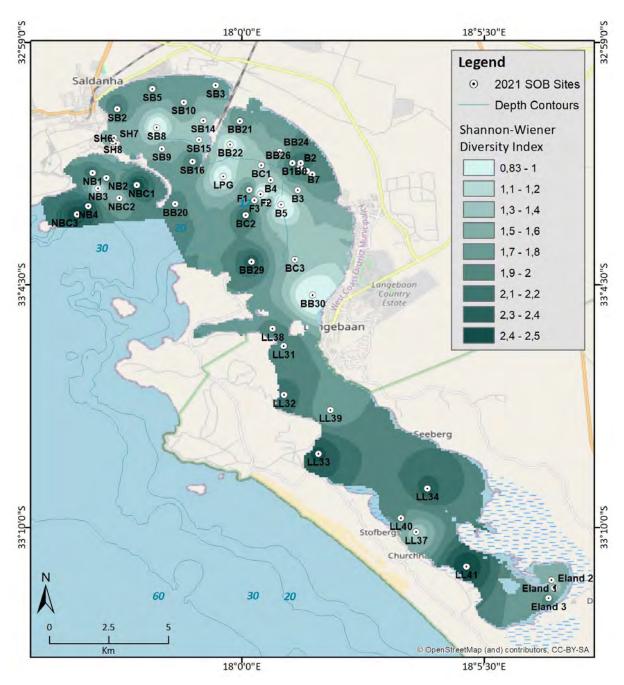


Figure 9-1 Variation in the diversity of the benthic macrofauna in Saldanha Bay and Langebaan Lagoon as indicated by the 2021 survey results (H' = 0 indicates low diversity, H' = 2.5 indicates high diversity).

9.4.2 Community structure

A multivariate ordination, prepared from 2021 macrofaunal abundance data, is presented in Figure 9-2. These data show a very similar pattern as for the diversity data, with the macrofaunal communities present at the Langebaan Lagoon (LL) and particularly the Elandsfontein sites (Eland) standing out as being clearly different to those in Big Bay (BB, B, BC, FF), Small Bay (SB, SH) and Outer Bay North (NB, NBC). The Big Bay and Small Bay sites are also distinct from one another, but to a lesser extent in comparison to those in the lagoon. The Sea Harvest sites are grouped together with the Small Bay sites. Upon closer inspection, sites within Small Bay itself also show some spatial

grouping of their own with sites in the northern reaches of the Bay forming a separate cluster that was separate to those further south. This observation is a function of differences in community structure (i.e., the abundance or presence/absence of different species at each site) and not just the total number of species present at a particular site. "Sensitive" species that cannot tolerate high levels of anthropogenic disturbance are present in abundance at Elandsfontein and in Langebaan Lagoon but are largely absent from the Sea Harvest, Big Bay and Small Bay sites — particularly those in proximity to the Iron Ore Terminal. It should be noted that differences in macrofaunal community structure are also partly explained by the physical and environmental parameters present at each site (i.e., freshwater ingress, tidal currents, sediment granulometry and depth). The Outer Bay North sites do form a separate cluster and are understandably most similar to those within Big Bay. The Outer Bay North suite of sites are significantly deeper than any of the other sites sampled. This is likely to be driving the dissimilarity observed in the data.

The "hardier" filter feeders such as *Upogebia capensis* are, for example, abundant in both Big Bay and Small Bay samples, but the "more sensitive" filter feeders such as the amphipods *Ampelisca spinimana* and *A. anomala* and the mollusc *Macoma odinaria* were notably more abundant in Big Bay than Small Bay. Similarly, the sea pen *Virgularia schultzei*, widely regarded *as a "sensitive species"* was found only in Big Bay. The Outer Bay North sites were characterised by the abundance of the detritivorous polychaete, *Sabellides luderitzi*.

The relationship between 2021 macrofaunal abundance data and abiotic data (sediment grain size fractions, TOC, TON and trace metals) was investigated using a Distance Based Linear Model (DistLM) (Anderson *et al.* 2008). A sequential test revealed that a combination of all input variables explained ~47% of the variation observed in the macrofaunal abundance data, with mud (16%) explaining the greatest amount, followed by iron (5%), cobalt (4%) and gravel (4%). Results from the analysis of sediments for trace heavy metals (Chapter 7) indicate that the concentration of iron is elevated at sites surrounding the Iron Ore Jetty (SB 9, SB 14 and SB 15). It is likely that this is related to the export of iron ore from Saldanha (Chapter 3 and Chapter 6) and may serve to explain the observed influence of iron on benthic macrofaunal community structure.

The full model can be visualised by examining the distance-based redundancy analysis (dbRDA) ordination (Figure 9-3). The first two axes capture 57% of the variability in the fitted model, and 27% of the total variation in the data cloud. The blue lines in the dbRDA plot are category vectors, whereby the length of the vectors is a measure of the strength of the relationship between that category and the axes. The Iron concentration and mud fraction clearly separated sites in proximity to the Iron Ore Jetty from those further afield.

Species that contributed significanty to the dissimilarity between the Saldanha Bay and Langebaan Lagoon samples include the filter feeding amphipods *Ampelisca* sp. and the predatory whelks *Nassarius* sp. that were relatively abundant in Small Bay and Big Bay, but either rare or absent from lagoon samples. Other species such as the sand prawn *Kraussillichirus kraussi*, the isopod *Natatolana hirtipes*, the crown crab *Hymenosoma orbiculare* and polychaete *Orbinia angrapequensis* (detritivores, scavengers or predators) were more abundant in the lagoon samples.

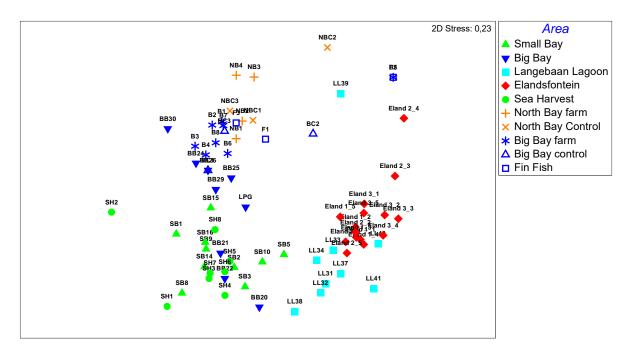


Figure 9-2 Ordination showing similarity among sample sites based on benthic macrofauna abundance in 2021. Areas included are: Small Bay (SB), Big Bay (BB), Langebaan Lagoon (LL), Elandsfontein (Elands), Sea Harvest (SH), North Bay farm (NB), North Bay control (NBC), Big Bay farm (B), Big Bay control (BC) and Fin Fish (FF). Data for ADZ sites courtesy of DFFE and WWF.

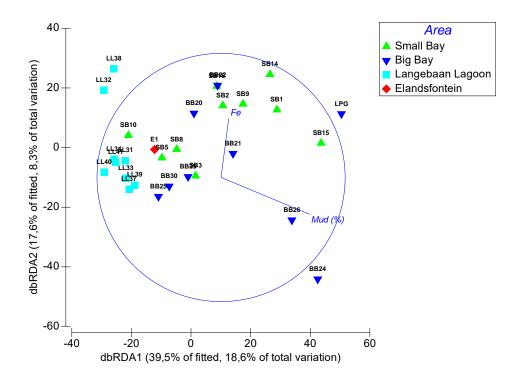


Figure 9-3 dbRDA plot of 2021 macrofaunal abundance data. Sediment fractions, TOC, TON, C:N and trace metal concentrations were included as categorical predictors in this design. Sediment fractions were arcsine transformed prior to analysis. The blue lines are category vectors, whereby the length of the vector is a measure of the strength of the relationship between that category and the axes.

The community structure of benthic macrofauna at Elandsfontein was dominated by small crustaceans (mostly amphipods), and polychaetes. The presence of unique species such as the sandflat crab, Danielella edwardsii and the abundance of the sand prawn, K. kraussi, the mud prawn, Upogebia africana, and small sand-dwelling amphipod, Urothoe coxalis, were the main causes of dissimilarity in community structure between Elandsfontein and the Saldanha Bay and Langebaan Lagoon samples.

Species composition can sometimes be more easily understood at higher taxonomic or functional group (essentially feeding mode) levels. Macrofaunal abundance and biomass results for each of the areas sampled are shown in Figure 9-4. Crustaceans (this diverse group includes prawns, shrimps, mysids, crabs, amphipods and isopods) were the dominant taxonomic group in most areas. The next most abundant taxonomic group were polychaetes (bristle worms), and a relatively greater abundance of these worms were found in the SOB Big Bay sites, ADZ North Bay farm, ADZ Big Bay farm and ADZ Big Bay control sites (Figure 9-4). Filter feeders were by far the dominant functional group in Small Bay with a greater average abundance (Figure 9-4). Detritivores were numerically the most abundant group in all other areas (Figure 9-4). Interestingly, echinoderms (consisting mostly of the sea urchin, *Parechinus anglulosus*) contributed significantly to the overall biomass of samples collected at the Sea Harvest sites. These differences are attributable to physical habitat differences between the benthic environments found in the different areas which in turn are linked to past and present anthropogenic activities e.g., port construction, dredging and organic pollution.

In general, overall biomass was found to be significantly lower at the ADZ and Elandsfontein sites in comparison to the sampling sites at Big Bay, Small Bay, Langebaan Lagoon and Sea Harvest. The Saldanha Bay sea-based ADZ baseline benthic survey report (Mostert et al. 2020a) mentioned that divers encountered calcrete reef at some of the sampling sites during the 2019 baseline survey (Capfish 2019) and that difficulties in obtaining grab samples at several stations were encountered in Big Bay during the 2020 sediment surveys (Mostert et al. 2020b). Further to this observation, Anchor Environmental Consultant's divers deploying water quality monitoring instruments during April 2020, indicated the presence of reef in several areas of the Big Bay ADZ precinct. A subsequent literature review revealed the existence of an extensive abrasion platform (areas of exposed calcrete rock) throughout much of Big Bay (Flemming 2015). Additionally, the finfish lease holder provided a bathymetry map of their precinct which indicated extensive low-profile reef throughout the site (Mostert et al. 2020a). Underwater video footage obtained from one of the Big Bay finfish lease holders revealed that the depth of sediment varied considerably within their precinct, and was frequently less than 50 cm. Indeed the sediment thickness was less than 20 cm at most of the ADZ sampling sites effectively excluding large burrowing taxa (such as prawns) and therefore explaining the lower biomass observed. The abundance of benthic macrofauna observed at the ADZ sampling sites is, however, comparable to that observed at the traditional suite of SOB monitoring sites. This is because of the numerous smaller surface-dwelling taxa (amphipods, isopods and various polychaetes) are typically found within the top layer of sediment.

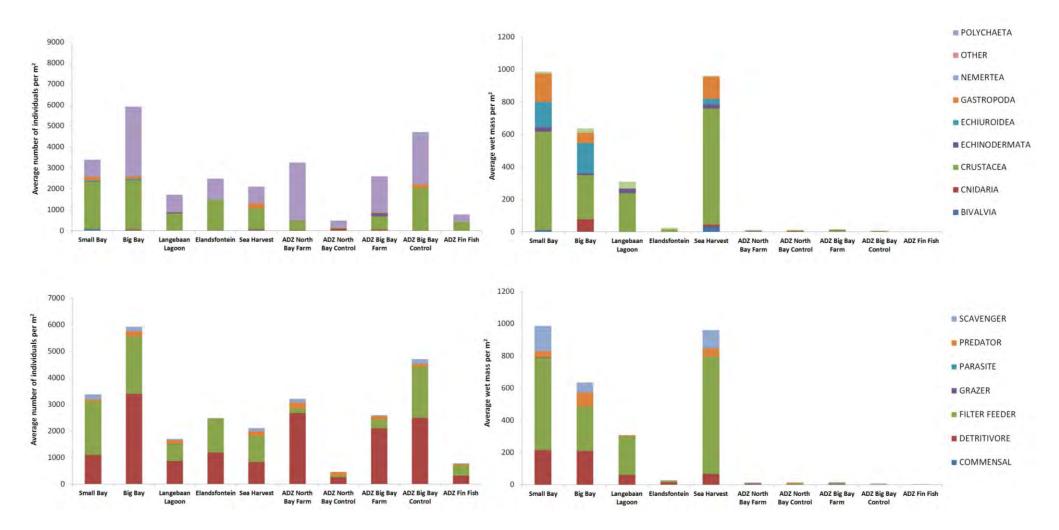


Figure 9-4 Average abundance and biomass (g/m²) of benthic macrofauna by functional and taxonomic group in Big Bay (n = 9), Small Bay (n = 10), Langebaan Lagoon (n = 9), Elandsfontein (n = 15), Sea Harvest (n = 8), ADZ North Bay Farm (n = 4), ADZ North Bay control (n = 3), ADZ Big Bay Farm (n = 8), ADZ Big Bay Control (n = 3) and ADZ Fin Fish (n = 3) in 2021.

Photographs of the benthic environment taken by Anchor Environmental Consultants indicated that low lying reef occurred, which was possibly periodically inundated with a fine layer of sediment (Mostert *et al.* 2020a, b). The patches of exposed reef provided habitat for upright epifauna (basket stars, sponges, bryozoans etc.) and west coast rock lobster were present (currently unquantified). Overall, the reef was described as low-profile roughly < 1 m in height from the sea floor, which may be subject to periodic, natural sand inundation. However, substantial outcrops > 1 m in height were present which form habitat for a well-established epifaunal community.

During the 2021 field survey Anchor Environmental divers collected video footage at two stations where reef was encountered (BB 5 and FF 2). This footage was then used to provide a qualitative description of the reef epibenthos at each site. A total of 21 species were identified, with more species recorded at site BB 5 (20 species) than at the finfish site FF 2 (10 species), however, the sites shared a number of common species including the West Coast Rock Lobster *Jasus lalandii*, red starfish *Callopatiria granifera* and reticulated starfish *Henricia ornata*, cape urchins *P. angulosus*, and beds of the common feather star *Comanthus wahlbergii* (Table 9.1), examples of which are shown in Figure 9-5 and Figure 9-6. Future surveys and monitoring of this reef habitat are scheduled to take place.

Table 9.1 Species identified using footage collected at rocky ADZ sites in Big Bay.

			Site	
Phylum/Class	Scientific Name	Common name	BB 5	FF 2
Anthozoa	Pseudactinia flagellifera	False Plum anemone	✓	
Ascidiacea	Pyura stolonifera	Red Bait	✓	
Asteroidea	Henricia ornata	Reticulated starfish	✓	✓
	Marthasterias africana	Spiny starfish	✓	
	Callopatiria granifera	Red starfish	✓	✓
Bivalvia	Aulacomya ater	Ribbed mussel	✓	
Crinoidea	Comanthus wahlbergii	Common feather star	✓	✓
Echinoidea	Parechinus angulosus	Cape urchin	✓	✓
Gastropoda	Africofusus ocelliferus	Long-siphoned whelk	✓	
	Burnupena sp	Whelk	✓	
Gymnolaemata	Schizoretepora tessellata	Lacy false coral	✓	
Hydrozoa	Hydrozoa sp		✓	✓
Malacostraca	Jasus lalandii	West Coast rock lobster	✓	✓
	Palaemon pacificus	Sand shrimp		✓
Polychaeta		Fanworm polychaete	✓	
	Gunnarea capensis	Cape reef worm	✓	
		Tangle worm polychaete	✓	
Porifera	Haliclona sp	Sponge	✓	
	Leucosolenia sp	Sponge	✓	✓
		Orange sponge	✓	✓
	Tethya sp	Sponge	✓	✓

Figure 9-5 Stills taken from video footage of ADZ Big Bay farm site B 5 showing examples of epifaunal reef community.

1) Callopatiria granifera; 2) Marthasterias africana; 3) Burnupena sp.; 4) Aulacomya ater; 5) Comanthus wahlbergii; 6) Jasus lalandii; 7) Parechinus angulosus.

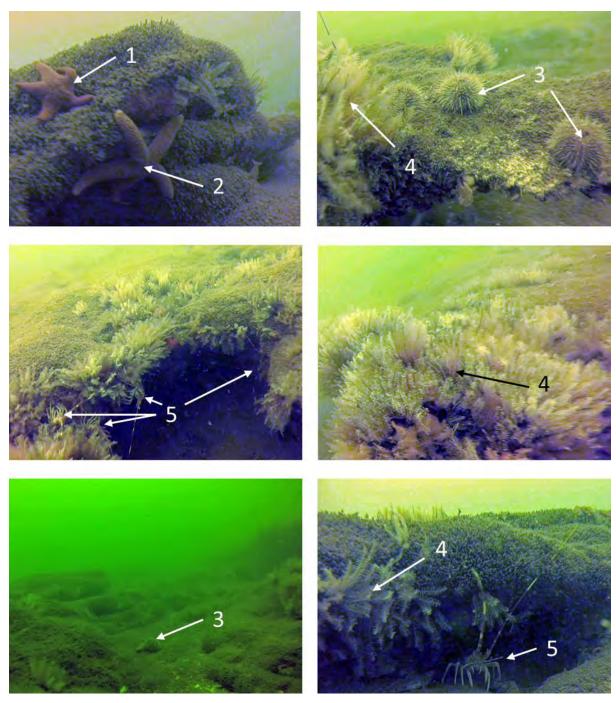


Figure 9-6 Stills taken from video footage of ADZ Fin Fish site FF 2 showing examples epifaunal reef community. 1) Callopatiria granifera; 2) Henricia ornata; 3) Parechinus angulosus; 4) Comanthus wahlbergii; 5) Jasus lalandii.

9.5 Changes in abundance, biomass and community structure over time

9.5.1 Species richness

Variation in the total number of macrofauna species recorded in Small Bay, Big Bay, Langebaan Lagoon and Elandsfontein during each annual survey from 1999 to 2021 is shown in Figure 9-7. While there appears to be a slight increase in the numbers of species recorded over time, this is more than likely related to improvements in taxonomic resolution rather than a real increase with time. In Small Bay and Big Bay species richness was lowest in 1999, 2008 and 2012, while in Langebaan Lagoon the lowest richness was recorded in 2004, 2008 and 2012 (note that no samples were collected from the Lagoon in 1999). If one considers these data in the light of recent developments in the Bay, it is immediately clear that these changes may be linked to major dredging events in the Bay. Following construction of the original port in 1973, the most significant dredging events were implemented in 1996/7 (when 2 million m³ of material was removed from the Small Bay side of the Iron Ore Terminal for the construction of the multi-purpose terminal), the second in 2007/2008 (when approximately 50 000 m³ of seabed material was removed from the area of the Mossgas quay and the multi-purpose terminal) and the third in 2009/2010, (when 7 300 m³ of material was removed from the Saldanha side of the Iron Ore Terminal). Species richness tends to drop (or starts off very low) immediately following these events (1999, 2008 and 2012) but tends to be higher (or even increase with time) in the intervening periods (2004, 2009 – 2011, 2013 – 2021).

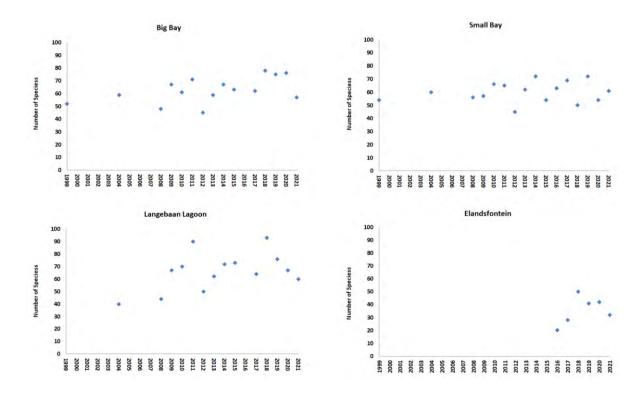


Figure 9-7 Variation in the number of species recorded at Small Bay, Big Bay, Langebaan Lagoon (1999 – 2021) and Elandsfontein (2016 – 2021).

The low species richness in Langebaan Lagoon recorded during the 2004 sampling event may be related to an entirely different phenomenon. During the mid-1990s the alien invasive mussel *Mytilus galloprovincialis* began establishing dense intertidal beds on two intertidal sand flats close to the mouth of Langebaan Lagoon (Hanekom & Nel 2002). The mussel beds reached an estimated biomass of close to eight tonnes in 1999, and gave rise to concerns that the invasion could spread to the rest of the lagoon and other sandy substrata (Hanekom & Nel 2002). In early 2001, however, the mussels started to die off and by mid-2001 only dead shells and anoxic sands remained. In an effort to prevent the re-settlement of the mussel, South African National Parks began to remove dead mussel shells in late 2001 (Robinson *et al.* 2007b). The precise causes of the die off have not been established but siltation and lowered food availability are suggested as possible reasons behind the declines (Hanekom & Nel 2002). There is a high probability that the reduced macrofauna species richness in the 2004 State of the Bay samples may thus have been linked to a residual impact of the mussel invasion.

Species richness at Elandsfontein is low in comparison to rest of the system and although this is likely a result of high natural disturbance (variation in temperature and salinity), it may also be an artefact of low cumulative sampling effort, this being only the fourth survey conducted in this area to date. Additional species are likely to be detected with subsequent surveys (albeit at a decreasing rate) until a point is reached where adequate cumulative sampling effort has resulted in the detection of most species present. Significantly more species were recorded here in 2018 – 2021 — this is most certainly attributable to the change in sampling gear used (from suction sampling to Van Veen grab). The Van Veen grab does appear to be more effective at sampling benthic macrofauna in this area, and we recommend this be continued for future monitoring.

9.6 Abundance, biomass and community composition

Changes in the abundance and biomass of benthic macrofauna in Small Bay, Big Bay and Langebaan Lagoon and Sea Harvest are presented in Figure 9-8 – Figure 9-11. The relative importance of different feeding groups (i.e., trophic functioning which reflects changes in food availability) and taxonomic groups (i.e., different species which differ in size, growth rates and other characteristics) in each year are also shown on the same graphs. In all three areas (Small Bay, Big Bay and Langebaan Lagoon), there is a suggestion that both abundance and biomass of benthic macrofauna has been increasing over time up until 2014, aside from a number of major perturbations (troughs) that are evident at the start of the monitoring period (1999, Small and Big Bay only), and 2008/2009 (all three areas) and 2012 (all three areas). However, in 2015 both abundance and biomass decreased slightly in all areas apart from the lagoon where biomass remained more or less constant. There are some clear changes in the relative contribution of major taxonomic groups (Bivalvia, Crustacea, Gastropoda, etc.) in the periods of reduced abundance/biomass but the changes in the relative contributions by the different feeding groups is much more pronounced. The significant increase in the overall biomass and abundance indices recorded in Langebaan Lagoon in 2020 was attributed to the high number of sand prawns, K. kraussi, in the samples collected during the 2020 survey. This species is a harvested extensively for bait and it is encouraging to see an increase in both abundance and biomass in Langebaan Lagoon. At this stage we can only speculate as to why this might be the case. Results from the present 2021 survey indicate a return to levels that were previously recorded.

The relative contribution by the group known as filter feeders (i.e., those that feed by filtering particulate matter out of the water column) dropped dramatically during these perturbations in all three areas of the Bay while the contribution by the group known as detritivores (those that feed on particulate organic matter in or on the surface of the sediment) tended to increase. Filter feeders tend to be more sensitive to levels of suspended sediment that the other feeding groups, and this certainly lends weight to the argument that these period of reduced abundance and/biomass may be linked to major dredging events that have taken place in the Bay.

These filter feeders consist mostly of the mud prawn (*Upogebia capensis*) and smaller amphipod species belonging to the genus *Ampelisca*. The Sea pen, *V. schultzei*, is another important filter feeding species in the Bay. This species was reportedly "very abundant" in the period prior to port development and was present throughout Big Bay and Small Bay. It is now completely absent from Small Bay but still present in Big Bay albeit in small numbers only. Detritivores, the second most important group of benthic macrofauna in Small Bay, comprise mostly of tongue worms (*Listriolobus capensis*, previously *Ochaetostoma capense*) and polychaetes belonging to the genera *Polydora* and *Euclymene*. These species are less sensitive to water quality and changes in wave movement patterns and hence tend to increase in abundance or even dominate when conditions deteriorate.

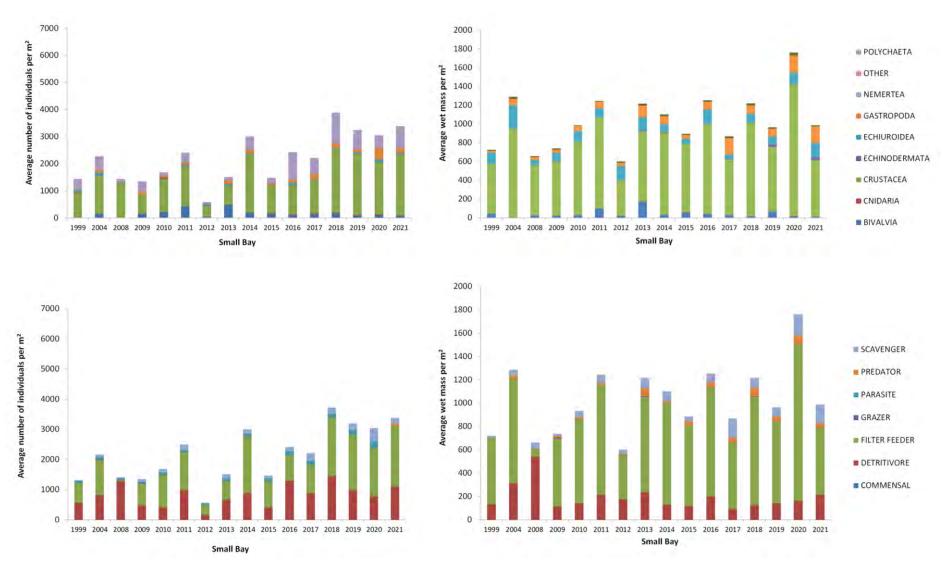


Figure 9-8 Overall trends in the abundance and biomass (g/m²) of benthic macrofauna in Small Bay as shown by taxonomic and functional groups.

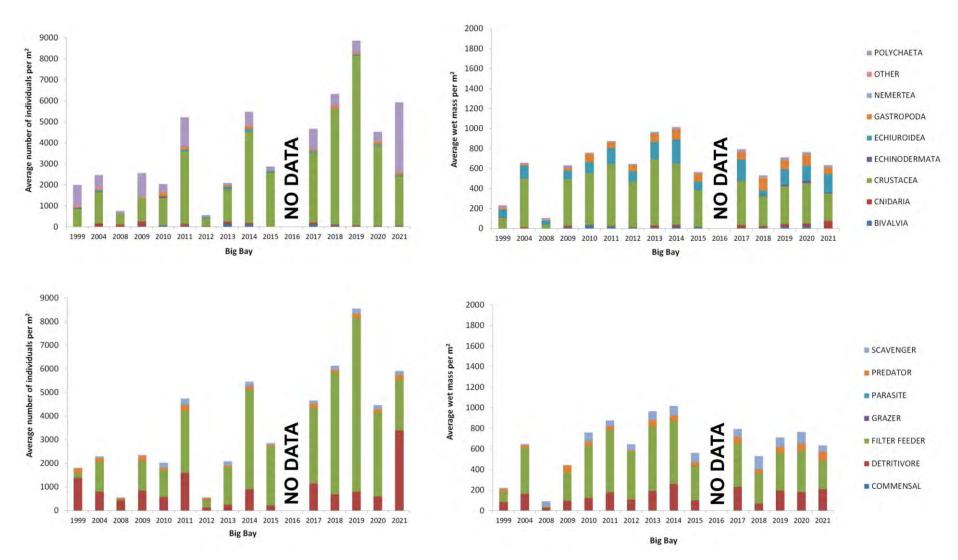


Figure 9-9 Overall trends in the abundance and biomass (g/m²) of benthic macrofauna in Big Bay as shown by taxonomic and functional groups.

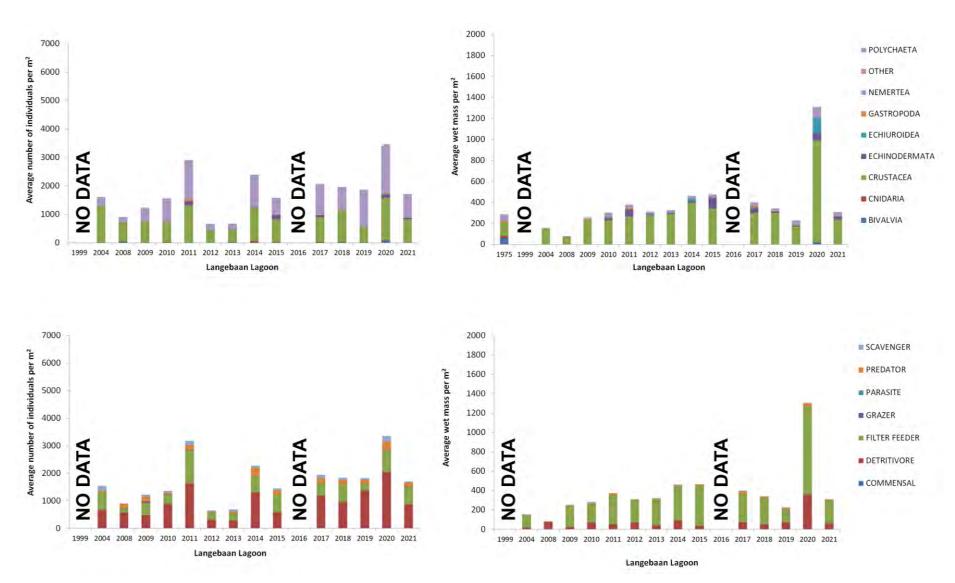


Figure 9-10 Overall trends in the abundance and biomass (g/m²) of benthic macrofauna in Langebaan Lagoon as shown by taxonomic and functional groups.

Previously, tongue worms were absent at the Sea Harvest effluent monitoring sites in 2017; but are now found at some of the monitoring sites following the relocation of the discharge pipe to a more suitable location. Hardier filter feeders such as the prawn *L. capensis* were abundant at both the Sea Harvest outfall and Small Bay sites in 2021 which would explain the high biomass of filter feeders observed (Figure 9-11). Conversely, the previous 2017 Sea Harvest survey showed that the proportion of filter feeders was very low and the absence of sensitive filter feeders (e.g., the amphipods *A. spinimana* and polychaete *S. luderitzi*) was likely the result of poor water quality (Wright *et al.* 2018a). In the current survey, the proportion of filter feeders has grown significantly, similar to that observed in Small Bay, indicating an improved and healthier water and sediment quality, facilitating the presence and growth (biomass) of various taxonomic functional groups.

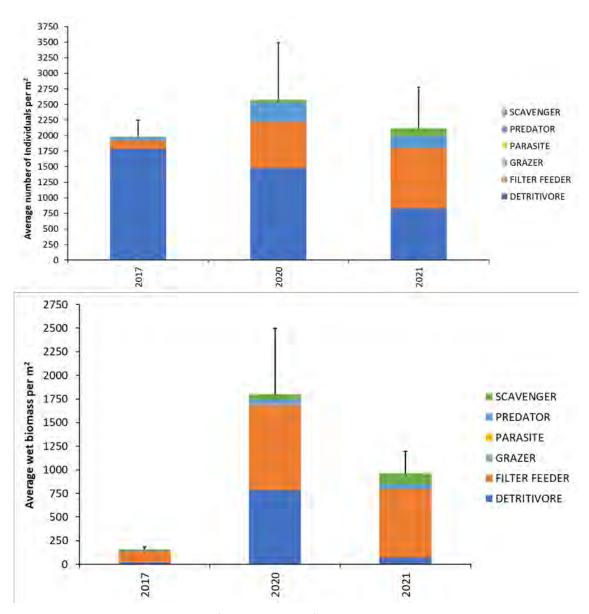


Figure 9-11 Trends in average abundance/m² and biomass (g/m²) of benthic macrofauna at the Sea Harvest monitoring sites as shown by functional groups.

9.7 Community structure

In this and previous reports, multivariate analysis has revealed clear differences in the macrofaunal communities inhabiting Small Bay, Big Bay and Langebaan Lagoon that are largely driven by physical habitat characteristics of each area. Investigation of any changes in macrofaunal communities over time, however, is useful as an ecosystem health monitoring tool as community scale perturbations outside of natural variability can indicate anthropogenic impacts on habitat quality. In order to do this without the confounding effects of the documented spatial structure, multivariate analysis of macrofaunal abundance data collected in all years since 2004 was undertaken separately for Small Bay, Big Bay and Langebaan Lagoon. A similar exercise was performed for the Sea Harvest sites where macrofaunal community structure at the Sea Harvest monitoring sites in 2017 was compared to that observed in 2021 — data from Small Bay were included as reference against which recovery could be measured. Examples of benthic macrofauna species frequently found to occur in Saldanha Bay and Langebaan Lagoon are depicted in Figure 9-12 and Figure 9-13.

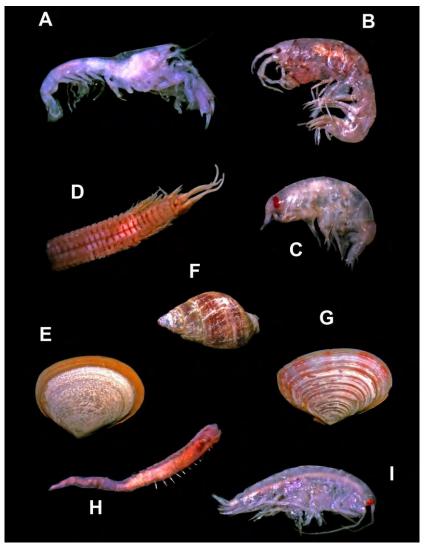


Figure 9-12 Benthic macrofauna species frequently found to occur in Saldanha Bay and Langebaan Lagoon, photographs by: Aiden Biccard. A – Upogebia capensis; B – Idunella lindae; C – Hippomedon normalis; D – Diopatra monroi; E – Macoma c. ordinaria; F – Nassarius vinctus; G – Tellina gilchristi; H – Sabellides luderitzi; I – Ampelisca anomola.

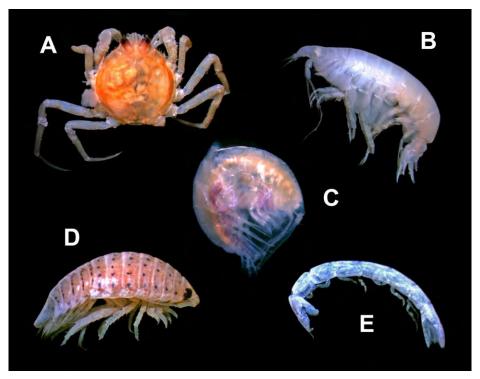


Figure 9-13 Benthic macrofauna species frequently found to occur in Saldanha Bay and Langebaan Lagoon, photographs by: Aiden Biccard. A – Hymenosoma obiculare; B – Socarnes septimus; C – Ampelisca palmata; D – Eurydice longicornis; E – Centrathura caeca.

9.7.1 Small Bay

The Small Bay ordination plot (a technique that groups samples with similar macrofaunal communities close together and separates dissimilar samples), shows clear separation of all samples collected during 2008 from samples collected in all other years (Figure 9-14). Overall abundance in Small Bay was not notably low in 2008, but the macrobenthic community was different in that there was a high abundance of detritivores such as the shrimp *Betaeus jucundus*, the polychaetes *Mediomastus capensis* and *Maldanidae* sp., and crustaceans of the Family Cumacea that were not common in samples collected during other years. Conversely, detritivorous crustaceans such *Spiroplax spiralis*, polychaetes *Polydora* sp. and *O. angrapequensis*, the tongue worm *L. capensis*, predatory whelks of the genus *Nassarius* and filter feeding amphipods *Ampelisca* sp. and the mud prawn *U. capensis*, were common in samples collected in other years, but were rare or absent in 2008 samples.

As mentioned above, these changes in macrobenthic community structure are thought to be related to the extensive dredging activities undertaken during 2007 and early 2008 that appeared to have had Bay-wide impacts, resulting a temporary loss of less tolerant species and a shift in community composition to one dominated by more tolerant species. Multivariate analysis of the macrobenthic samples collected over the period 2009 – 2021 suggests that the smaller 2009 dredging event had a limited impact with little change in macrobenthic community structure over the last ten years.

9.7.2 **Big Bay**

The 2008 Big Bay macrobenthos samples also clustered separately from all other years on the ordination plot indicting that they were dissimilar to the others in some way (Figure 9-14). Species primarily responsible for the dissimilarity of 2008 samples from all other years include very low abundance or absence of detritivores, *O. angrapequensis and O. capense*, filter feeders such as *U. capensis*, *Ampelisca* sp. and *V. schultzei* and predators such as *Nassarius* sp. whelks in 2008 samples. The same resilient species that were abundant in Small Bay 2008 samples also dominated the macrofauna in Big Bay, e.g., *B. jucundus*, *M. capensis* and *Platynereis australis*.

9.7.3 Langebaan Lagoon

The 2008 samples were also outliers in the Langebaan Lagoon ordination plot (Figure 9-14). Low abundance or absence of filter feeding mud prawns *U. capensis*, the polychaete *Notomastus latericeus* and the isopod *N. hirtipes*; and high abundance of *B. jucundus* and the polychaetes *Marphysa sanguine* and *Eteone foliosa* in 2008 samples were the species consistently responsible for the dissimilarity of 2008 Lagoon samples from those collected in other years

As mentioned above, these changes in macrobenthic community structure are thought to be related to the extensive dredging activities undertaken during 2007 and early 2008 that appeared to have had Bay-wide impacts, resulting a temporary loss of less tolerant species and a shift in community composition to one dominated by more tolerant species. Multivariate analysis of the macrobenthic samples collected over the period 2009 — 2021 suggests that the smaller 2009 dredging event had a limited impact with little change in macrobenthic community structure over the last ten years.

9.7.4 Sea Harvest Sites

Multivariate results indicate that there has been a substantial improvement in macrofaunal community structure and functioning adjacent to the Sea Harvest discharge (Figure 9-15). The macrofauna sampled in 2017 at sites surrounding the old discharge location were dominated by small detritivores and represented a barely functioning community with very low overall biomass. The 2021 samples from sites surrounding the new discharge locality were indicative of a fully functioning macrofaunal community with good representation of various functional groups similar to communities sampled elsewhere in Small Bay (Figure 9-15). The greater proportion of detritivores and slightly higher average abundance and biomass (Figure 9-11) at Sea Harvest sites compared to Small Bay sites in 2021 does suggest some organic enrichment and retention at the former but the community composition is much closer to "natural". This constitutes a notable improvement in benthic ecosystem health adjacent to the Sea Harvest discharge when compared with findings from 2017. Ongoing monitoring is, however, recommended to ensure that the situation does not revert through accumulation of organic material at the new discharge location over time.

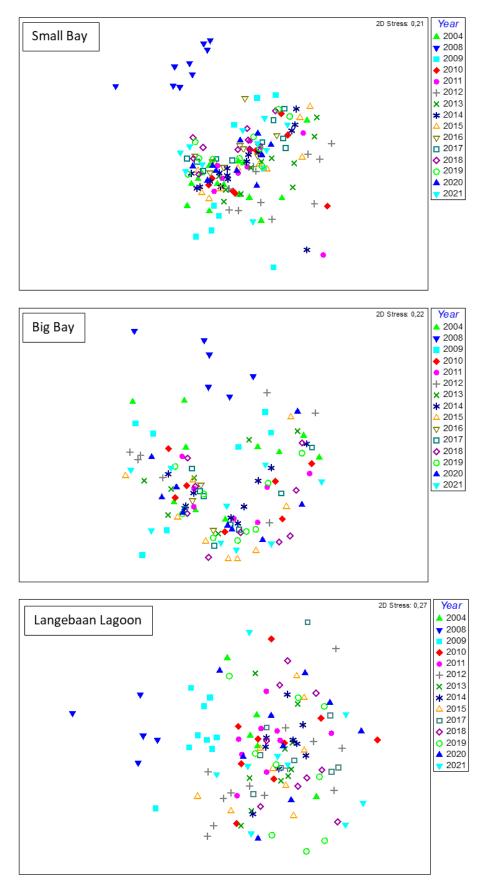


Figure 9-14 MDS plots based on macrofaunal abundance data from samples collected in Small Bay (top), Big Bay (middle) and Langebaan Lagoon (bottom) during the period 2004 – 2021.

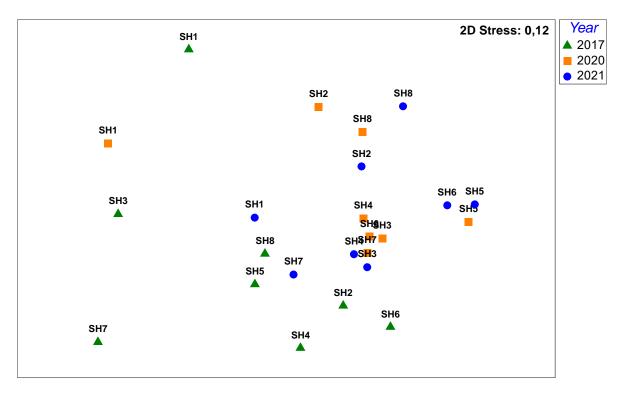


Figure 9-15 MDS plot of macrofaunal abundance, based on the Bray-Curtis resemblance matrix, collected at Sea Harvest sites in 2017, 2020 and 2021.

9.8 Elandsfontein 2021 survey results

The State of the Bay monitoring activities were expanded to include monitoring of benthic macrofauna at three new sampling sites near the head of the Lagoon at Elandsfontein in 2016. Concern had been raised around potential impacts that the proposed phosphate mine at Elandsfontein might have on groundwater quality and flows to Langebaan Lagoon; hence the objective to establish an appropriate baseline of the present benthic macrofauna community structure against which any potential future changes in the Lagoon can be benchmarked. The fourth set of baseline results are presented here and are assessed in context of the entire Saldanha Bay/Langebaan Lagoon system.

The ordination plot prepared from the 2021 macrofauna abundance data, is presented in Figure 9-2. It is evident that significant spatial dissimilarities in macrofaunal community composition exist between samples from Saldanha Bay (Small Bay and Big Bay), Langebaan Lagoon and Elandsfontein with each area forming a distinct cluster. The Langebaan Lagoon cluster falls between the Saldanha Bay and Elandsfontein clusters which implies that the macrofaunal community composition at the Elandsfontein sites are most similar to that present in Langebaan Lagoon (76.2% dissimilarity) and in turn are most dissimilar to those in Small Bay (87.5%), Big Bay (89.3%) and the Outer Bay sites (> 90%). This suggests that a spatial trend in macrofaunal communities exists from the marine dominated Saldanha Bay through the sheltered lagoon to the very sheltered, shallow, sun-warmed and possibly freshwater/estuarine influenced Elandsfontein sites.

To date, a total of 67 species (consisting of polychaetes, crustaceans, gastropods, bivalves, a nemertean and a cnidarian — Figure 9-16) have been recorded at Elandsfontein. Six of these are found nowhere else in the system namely the polychaetes *Ancistrosyllis rigida* and *Scoloplos*

johnstonei; the crabs *D. edwardsii* and *Paratylodiplax algoensis*; the gastropod *Nassarius kraussianus*; and an isopod belonging to the family Sphaeromatidae.

Macrofaunal abundance and biomass results from 2016 to 2021 (broken down into taxonomic and functional feeding groups) are shown in Figure 9-16. There does not appear to be any significant difference in mean abundance over the years, however, a decreasing trend in biomass is apparent although it is not clear why this is the case. On a community composition level, the samples collected from 2018 to 2021, group separately to those collected in 2016 and 2017 (Figure 9-17). In addition, there are further differences in macrofaunal community structure between the different sites at Elandsfontein with sites Eland_1 and Eland_2 grouping together and site Eland_3 forming its own cluster (Figure 9-17). This is likely to be explained by the difference in physical conditions present at each of the sites. From Figure 9-1, it can be seen that Eland_3 is situated directly opposite the "mouth" of the channel from Langebaan Lagoon and appears to be mostly marine, whereas Eland_1 and Eland_2 are located further east, closer to the source of freshwater in what appears to be a more estuarine habitat. Interpretation of water quality data from a conductivity, temperature and depth (CTD) instrument deployed in the vicinity and further sampling in years to come would provide further insight into our findings thus far.

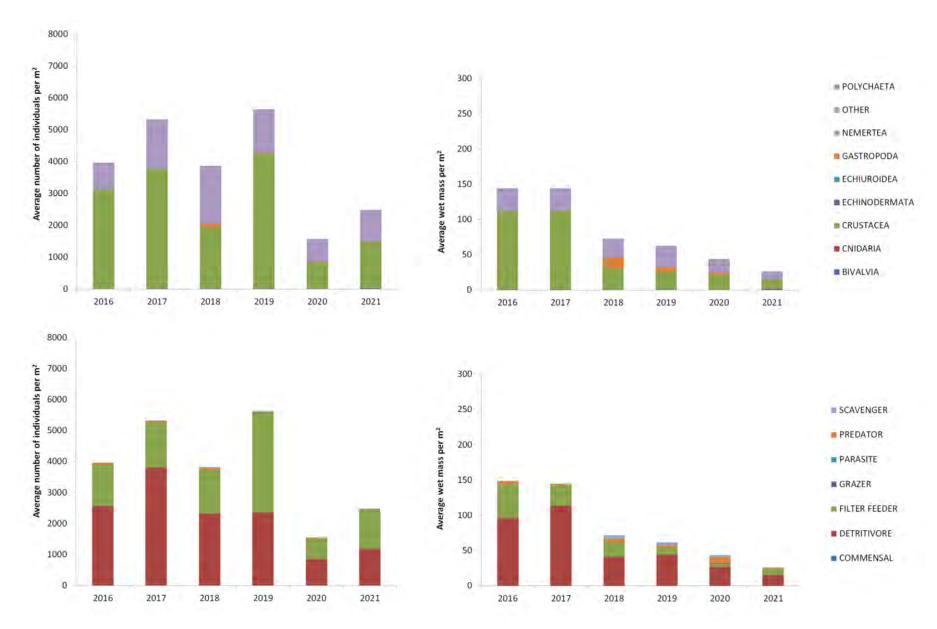


Figure 9-16 Average abundance and biomass (g/m²) of benthic macrofauna by functional and taxonomic group from sampling sites at Elandsfontein from 2016 to 2021.

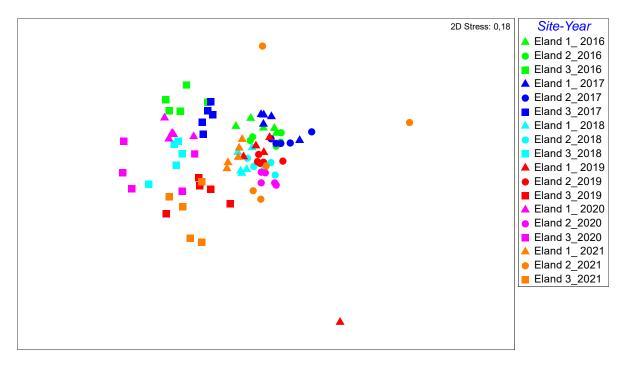


Figure 9-17 MDS plot based on macrofaunal abundance data from samples collected at Elandsfontein from 2016 to 2021.

9.9 Summary of benthic macrofauna findings

Macrofaunal community structure within Saldanha Bay has been the subject of several studies in the past, most of which focus on anthropogenic impacts to benthic health. These earlier studies showed very clearly that there was a substantial change in benthic communities before and after harbour development in the early 1970s. At this time, approximately 25 million cubic meters of sediment were dredged from the Bay, and the dredge spill was used to construct the new harbour wall (Moldan 1978). Severe declines in a number of species were reported, along with a change in the relative abundance of different trophic (feeding) groups, with a reduction in the number of suspension feeders in particular and an increase in the numbers of opportunistic scavengers and predators (Moldan 1978, Kruger et al. 2005). Within Saldanha Bay, many species disappeared completely after dredging (most notably the sea-pen, V. schultzei) and were replaced by opportunistic species such as crabs and polychaetes (Moldan 1978). Dredging reportedly directly impacts benthic community structure in a variety of ways: many organisms are either directly removed or buried, there is an increase in turbidity and suspended solids, organic matter and toxic pollutants are released and anoxia occurs from the decomposition of organic matter (Moldan 1978). Indeed, reduced indices of abundance, biomass and diversity observed at the LPG site in 2019 and 2021 appear to be linked with increased disturbance at this site since the SPM was installed in this area. Harbours are known to be some of the most highly altered coastal areas that characteristically suffer poor water circulation, low oxygen concentrations and high concentrations of pollutants in the sediment (Guerra-Garcia & Garcia-Gomez 2004). Beckley (1981) found that the marine benthos near the iron-ore loading terminal in Saldanha Bay was dominated by pollution-tolerant, hardy polychaetes. This is not surprising since sediments below the Iron Ore Terminal were found to be anoxic and high in hydrogen sulphide (characteristically foulsmelling black sludge).

Methods for collecting macrofauna samples for the State of the Bay surveys, which commenced in 1999, are unfortunately very different to those that were employed for the earlier surveys, and thus data from these studies cannot be compared directly. Analysis of the data from these studies as reported in this chapter is thus focussed on changes that have occurred in this latter period only. Variations in species richness, abundance biomass, and community composition and community structure all show very similar patterns over this period. Starting off at modest levels in 1999, both abundance and biomass rose to fairly high levels in Small Bay and Big Bay in 2004 before dropping down to low levels again in 2008 (regrettably no data are available to show what happened in the intervening years between 1999 and 2004 and between 2004 and 2008). Thereafter both overall abundance and biomass in all three parts of the Bay (Langebaan Lagoon included) increased steadily year-on-year until 2011, before dropping dramatically again in 2012, rising again in 2013 and 2014 and then remaining fairly stable up to the present 2021 survey. These changes in abundance and biomass were, to a large extent, driven by the loss of filter feeding species during period of low abundance (1999, 2008 and 2012). Filter feeding species are thought to be highly sensitive to changes in water quality (more so than detritivores or scavengers) and it is thought that reductions in abundance and biomass of these species may also be linked to a sequence of dredging events that have occurred in recent years (1996, 2007/2008 and 2009/2010). The latest suite of results indicates a significant increase in the prevalence of the sand prawn, K. kraussi, in Langebaan Lagoon. This is a popular bait species and it is encouraging to see an increase in both abundance and biomass in Langebaan Lagoon. At this stage we can only speculate as to why this might be the case.

Other more localised factors are also clearly important in structuring benthic macrofauna communities in the Bay and the Lagoon (see previous versions of the State of the Bay Report — Anchor Environmental 2010 – 2020 for more details on this). For example, reduced water circulation patterns in parts of Small Bay (e.g., near the Small Craft Harbour) and localised discharges of effluent from fish processing establishments in this area, contribute to the accumulation of fine sediment, organic material and trace metals, and results in macrofauna communities in this area being highly impoverished. Similarly, the impacts of dredging required for the expansion and refurbishment of the Salamander Bay boatyard at the entrance of the lagoon in 2010 had a very clear impact on macrofaunal communities in this area (AEC 2012b, 2013b). Invasion of Langebaan Lagoon by the European mussel *M. galloprovincialis* also had a major impact on the fauna in the affected areas of the Lagoon (Hanekom & Nel 2002, Robinson and Griffiths 2002, Robinson *et al.* 2007b) and presumably on the results of the earliest 2004 State of the Bay survey as well.

In general, overall biomass was found to be significantly lower at the ADZ monitoring sites in comparison to those in Big Bay, Small Bay, Langebaan Lagoon and Sea Harvest. This is due to the presence of a calcrete reef/abrasion platform that was encountered at some of the ADZ sampling sites. The sediment thickness at these sites ranged from 5 – 20 cm and would serve to explain the lower biomass observed. The extent of this reef abrasion platform present in Big Bay is currently unquantified and the proportion of this habitat type impacted by current and future mariculture activities is also unknown. A detailed bathymetry survey using side scan sonar or multibeam echosounder of the ADZ precinct and historical extent of the abrasion platform is recommended to map the current extent of the abrasion platform in Big Bay. This would allow for the calculation of the proportion of this habitat type potentially impacted by mariculture operations.

Video footage taken by Anchor Environmental divers during the present monitoring survey allowed for a qualitative description of the epifaunal community on the reef habitat at two designated ADZ sampling sites in Big Bay — a total of 21 species were recorded. The reef appears to be mostly low profile < 1 m in height and may be periodically inundated with sand, however, outcrops of reef > 1 m in height were evident. This is a poorly/unstudied habitat type within Saldanha Bay and there is a dearth of information on its extent, and the nature and type of biotic communities present. The ADZ monitoring programme has been updated to include suitable reef surveys for monitoring potential aquaculture impacts on this habitat type. The ADZ Outer Bay North sites were also found to be different in terms of their community structure. This was attributed to the greater depth of these sites.

Overall, increases in abundance, biomass and diversity of macrofauna across all parts of the Bay (Small Bay, Big Bay and Langebaan Lagoon) in 2013 and 2014 was taken as a very positive sign and points to an overall increase in the health of the Bay. The slight fluctuations observed in abundance and biomass data from 2016 to 2021 are not of major concern as overall community structure remains largely unchanged. Results from the Elandsfontein baseline survey show that the macrofaunal community present at these sites are most similar to that present in Langebaan Lagoon. A spatial comparative analysis revealed a clear trend in macrofaunal communities from the marine dominated Saldanha Bay through the sheltered Lagoon to the very sheltered, shallow and possibly freshwater/estuarine influenced Elandsfontein habitat. Furthermore, physical habitat and associated macrobenthic biota appear to be driving dissimilarity among the Elandsfontein sites themselves. In terms of the concerns raised around potential impacts that the proposed phosphate mine at Elandsfontein may have on groundwater quality and flows to Langebaan Lagoon, ongoing collection of baseline data on macrobenthic communities in Elandsfontein to capture natural variability, is essential for objective and quantitative assessment of any impacts should they occur. Results from samples collected in the vicinity of the Sea Harvest discharge pipe indicate a marked improvement on those from 2017. This would suggest that the relocation of the discharge outfall was justified and has resulted in a notable improvement in benthic ecosystem health.

10 ROCKY INTERTIDAL COMMUNITIES

10.1 Background

Limited historical data exists on the state of the rocky-shore habitats within the Saldanha Bay system. Species presence/absence data was collected by undergraduate students from the University of Cape Town at Lynch Point and Schaapen Island between 1965 and 1974 (University of Cape Town, Prof. C. Griffith, *pers. comm.*). However, the accuracy and reliability of these data is questionable and they provide limited value for monitoring changes in the health of the Saldanha Bay ecosystem. Simons (1977) and Schils *et al.* (2001) reported on the algal species assemblages in the Bay, while Robinson *et al.* (2007b) examined the species composition of rocky intertidal communities on Marcus Island between 1980 and 2001, focusing on the impact of the alien invasive Mediterranean mussel, *Mytilus galloprovincialis* (see Chapter 12).

Monitoring of rocky intertidal communities in Saldanha Bay was initiated as part of the State of the Bay Monitoring Programme in 2005 in an effort to fill the gap in knowledge relating to rocky intertidal communities in Saldanha Bay and Langebaan Lagoon. The first rocky shore survey for this programme was conducted in 2005, the results of which are presented in the first 'State of the Bay' report (Anchor Environmental Consultants 2006). Eight rocky shores spanning a wave exposure gradient from very sheltered to exposed were sampled in Small Bay, Big Bay and Outer Bay as part of this baseline. These surveys have been conducted more or less annually from 2008 to 2021. This chapter presents results from the fourteenth annual monitoring survey conducted in March 2021.

The baseline survey report concluded that wave exposure was the primary physical driver shaping intertidal rocky shore communities across the study area. More sheltered shores were dominated by seaweeds, while sites exposed to higher wave energy were dominated by filter-feeders. It was suggested that the construction of the Marcus Island causeway and the Iron Ore Terminal had reduced wave energy reaching rocky shores across much of Small Bay and led to a change in community structure. However, the lack of historical data from these shores precludes confirmation of the latter hypothesis.

The results further indicated that the topography and substratum type of the shore influences community structure, for example, sites consisting of rocky boulders had different biotic cover to shores with a flatter profile. Geographic location was also considered to be important, for example, sampling stations on Schaapen Island are situated in a transitional zone between the Saldanha Bay and the Langebaan Lagoon system. These same sites are also affected by high nutrient input from seabird guano facilitating algal growth. Generally, the Saldanha Bay communities were healthy, despite the presence of a few alien invasive species including the Mediterranean mussel *M. galloprovincialis*, the three barnacles *Balanus glandula*, *Perforatus perforatus* and *Amphibalanus amphitrite*.

10.2 Approach and methodology

10.2.1 Study sites

The locations of the eight rocky shore sampling sites are shown in Figure 10-1. The Dive School and Jetty sites are situated along the northern shore in Small Bay. The Marcus Island, Iron Ore Terminal and Lynch Point sites are in Big Bay, while the Schaapen Island East and West sites are located at the entrance to Langebaan Lagoon. The North Bay site is situated in Outer Bay at the outlet of Saldanha Bay. The sampling sites were specifically chosen to cover the different rocky shore habitats found in the Saldanha Bay system and incorporate the full range of wave exposure and topographical heterogeneity (type of rock surface and slope). Dive School and Jetty are very sheltered sites with gentle slopes, consisting of boulders and rubble interspersed with sandy gravel (Figure 10-2). Schaapen Island East is situated in a little baylet and is relatively sheltered and mostly flattish with some ragged rock sections. Schaapen Island West is a little less sheltered and mostly flat with some elevated topography. The site at the Iron Ore Terminal is semi-exposed with a very steep slope resulting in a very narrow total shore width (distance from low-water to high-water mark). The rock surface at this site comprises medium-sized broken boulders that are piled up to support a side arm of the Iron Ore Terminal, which encircles a small area that was previously used for aquaculture purposes. The semi-exposed site Lynch Point has a relatively smooth surface with occasional deep crevices. North Bay is exposed with a relatively flat high and mid-shore. The low-shore consists of large unmovable square boulders separated by channels. The rocky intertidal site on Marcus Island is flat and openly exposed to the prevailing south-westerly swell.

10.2.2 Methods

At each study site, the rocky intertidal was divided into three shore height zones: the high, mid and low-shore. In each of these zones, six 100x50 cm quadrats were randomly placed on the shore and the percentage cover of all visible species were recorded as primary (occurring on the rock) and secondary (occurring on other benthic fauna or flora) cover. The quadrat was subdivided into 171 smaller squares with 231 points to aid in the estimation of the percentage cover. Individual mobile organisms were counted to calculate densities within the quadrat area (0.5 m²). Finally, the primary and secondary cover data for both mobile and sessile organisms were combined and down-scaled to 100%. Percentage cover refers to the space that organisms occupy on the rock surface, while abundance refers to the number of organisms present. The survey protocol has remained consistent for all surveys.

Sampling is non-destructive, *i.e.*, the biota were not removed from the shore and smaller infaunal species (e.g., polychaetes, amphipods, isopods) that live in the complex matrix of mussel beds or dense stands of algae were not recorded by this survey protocol. Some algae and invertebrates that could not be easily identified to genus or species level in the field were recorded under a general heading (e.g., crustose and articulate corallines, red turfs, sponge, colonial ascidian). For further analysis, intertidal species were categorized into seven functional groups: grazers (mostly limpet species), filter-feeders (including sessile suspension feeders such as mussels and barnacles), predators and scavengers (such as carnivorous whelks and anemones), encrusting algae (crustose and articulated coralline algae), corticated algae, ephemeral foliose algae and kelps.

Figure 10-1 The location of the eight rocky shore study sites in Saldanha Bay are indicated by yellow pins.

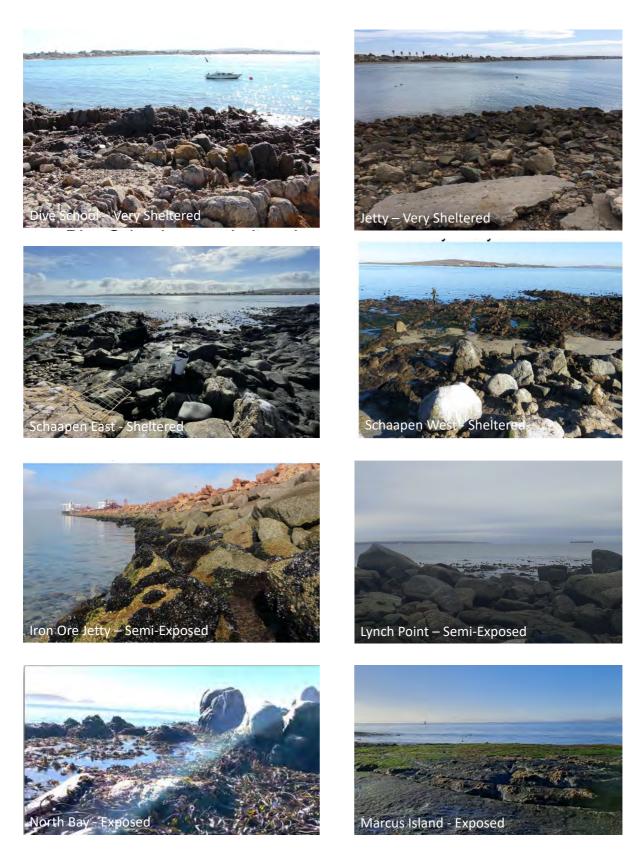


Figure 10-2 Rocky shore study sites in Saldanha Bay. Dive School and Jetty are situated in Small Bay, Schaapen Island East and West are in Langebaan Lagoon, Iron Ore Jetty and Lynch Point are in Big Bay, and North Bay and Marcus Island are in Outer Bay.

10.2.3 Data analysis

The rocky shore biota from the eight study sites were analysed with multivariate statistical techniques employing the software package PRIMER 7. These methods provide a graphical presentation of the results obtained from the typically large data sets collected during ecological sampling. The principle aim of these techniques is to discern the most conspicuous patterns in the community data. Comparisons between intertidal communities are based on the extent to which they share species at similar levels of occurrence. Patterns in the data are represented graphically through hierarchical clustering (dendrogram) and multi-dimensional scaling (MDS) ordination techniques. The former produces a dendrogram in which samples with the greatest similarity are fused into groups and are successively clustered as the similarity criteria defining the groups are gradually reduced. MDS techniques compliment hierarchical clustering methods by more accurately 'mapping' the sample groupings two-dimensionally in such a way that the distances between samples represent their relative similarities or dissimilarities. All percentage cover data were 4th-root transformed and a Bray-Curtis resemblance matrix was used.

The MDS plots were not visually clear when graphed and given that the dataset spans more than 10 years, it is highly likely that this is a result of natural perturbations in both space and time that were masking or exacerbating the differences/ similarities between the species collected at each site. To account for these spatial and temporal challenges, the similarity/ dissimilarities between sites have been assessed in this chapter by using group centroids (central point in a cluster of replicate samples) for each site. Further, statistical comparisons of a priori defined groups of samples (e.g., sites, years) were analyzed by means of PERMANOVA. This analysis is a routine for testing the simultaneous response of one or more variables to one or more factors in an analysis of variance (ANOVA) experimental design on the basis of any resemblance measure, using permutation methods (Anderson et al. 2008). In essence, the routine performs a partitioning of the total sum of squares according to the specified experimental design, including appropriate treatment of factors that are fixed or random, crossed or nested, and all interaction terms. A distance-based pseudo-F statistic is calculated in a fashion that is analogous to the construction of the F statistic for multi-factorial ANOVA models. P-values are subsequently obtained using an appropriate permutation procedure for each term. Following the main overall test, pair-wise comparisons are conducted. Significance level for the PERMANOVA routine is p < 0.05 (i.e., a 95% probability that the finding is not due to chance).

The contributions of each species to the average dissimilarity between two sites, and to the average similarity within a site, were assessed using a SIMPER (Similarity Percentages) analysis. The taxa principally responsible for differences detected in community structure between sites or groups were identified. A variety of diversity indices were determined that are used as measures of community structure. Diversity indices include:

- Species number (S) total number of species present.
- Percentage/biotic cover the percentage of intertidal rocky surface that is covered by biota (fauna and flora).
- Evenness (J') expresses how evenly the individuals are distributed among the different species, in other words, whether a shore is dominated by individuals of one or few species (low evenness) or whether all species contribute evenly to the abundance on the shore (high

- evenness). The index is constrained between 0 and 1 where the index increases towards 1 with less variation in communities.
- Shannon-Wiener diversity index (H'[loge] or d) a measurement of biodiversity taking into account the number of species and the evenness of the species. The index is increased either by having additional unique species, or by having greater species evenness.

10.3 Results and discussion

10.3.1 Spatial variation in community composition

In 2021, a total of 114 species were recorded from all rocky shore sites, of which 67 species were invertebrates (59%) and 47 (41%) algae. The faunal component was represented by 20 filter feeding taxa, 23 grazers, and 24 predators/scavengers. The algal component comprised 33 corticated (foliose) seaweeds, seven ephemerals, five encrusting algae and two kelp species. Coralline algae taxa are likely underestimated as most species are not identifiable in the field and are thus lumped into larger groups. The total number of taxa recorded at the study sites has remained relatively constant over the years (Anchor Environmental Consultants 2009, 2010, 2011, 2012b, 2013b, 2014, 2015, 2017, 2018, 2019, 2020). Most of the species have already been recorded during one or more of the previous monitoring years, and many are listed by other studies conducted in the Saldanha Bay area (e.g., Simons 1977, Schils *et al.* 2001, Robinson *et al.* 2007b). Furthermore, these species are generally common to the South African west coast (e.g., Day 1974, Branch *et al.* 2010a). A list of species and the percentage cover of each species found on the rocky shores of Saldanha Bay and Langebaan Lagoon in 2021, are presented in APPENDIX 1.

Intertidal rocky shores are alternately submerged underwater and exposed to air by tidal action. This creates a steep vertical environmental gradient for the biota that inhabit these shores resulting in biota lower on the shore being mostly submerged, and biota higher on the shore mostly exposed. Rocky shores can thus be partitioned into different zones according to shore height level, whereby each zone is distinguishable by their different biological communities (Menge & Branch 2001). This is indeed true for all sites over the survey years.

10.3.1.1 High-shore

The composition and distribution of the rocky intertidal biota is strongly influenced by prevailing wave exposure and substratum topography (McQuaid & Branch 1984). Within a site, shore height is a critical factor due to the increasing exposure to air from low to high-shore, whereby the existence of distinct patterns of zonation of flora and fauna has been well described (Stephenson & Stephenson 1972). The effects of wave action are generally attenuated further up-shore and superseded by the uniformly severe desiccation stress experienced high on the shore.

In agreement with the above, previous 'State of the Bay 'reports showed that very few mobile species occurred on the high-shore at all Saldanha Bay sites (Anchor Environmental Consultants 2015). It was also found that at the predominantly sheltered boulder shores (Dive School and Jetty), considerable amounts of sand and gravel accumulated amongst the boulders (Anchor Environmental Consultants 2015). A typical species found at the high-shore sheltered sites was the winkle *Oxystele antoni*, while

at the exposed sites the anemone *Bunodactis reynaudi* and, in larger numbers, the tiny periwinkle *Afrolittorina knysnaensis*, dominated this zone (Anchor Environmental Consultants 2015) (Figure 10-3). The latter typically accumulated in moist cracks and crevices at Lynch Point, Marcus Island and North Bay.

Field data collected in 2021 showed that Lynch Point was only 34.44% similar to the other high-shore sites mostly due to the periwinkle Oxystele tigrina being relatively more abundant (> 50%) but also several other species (Diatoms, Scutellastra granularis, Nucella dubia, Cyclograpsus punctatus, Cymbula oculus, Red turf) all contributing ~10% to the overall similarity. The alien barnacle B. glandula occurred in the high-shore zone at Dive School and North Bay with less than 1% average cover. Jetty had slightly more than 4% average cover of B. qlandula, although densities were much higher on Marcus Island with an average of ~7% cover with slightly more than 37% of one of the quadrats surveyed in the high-shore zone on Marcus Island covered by this alien. B. glandula was absent from the high-shore at the Iron Ore Jetty, Lynch Point and Schaapen Island. On average, barren rock accounted for > 80% at some sites on the high-shore and algal cover was extremely sparse. Encrusting algae such as diatoms and Hildenbrandia spp. made up on average > 20% at Marcus Island, Iron Ore Jetty and Schaapen East, respectively. Furthermore, Marcus Island had an average 3% cover of Porphyra capensis, and Schaapen East, Schaapen West and Lynch Point had < 2%. Marcus Island had slightly less than 2% average cover of Ulva spp. while Schaapen East and Schaapen West had 4 and 6%, respectively. Nothogenia erinacea was also found in the high-shore at Schaapen West with ~1% coverage. Overall, diatoms and the periwinkle A. knysnaensis, a typical high-shore species made up > 50% of the similarity between sites.

Figure 10-3 Affrolittorina knysnaensis is typically found characterizing the high-shore zone with the Pacific barnacle Balanus glandula also found in the lower reaches of this zone.

10.3.1.2 Mid-shore

The mid-shores at the sheltered sites were also relatively barren, while the exposed sites had some biotic cover (Anchor Environmental Consultants 2015). The dwarf cushion starfish *Parvulastra exigua* was typically found in moist rock-depressions and small pools, while the whelk *Burnupena* spp. and the periwinkle *O. antoni* were frequently observed sheltering in depressions created by mussel beds. In previous years, *Gunnarea gaimardi*, a tube-building polychaete living deeply cemented in a compact matrix of sand was common at sheltered sites (Anchor Environmental Consultants 2011), but in 2012 the worm had declined at the mid-shore and was only recorded from lower down the shore, albeit with low cover. Field data collected in 2021 showed that the ephemeral alga *Ulva* spp., the periwinkle *O. tigrina*, the whelk *Burnupena* spp., and the goat's eye limpet *Cymbula oculus* cumulatively accounted for ~50% of the similarity between mid-shore sites. Algal presence was generally low in the mid-shore (< 1% on average), but *Ulva* spp. was more abundant at Schaapen West with one out of the six quadrats having > 40% cover and an average cover of ~14%.

With increasing wave force across sites, the mid-shores were dominated by filter feeders, particularly the alien invasive barnacle *B. glandula* (Figure 10-4). This species was most abundant at the semi-exposed Lynch Point, Marcus Island and North bay where ~40% of the quadrats surveyed on the mid-shore was occupied by this barnacle. Neither of the remaining filter feeders were present in substantial numbers on the mid-shore at the remaining sites. The tiny periwinkle *A. knysnaensis* was found nestling in amongst the barnacles at sites inundated with *B. glandula*. This snail is normally abundant primarily in the upper intertidal where it congregates in crevices to escape the heat of the day, emerging at night or on moist days to feed (Branch *et al.* 2010b). In the high-shore where wave stress is minimal, *A. knysnaensis* is naturally abundant but in the mid-shore, where wave stress is greater, the periwinkle normally declines in abundance without adequate shelter (Laird & Griffiths 2008, Griffiths *et al.* 2011).

Figure 10-4 Typical mid-shore species recorded in these surveys include (A) the Pacific barnacle *Balanus glandula* and the sea cucumber *Pseudocnella insolens;* (B) the brooding chiton *Radsia veriscens;* (C) the whelk *Burnupena* spp. and rosy pink barnacle *Perforatus perforatus* (D) the sea cucumber *Thyone aurea,* the sea lettuce *Ulva* spp. and goats eye limpet *Cymbula oculus*.

10.3.1.3 Low-shore

Reflecting known zonation patterns, total biotic cover generally increased from high to low-shore from an average of 27% to 49% cover. At the very sheltered sites (Dive School and Jetty), average faunal cover was low in comparison with the exposed sites (North Bay and Marcus Island). Algal cover at sheltered sites (on average) was much lower than that at exposed sites, and consisted primarily of the green alga *Ulva* spp.the encrusting alga *Hildenbrandia* spp., a variety of encrusting coralline species and the corticated alga *Gigartina bracteata*. At the sheltered Schaapen Island sites, the ground cover was dominated by a diverse array of algal species, and other than *Ulva* spp., encrusting coralline species was more prominent (Figure 10-5).

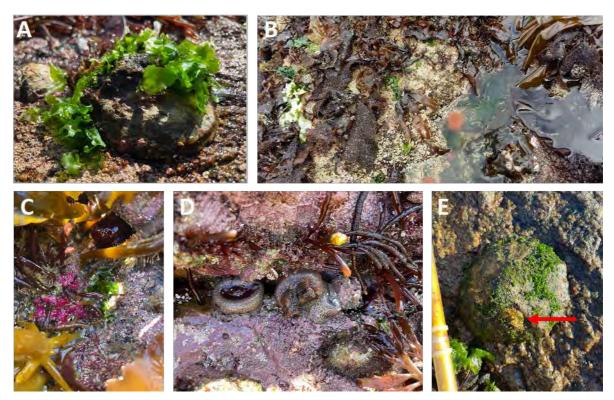


Figure 10-5 Typical low-shore species found in the current survey such as (A) Argenvilles limpet Scutellastra argenvillei covered in the sea lettuce Ulva sp.; (B) The tongue weed Gigartina bracteata and the slippery orbit Pachymenia orbitosa; (C) the strawberry anemone Corynactis anulatus; (D) the knobbly anemone Bunodosoma capense and (E) the goats eye limpet Cymbula oculus with the pear limpet Patella cochlear positioned on top of it (red arrow).

The following species together accounted for ~53% of the similarity attributed between low-shore sites: encrusting coralline, the algae *G. bracteata*, *Ulva* spp., the ribbed mussel *Aulacomya atra* and the whelk *Burnupena* spp. The indigenous mussel *A. atra* was found living deep within the *Mytilus* beds where they take advantage of the moisture trapped within the overlaying dense mussel matrix. In 2011, *A. atra* was fairly prominent on the low-shore at Marcus Island and could locally supersede the alien mussel *M. galloprovincialis* (Anchor Environmental Consultants 2012b). During the 2021 survey, the ribbed mussel was found across all sample sites and contributed a total of ~2% coverage at the Dive School, Iron Ore and North Bay sites, while Lynch Point and Marcus Island had 5% and 9% coverage, respectively. As these populations cannot be seen without destructive sampling, it is possible that the changes in *A. atra* cover recorded between survey years could be attributed to the *Mytilus* layers being ripped off from the rocks by waves, exposing the indigenous mussel beneath.

Also recorded for the first time during the State of the Bay survey is the alien porcelain crab *Porcellana africana* (Figure 10-6). Native to North West Africa (western Sahara and Senegal), the porcelain crab is suggested to have been introduced to Saldanha Bay through shipping and was first discovered in dense beds of the alien Mediterranean mussel *M. galloprovincialis* in the Bay in 2012 (Griffiths *et al.* 2018). This year's survey found *P. africana* at a low density, with individuals of varying sizes at the Dive school site sheltering in a dense bed of mussels. According to Griffiths *et al.* (2018) the ecological impacts of this alien crab have not yet been identified and therefore populations should be monitored.

Figure 10-6 The introduced porcelain crab *Porcellana africana* (indicated by red arrow) found sheltering among a dense mussel bed comprising the Mediterranean mussel *Mytilus galloprovincialis* and the indigenous ribbed mussel *Aulacomya atra*.

10.3.1.4 Spatial analysis of diversity indices

Diversity indices provide insight into the way in which the total number of individuals in a community are divided up among different species. Understanding changes in benthic diversity is important because increasing levels of environmental stress generally results in decreasing diversity. Two different aspects of community structure contribute to community diversity, namely species richness (calculated using the Shannon-Weiner diversity index) and equability (evenness). Species richness refers to the total number of species present, while evenness expresses how uniformly the individuals are distributed among different species. A sample with greater evenness is considered to be more diverse. It is important to note when interpreting diversity values that predation, competition and disturbance all play a role in shaping a community. For this reason, it is important to consider physical parameters as well as other biotic indices when drawing a conclusion from a diversity index. As previous reports showed no clear trend in diversity indices over time (Anchor Environmental 2015), spatial biotic cover data were averaged across years from 2005 to 2021 at each site (Figure 10-7). Sites were sorted from left to right according to an increase in wave force and the indices are calculated for the whole shore across all zones. North Bay had the highest average number of species over this period, while Jetty had the lowest, although there was no clear trend across the wave exposure gradient. In contrast, average biotic cover increased among the shores with intensifying wave force from ~15% cover at Dive School to > 50% cover at North Bay and Marcus Island, although dips in biotic cover were observed for Lynch Point and Marcus Island. However, this trend was not evident for evenness and Shannon-Wiener diversity, although the Dive school site had the highest evenness and diversity values, Marcus Island had the lowest values for evenness and the site at Iron Ore Terminal had the lowest Shannon-Weiner Diversity. This resulted in low overall diversity but higher variation in communities over the years, which may be an indication of disturbance.

10.3.2 Temporal analysis

10.3.2.1 Temporal analysis of diversity indices

Diversity indices were averaged across sites from 2005 – 2021 (Figure 10-8). No clear trend in diversity indices can be seen with values remaining somewhat consistent over time. Although, biotic cover dipped most notably in 2014 and 2015 but with higher average number of species than previous years and similar evenness and diversity values. Furthermore, despite high diversity over these years, the total number of individuals across species was low. In 2020, high diversity and evenness indices were observed with a decline in the average number of species and biotic cover that was similar in previous years. A similar average number of species was recorded in the 2021 survey compared to 2020. Biotic cover increased from 2020 to 2021 while a slight dip in evenness and diversity can be seen in the same period (Figure 10-8). This may be due to several factors such as settlement rate, substratum availability and wave exposure where planktonic larvae are more likely to settle on spatially complex surfaces so as not to be washed away by waves (Guarnieri *et al.* 2009). However, other influences such as predation and competition should also be considered in conjunction with the aforementioned factors.

10.3.2.2 Temporal trends in rocky shore community patterns

PERMANOVA tests conducted for each site confirmed significant differences among the years (p = 0.001 for all tests). Pair-wise tests further reveal that for every site-by-year combination tested, interannual changes in community composition were significant (p > 0.5).

Temporal trends in rocky shore community patterns are illustrated in the MDS plot (Figure 10-9). Consistent for all years is the grouping according to wave exposure, with the cluster on the left of the MDS plot grouping all samples from the more sheltered sites (Dive School and Jetty), centre cluster grouping the semi-exposed sites (Schaapen Island East and West) and a cluster on the right grouping samples from more exposed sites (Iron Ore Terminal, Lynch Point, Marcus Island, North Bay). Within the exposed cluster, a separation of Iron Ore Terminal from the other three sites is apparent.

Inter-annual variability within each site is also evident, but this is more pronounced for some of the sites than for others. At Dive School, samples from 2013 tend to be on the right of the cluster, while those from 2005 are on the left (Figure 10-9). The greatest within-site variability (or patchiness) occurs at the boulder site Jetty where the replicates per year often disperse widely. Due to the high stress level of 0.18, the MDS plot needs to be interpreted with caution, but there is good agreement with the pattern observed between years, suggesting that the representation is fairly reasonable.

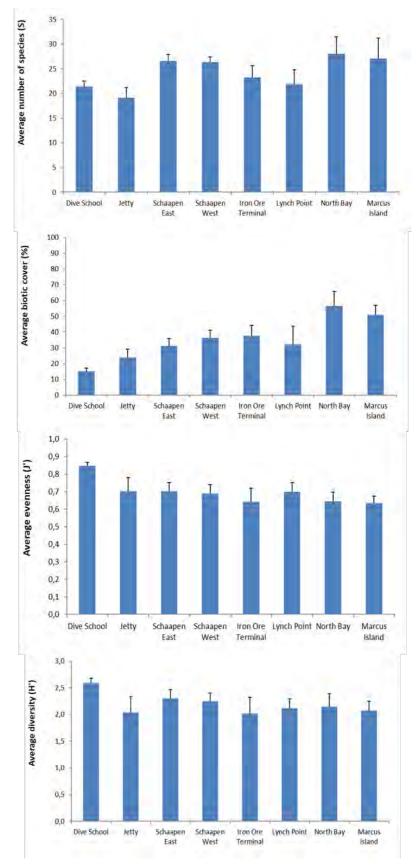


Figure 10-7 Spatial biotic cover data from 2005 – 2021 averaged across years and displayed as biotic indices of 'species number' (S), 'biotic cover' (N), 'diversity' (d) and 'evenness' (J'). Error bars indicate standard error.

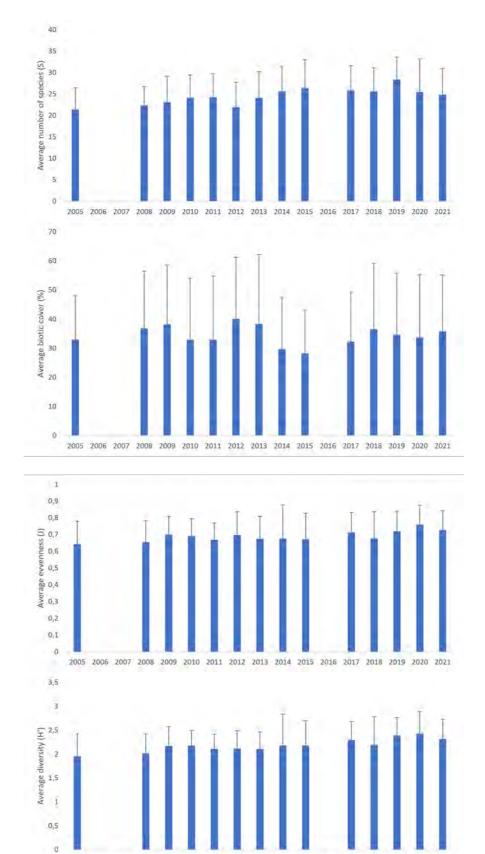


Figure 10-8 Temporal biotic cover data from 2005 – 2021 averaged across sites and displayed as biotic indices of 'species number' (S), 'biotic cover' (N), 'diversity' (d) and 'evenness' (J'). Error bars indicate standard error.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

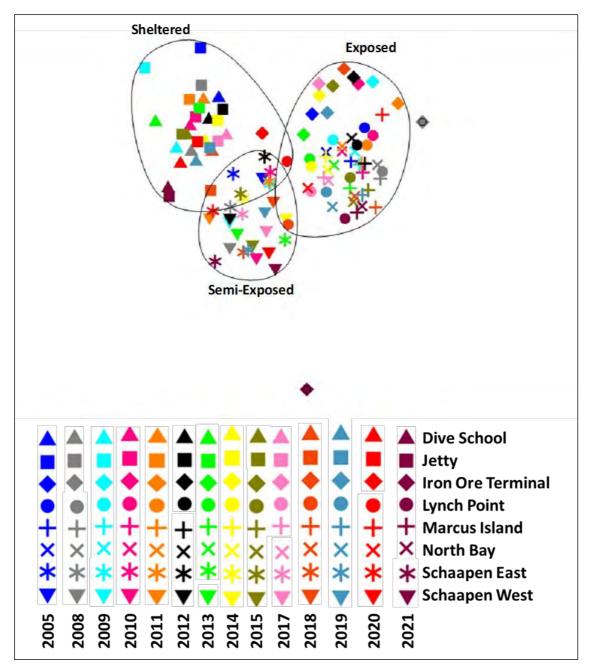


Figure 10-9 Multi-dimensional scaling (MDS) plot of the rocky shore communities at the eight study sites from 2005 to 2021 using centroids. The circles delineate a 38% similarity level and the plot has a 2D stress of 0.18.

10.3.2.3 Species responsible for temporal trends

The species that are primarily responsible for the observed differences in community structure among the years are identified by the SIMPER routine. For brevity, only species contributing > 4% to the dissimilarity at any specific site and only comparisons between 2020 and the current dataset from 2021 are presented (Table 10.1). At half of the sites, more than one species contributed largely (> 4%) to the differences in community structure between 2020 and 2021. Marcus Island and Schaapen East had four main contributing species; Dive School had three; Jetty had two; and Lynch Point had one (Table 10.1).

Notable changes in species composition included the appearance of two species (*Tetraclita serrata*, *G. bracteata*) that were not present at these specific sites in the previous year; the absence of three species (*Choromytilus meridionalis*, *O. antoni*, *Caulacanthus ustlatus*), the increase in abundance of two species (*A. atra*, diatoms) and the decrease in abundance of a further four species (*Gigartina polycarpa*, *Ralfsia verrucosa*, Crustose coralline sp., *Hildenbrandia* spp.)(Table 10.1).

The common contributor species to differences observed between years were algal species, of which seven were listed; four were encrusting algae and three were corticated algae. Diatoms, which often temporarily cover high-shore rocks until succeeded by macroalgae (Robles 1982, Cubit 1984, Maneveldt *et al.* 2009), contributed to differences between the years at Dive School and Schaapen East. Average diatom abundance increased at Dive School while it was absent from Schaapen East in 2020 but was present in high abundance in 2021. The latter site also experienced a decrease in the encrusting alga *R. verrucosa*. Encrusting *coralline* cover increased at Marcus Island but decreased at the Iron Ore Terminal. The corticated algae *G. polycarpa* and *G. bracteata* attributed to differences at Jetty, Schaapen East and Schaapen West where abundance of *G. polycarpa* decreased at Jetty and was absent from Schaapen East. *G. bracteata* was absent from the shore at Schaapen East and Schaapen West in 2020 but increased in abundance in 2021.

Of the five invertebrate species listed, all are filter feeders. The indigenous mussel *C. meridionalis* appeared at the Dive School and Jetty for the first time since being recorded in previous years but was absent from the shore at Dive School in this survey. The alien barnacle *T. serrata* was absent from Dive School in 2020 but was present in 2021. Similarly, the gastropod *O. antoni* was present at Jetty in 2021 but absent in the present survey. Percentage cover of the alien barnacle *B. glandula* decreased in abundance from 2020 to 2021 at North Bay (Table 10.1). Fluctuations in the abundance of larval species on the rocky intertidal are not unexpected as the success of larval supply and settlement varies naturally both seasonally and inter-annually.

Table 10.1 SIMPER results listing the species that contribute > 4% to the dissimilarity between 2020 and 2021 at each site. The percentage cover data presented are averages across the six replicates per site and are on the fourth-root transformed scale.

Site	Species	2020% cover	2021% cover	Ave. dissimilarity	% Contribution	Ave. dissimilarity between years	
Dive School	Diatoms	0.13	0.89	2.78	5.29	52.49	
	Choromytilus meridionalis	0.85	0	2.68	5.11		
	Tetraclita serrata	0	0.69	2.17	4.13		
Jetty	Gigartina polycarpa	0.99	0.16	2.54	4.62	54.91	
	Oxystele antoni	0.77	0	2.35	4.28		
Schaapen East	Gigartina bracteata	0	1.20	2.92	5.444	53.70	
	Diatoms	0	1.23	2.80	5.21		
Schaapen West*	Gigartina polycarpa	1.05	0	2.54	4.73	56.28	
	Ralfsia verrucosa	0.97	0.09	2.17	4.05		
	Gigartina bracteata	0	1.05	2.08	3.70		
Iron Ore Terminal*	Crustose coralline	1.27	0.19	2.42	3.15	76.68	
Lynch Point	Hildenbrandia spp.	1.85	0.34	2.98	5.18	57.44	
North Bay*	Caulacanthus ustulatus	0.91	0	1.53	3.11	49.12	
Marcus Island	Balanus glandula	1.85	0.69	3.44	5.68	60.63	
	Crustose coralline	0.25	1.52	3.23	5.32		
	Aulacomya atra	0.12	1.25	2.85	4.70		
	Caulacanthus ustulatus	0.97	0	2.43	4.02		

^{*} Note that at sites marked with an asterisk none of the species contributed > 4% to the dissimilarity. The species with the highest contribution is thus listed.

10.3.2.4 Temporal variations in abundance of functional groups

Many studies have been conducted worldwide focusing on the effect of wave action on the distribution of organisms on rocky shores (Lewis 1964, McQuaid & Branch 1984, Raffaelli & Hawkins 1996, Bustamante *et al.* 1997, Menge & Branch 2001, Denny & Gaines 2007). Increasing exposure reduces siltation and increases the supply of dissolved oxygen and particulate food, facilitating the presence of certain sessile, filter-feeding species and leading to an elevation of overall biomass (McQuaid & Branch 1985, Bustamante & Branch 1996, Bustamante *et al.* 1995, Steffani & Branch 2003a). Although increasing exposure carries an increased risk of dislodgement and physical damage, thus limiting the range of susceptible and physically fragile species. Pfaff *et al.* (2011) showed that wave exposure has an overall positive effect on the recruitment of mussels and barnacles on the southern African west coast. In contrast, sheltered shores are typically dominated by algae (McQuaid & Branch 1985) as species richness of most algal groups decreases with increasing exposure. The effect of wave exposure, however, varies with phyla and functional form as some forms can better withstand hydrodynamic forces than others (Denny & Gaylord 2002, Nishihara & Terada 2010).

Despite adaptations evolved as a result of different wave exposures, hydrodynamic forces can at times cause massive damage to rocky shore communities, fundamentally altering the structure and function of exposed rocky habitats and creating changes that may persist for many years. The magnitude and frequency of physical disturbance is not as severe on protected shores as on exposed shores, thus the structure of protected communities is often more stable than that of exposed assemblages. The rocky shores at Saldanha Bay are subject to a range of wave forces from very sheltered to exposed.

While wave force is clearly the main factor for differences among the shores, shore topography is also of importance. The roughness of the substratum or habitat structure can be a crucial factor driving species richness, abundance and even body size (Kostylev *et al.* 2005). According to McCoy and Bell (1991), habitat structure is generally thought to have two independent components: complexity (the physical architecture of a habitat) and heterogeneity (the relative abundance of different structural features such as boulders or crevices within a habitat). Several studies have shown that many mobile animals exhibit preferential movement from smooth surfaces into habitats with more structural complexity (e.g., crevices) where they are more protected from hydrodynamic forces (McGuinness & Underwood 1986, Kostylev *et al.* 2005, O'Donnell & Denny 2008). This does not apply only to physical complexity, but also microhabitats offered by biota (e.g., the barnacle *B. glandula*). Mobile invertebrates can respond to environmental extremes by moving between microhabitats to ameliorate thermal and desiccation stress (Meager *et al.* 2011).

The distribution of sessile species is largely driven by the longer-term processes of settlement, growth and mortality; whereby substratum availability, micro-topography and surface smoothness can be limiting factors at local scales (Guarnieri *et al.* 2009). Topographic complexity influences the settlement of benthic organisms as planktonic larvae are more likely to be retained on rough surfaces, while water movement may wash them off smooth surfaces (Eckman 1990, Archambault & Bourget 1996, Skinner & Coutinho 2005, Guarnieri *et al.* 2009).

Boulder shores also have greater microhabitat diversity compared to more level shores. One of the reasons for this is because the tops of larger boulders stay exposed for a significantly longer period than smaller boulders (or flat platforms), with each boulder essentially having its own shore height zonation. During low tide, the top of the boulder provides the lower section with shade, thus maintaining lower temperatures and higher moisture content (Takada 1999). This arrangement increases the surface area for the attachment of organisms but may reduce water movement, which may cause detritus to accumulate, possibly resulting in low oxygen conditions. Large boulders can considerably reduce the water flow velocity, thus invertebrate biomass is expected to decrease significantly downstream of boulders. Smaller boulders may be unstable and often have a more impoverished community than larger rocks (McGuinness 1987, Guichard & Bourget 1998, Londoño-Cruz & Tokeshi 2007, McClintock *et al.* 2007). All these factors result in boulder fields supporting different species assemblages in comparison to those of flatter shores (Sousa 1979a, McGuinness 1984, McQuaid *et al.* 1985, McGuinness & Underwood 1986, Takada 1999, Cruz-Motta *et al.* 2003, Davidson *et al.* 2004, Hir & Hily 2005).

Shore topography is a likely reason for differences in community structure between the rocky shores on Schaapen Island and the other two sheltered sites, although it may also be related to the fact that Schaapen Island lies in the transition zone between Saldanha Bay and Langebaan Lagoon.

The water in the Lagoon has slight differences in water quality (e.g., temperature) compared to the water in the Bay, which in turn leads to differences in their biological communities (Day 1959, Robinson *et al.* 2007b). For example, Schils *et al.* (2001) report a distinct separation in algal composition between the Bay and the Lagoon as the Lagoon contains a significant number of south coast species due to its warmer waters. Perlemoen Punt, located less than one kilometer from Schaapen Island at the entrance to Langebaan Lagoon, is described as the transition area between the Bay and the Lagoon, but with a marked Lagoon affinity in its overall algal composition. Clear differences in community composition between the Bay and the Lagoon are also described for zooplankton and sandy substrate assemblages (Grindley 1977, Anchor Environmental Consultants 2012b).

The biotic cover of the various functional groups across the shores with regard to exposure is depicted in Figure 10-10 and Figure 10-11 with sites arranged from very sheltered to exposed. Very sheltered shores had generally low biotic cover consisting primarily of grazers, corticated algae and encrusting algae, with the exception of Schaapen Island that had high biotic cover and was clearly dominated by algae. With an increase in wave force, the dominance of sessile filter feeders (e.g., barnacles) was evident with the exception of North bay where encrusting algae made up majority of the percentage cover.

At the two sheltered sites (Dive School and Jetty), filter feeders and ephemeral algae slightly decreased over time, while corticated algae, encrusting algae and grazers increased slightly. At both Schaapen Island sites, the abundance of ephemerals and encrusting algae varied considerably over the years but without a consistent trend. In 2010 and 2011, filter feeders at the Schaapen Island sites had increased in cover to > 10% averaged across the whole shore but declined again from 2012 onwards. Iron Ore Terminal and Lynch Point remained relatively constant over time, with only minor variations in encrusting algae and ephemeral cover, although biotic cover was high at Iron Ore Jetty in 2018 due to an increase in filter feeders. At North Bay, filter feeders increased slightly over time with a slight drop in cover in 2012. Ephemerals again showed slight temporal fluctuations, with encrusting algae increasing noticeably in 2014 but decreasing again in 2015. At Marcus Island, ephemeral algae had greatly increased from 2008 to 2009, while at the same time corticated algae, encrusting algae and filter feeders declined. This substantial increase in ephemeral cover resulted in greater biotic cover overall in 2009. In 2010, ephemerals had somewhat reduced but returned in 2011. There was no noteworthy change in functional groups in 2012 but encrusting algae and kelp increased substantially in 2013, decreasing again in 2014. Ephemeral algae increased noticeably at Schaapen Island West, Iron Ore Terminal and Marcus Island in 2017 but decreased at Schaapen Island West in 2018. In 2019, densities of biota were slightly lower than the previous year at Lynch Point and North Bay, while more encrusting alga was recorded at Marcus Island.

An overall decrease in biota abundance was observed for 2020 with the exception of Lynch Point and Schaapen West. The semi-exposed sites (North Bay, Marcus Island and Iron Ore Jetty) decreased in the number of filter feeders but increased in abundance of ephemeral algae. In 2021, there was a general increase in biota abundance except for Lynch Point and Marcus Island that had substantially less biota cover compared to the previous year. All the sites had an increase in abundance of encrusting algae and a decrease in ephemeral algae with the exception of Marcus Island and Lynch Point that had an increase in the abundance of grazers and corticated algae.

Overall, none of the sites indicated a temporal change in their rocky shore communities that would suggest a dramatic alteration such as the arrival or loss of a key species. Instead, the intertidal communities show temporal fluctuations that reflect mostly the dominance of ephemerals over one or more years, often with a concomitant decline in filter feeders (e.g., Schaapen West in 2008). Ephemeral algae are usually the first to colonize rock space denuded of biota due to physical (e.g., wave action) or biological (e.g., grazing) disturbance. In the ecological succession that follows, ephemerals are then replaced by longer-lived late successional species (Sousa 1979b, 1984). No major pollution events or point sources of pollution are apparent in these data and the slight fluctuations of functional groups observed over the years are likely natural seasonal and inter-annual phenomenon.

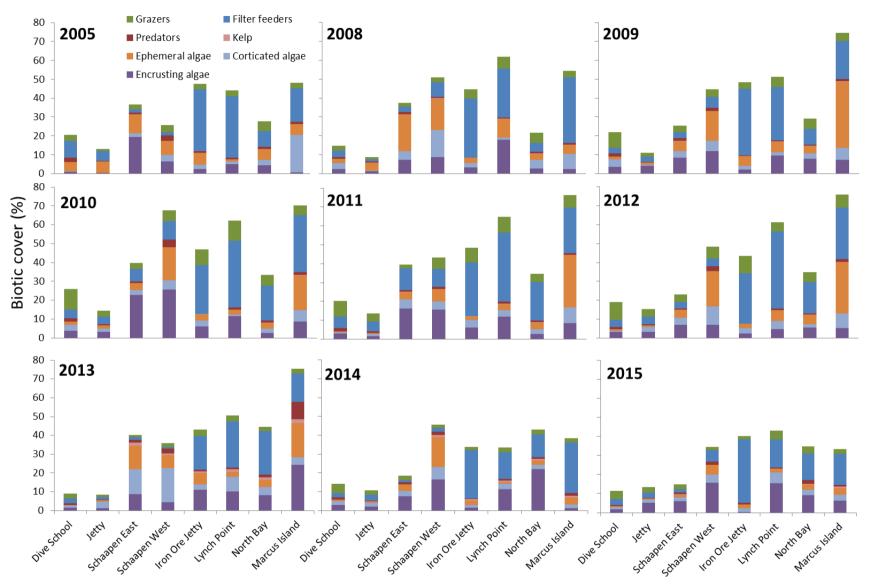
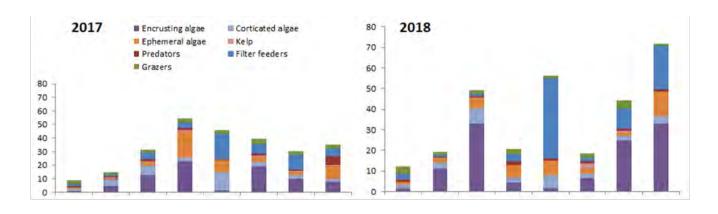



Figure 10-10 Total percentage cover (averaged across the whole shore) of the seven functional groups at the eight study sites from 2005 to 2015.

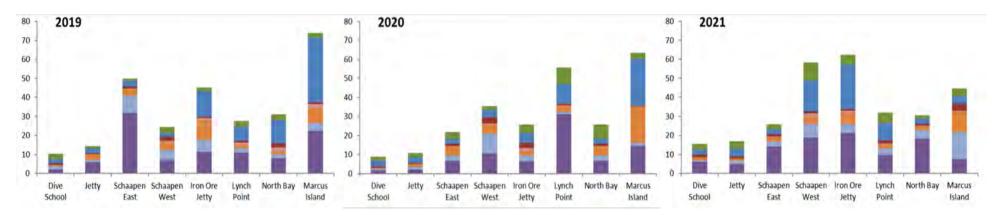


Figure 10-11 Total percentage cover (averaged across the whole shore) of the seven functional groups at the eight study sites from 2017 to 2021.

10.3.3 Summary of findings

In 2021, a total of 114 taxa were recorded from the eight study sites, most of which had been found in previous survey years. The faunal component was represented by 20 species of filter-feeders, 23 species of grazers, and 24 species of predators and scavengers combined. The algal component comprised 33 corticated (foliose) seaweeds, seven ephemerals, five species of encrusting algae and two species of kelp. The species recorded in this report are generally common to the South African West Coast, including the following alien species: the Mediterranean mussel *Mytilus galloprovincialis*, the North American acorn barnacle *Balanus glandula*, and other barnacle species *Perforatus perforatus and Amphibalanus amphitrite* and most recently recorded the introduced porcelain crab *Porcellana africana*, all of which are listed by other studies conducted in the Saldanha Bay area.

At all sites, the vertical emersion gradient of increasing exposure to air resulted in a clear zonation of flora and fauna from low-shore to high-shore. Differences among the rocky shores are strongly influenced by the prevailing wave exposure as well as substratum topography. Very sheltered shores had generally low biotic cover consisting primarily of grazers, with minor cover of sessile filter feeders and algae. Sheltered shores were dominated by seaweeds and encrusting corallines. With increasing wave exposure, filter feeders were the most important group. The two very sheltered sites in Small Bay are distinguished from the Schaapen Island sites, a result which may be related to geographic location, as Schaapen Island lies in a transitional zone between the Bay and the Lagoon. Another contributing factor may be the substantial nutrient input in the form of seabird guano that enters the sea via runoff from Schaapen and Marcus Islands facilitating algal growth in these areas. The steep boulder beach at the Iron Ore Terminal has high biotic cover, most likely due to the complex artificial habitat with many cracks and crevices available for shelter when compared to the flat semi-exposed sites of natural bedrock.

From the temporal variation evident in the rocky shore communities, it appears that there is no directional shift in community composition that would indicate a persistent change, such as the permanent loss of a species. Instead, the communities demonstrate temporal fluctuations, reflecting the temporary dominance of short-lived ephemeral species and/or inter-annual variation in larval supply or recruitment success. In general, rocky shore communities were relatively stable with only minor changes evident over the years.

The two most important filter feeders were the aliens *M. galloprovincialis* and *B. glandula*. These were the characteristic species at most shores and zones, although the barnacle appeared to be declining in abundance over time with only empty shells and base plate scars left on rocks at some sites. This species is most abundant in the mid-shore zone of semi-exposed sites, but rarer at exposed sites and low-shores. *M. galloprovincialis*, on the other hand, is most abundant at wave-exposed sites and lower down the shore.

Equally important is the relatively recent introduction and proliferation of the alien porcelain crab *P. africana*. Likely introduced via shipping, this species appears to be restricted to Saldanha Bay, but its ecological impacts are still unknown and therefore its populations should be monitored. One of the greatest threats to rocky shore communities in Saldanha Bay is the introduction of alien species via shipping, and their potential to become invasive (see Chapter 12 for detailed information on invasive species).

11 FISH COMMUNITY COMPOSITION AND ABUNDANCE

11.1 Introduction

The waters of Saldanha Bay and Langebaan Lagoon support an abundant and diverse fish fauna. Commercial exploitation of the fish within the Bay and lagoon began in the 1600s by which time the Dutch colonists had established beach-seine fishing operations in the region (Poggenpoel 1996). These fishers targeted harders Chelon richardsonii and other shoaling species such as white steenbras Lithognathus lithognathus and white stumpnose Rhabdosargus globiceps. Most of the catch was dried and salted for supply to the Dutch East India Company boats, troops and slaves at the Castle in Cape Town (Griffiths et al. 2004). Commercial netfishing continues in the area today, and although beachseines are no longer used, gill-net permits holders continue to target harders. Species such as white stumpnose, white steenbras, silver kob Argyrosomus inodorus, elf Pomatomus saltatrix, steentjie Spodyliosoma emarginatum, yellowtail Seriola lalandi and smooth hound shark Mustelus mustelus support large shore angling, recreational and commercial boat linefisheries which contribute significantly to the tourism appeal and regional economy of Saldanha Bay and Langebaan. In addition to the importance of the area for commercial and recreational fisheries, the sheltered, nutrient rich and sun warmed waters of the Bay provide a refuge from the cold, rough seas of the adjacent coast and constitute an important nursery area for the juveniles of many fish species that are integral to ecosystem functioning.

The importance and long history of fisheries in the Bay and Lagoon, has led to an increasing amount of scientific research on the fish resources and fisheries in the area. Early studies, mostly by students and staff of the University of Cape Town, investigated fish remains in archaeological middens surrounding Langebaan Lagoon (Poggenpoel 1996), whilst many UCT Zoology Department field camps sampled fish within the lagoon (unpublished data). Gill net sampling with the aim of quantifying bycatch in the commercial and illegal gill net fishery was undertaken during 1998 – 99 (Hutchings & Lamberth 2002b). A once-of survey for small cryptic species utilizing rotenone, a fish specific, biodegradable toxin that prevents the uptake oxygen by small fish, was conducted by Anchor Environmental Consultants during April 2001 (Awad et al. 2003). The data from the earlier gill netting and rotenone sampling survey was presented in the "State of the Bay 2006" report (Anchor Environmental Consultants 2006). Seine-net sampling of near-shore, sandy beach fish assemblages was conducted over short periods during 1986 – 1987 (UCT Zoology Department, unpublished data), in 1994 (Clark 1997), and 2007 (Anchor Environmental Consultants, UCT Zoology Department). Monthly seine-net hauls at a number of sites throughout Saldanha Bay-Langebaan over the period November 2007 – November 2008 were also conducted by UCT M.Sc. student Clement Arendse, who was investigating white stumpnose recruitment.

Other recent research on the fish fauna of the area includes acoustic tracking and research on the biology of white stumpnose, hound sharks and elf within Langebaan Lagoon and Saldanha Bay; monitoring of recreational shore and boat angler catches and research on the taxonomy and life history of steentjies and sand sharks and (Næsje et al. 2008, Kerwath et al. 2009, Tunley et al. 2009, Attwood et al. 2010, Hedger et al. 2010, Schultz 2010, da Silva et al. 2013, 2021). Key findings of these studies include evidence that the Langebaan lagoon Marine Protected Area (MPA) provides some protection for white stumpnose, during the summer months that coincides with both peak spawning and peak recreational fishing effort (Kerwath et al. 2009). Elf and smooth hound sharks were also

shown to derive protection from the MPA, with tagged individuals of both species spending most of the study period (up to two years) within the MPA boundaries, and indeed a high degree of residency within Saldanha Bay as a whole (Hedger et al. 2010, da Silva et al. 2013). Tagged elf did show a long-term movement out of the lagoon into the Bay and one individual was recaptured in Durban confirming that long distance migration does take place (Hedger et al. 2010). However, the fact that nearly all fish within the Bay were resident for the one to two years after tagging, and the presence of young of the year juveniles in the surf zone, suggests that elf within Saldanha Bay exhibit a mixed evolutionary strategy with migratory and resident spawning components (Hedger et al. 2010). Out of the 24 hound sharks acoustically tagged within Langebaan lagoon, 15 were monitored for more than 12 months and two of these did not leave the MPA at all. Six of these tagged hound sharks left the Saldanha embayment for the open coast, during spring and winter for periods of between two to 156 days, but all returned during the study period. These acoustic telemetry studies have clearly demonstrated that these three priority fishery species all derive protection from the Langebaan MPA. Research on sand sharks indicated that the common sand shark species in Bay and Lagoon is actually *Rhinobatos blockii*, not *R. annulatus* as previously thought (Schultz 2010).

White stumpnose within the Saldanha-Langebaan system grow more rapidly and mature earlier than populations elsewhere on the South African coast (Attwood *et al.* 2010). Male white stumpnose in Saldanha Bay reach maturity in their second year at around 19 cm fork length (FL) and females in their third year at around 22 cm FL (Attwood *et al.* 2010). Similar differences in growth rate and the onset of maturity for steentjies between Saldanha Bay and south coast populations were reported by Tunley *et al.* (2009). These life history strategies (relatively rapid growth and early maturity) in combination with the protection afforded by the MPA are probably part of the reason that stocks fishery species in Saldanha and Langebaan had until recently been resilient to rapidly increasing recreational fishing pressure (but see paragraph below on stock status). Results from angler surveys undertaken during the early 2000s indicated that approximately 92 tonnes of white stumpnose were landed by anglers each year (Næsje *et al.* 2008).

Recent studies on the stock status of white stumpnose, the most important angling species within Saldanha-Langebaan, however, shows that the stock is fully exploited or overexploited, suggesting that the Langebaan MPA alone may not be enough to prevent stock collapse with the observed increases in fishing pressure (Arendse 2011, Parker et al. 2017). Arendse (2011) used catch-at-age data from the boat fishery and per-recruit modelling to estimate that spawner biomass at the time (2006 – 2008) was less than 25% of pristine levels. The target reference point for optimally exploited stocks is 40 – 50% of pristine biomass, and Arendse (2011) calculated that a 20% reduction in fishing mortality was required to achieve this target. It was recommended that a reduction in bag limit from 10 to 5 fish per person per day, or an increase in size limit to 29 cm Total Length (TL) be implemented (Arendse 2011). These management measures were modelled to rebuild spawner biomass to the 40 - 50% target, but unfortunately, have not been implemented to date. Parker et al. (2017) provided an updated analysis of angler survey data, commercial linefish catch returns and the juvenile white stumpnose catch in the annual seine net surveys, which conclusively demonstrate substantial declines in both adult and juvenile abundance estimates over the last decade. These authors also urge that a reduction in bag limit and increase in size limit are required to sustain the Saldanha Bay white stumpnose fishery.

An investigation of the age, growth and stock assessment of the harder *C. richardsonii* stock in the Saldanha Bay- Langebaan system was completed in 2019 (Horton *et al.* 2019). Results of this study show that gill net fishers have seen substantial declines in harder catches and Catch-Per-Unit-Effort (CPUE) over the last two decades (Horton *et al.* 2019). By comparing monitored landings with reported catches, Hutchings & Lamberth (2002a); estimated that 590 tonnes of harders, valued at approximately R1.8 million was landed during 1998 – 1999. The reported catch has declined from around 130 tonnes per year over the period 2008 – 2012 to about 90 tonnes per year over the period 2013 – 2016, whilst effort remained fairly constant (Horton *et al.* 2019). The average size of harders in catches has declined significantly over the same period and a stock assessment indicated that the stock was at risk of recruitment failure (the current spawner biomass was estimated at less than 25% of the pristine level). A reduction in fishing mortality (approximately 30%) and an increase in mesh size to 51 mm were recommended to help rebuild the stock (Horton *et al.* 2019).

A study of the trace metal concentrations in the tissue of hound sharks in Langebaan lagoon reported elevated levels of arsenic and methyl mercury above the regulatory limits for foodstuffs (Bosch et al. 2016). The relatively high arsenic levels were attributed to hound sharks' diet of benthic invertebrates in Langebaan lagoon, and the authors note the fact that organic arsenic, which is the most abundant form in fish, is not considered toxic and the measurements of total arsenic are therefore not truly representative of the toxicity of the samples (Bosch et al. 2016). The high methyl mercury levels were attributed to mercury uptake through prey and bioaccumulation over the shark's lifespans (Bosch et al. 2016). There was no statistically significant relationship between trace metal concentrations (16 metals and three Hg species: inorganic Hg, ehtylmercury, methylmercury) and shark size in this study. This was an unexpected result that could reflect the similarity in diet of small and large hound sharks in Langebaan lagoon (Bosch et al. 2016). The most recent research published research of fish in the system was a life history study on the reproductive biology, diet, and growth of hound sharks in Langebaan Lagoon (Da Silva et al. 2021). It was found that they attained a total length of approximately 1.6 m at the maximum observed age of 13 years; female parturition, ovulation and mating takes place in early summer (November – December); and their diet comprised predominantly crustaceans (two species of prawns and a crab species) (Da Silva et al. 2021). This study concludes that Langebaan Lagoon represents a pupping, nursery and feeding area for the largest and oldest smooth hound sharks globally, emphasising the conservation importance of the MPA (da Silva et al. 2021).

In February 2019, SANParks implemented a fish, shark and ray monitoring project in the West Coast National Park MPA using Baited Remote Underwater Video cameras (BRUVs). BRUVs are a non-destructive and cost-effective monitoring tool which is popularly used along the South African coastline. The aim of this monitoring programme is to describe relative abundance and diversity of fish and sharks across different management zones of the WCNP MPA over time. To date, a total of 90 BRUV deployments (90 hours of video) were made across all three MPA zones and outside of the MPA, over summer and winter. Preliminary analysis of the videos identified 15 species from eleven families (Table 11.1). The most frequently observed species were steentjie (*S. emarginatum*), white stumpnose (*R. globiceps*) and white seacatfish (*Galeichthys feliceps*). Overall, Zone A had the greatest species diversity, while Zone B had higher relative abundance of important recreational and commercial species, such as white stumpnose and blacktail. Zone C had the greatest abundance of juvenile fish. Unfortunately, the visibility of the water outside of the MPA in Saldanha Bay was poor

on most of the sampling days and BRUV deployments provided limited information. Summer months had greater abundance and diversity of most species and juvenile fish, most likely because the average water temperature is greater in summer (22°C) than in winter (15°C). This was especially the case for steentjies and white stumpnose.

The preliminary results demonstrate that BRUVs are a viable method for monitoring fish and shark species in the lagoon and detecting species of special concern, such as white stumpnose. SANParks recommendations are to continue deploying BRUVs as a long-term monitoring tool and to expand to the islands of the MPA when capacity and resources are available. Due to the frequent poor visibility outside of the MPA, BRUVs are ineffective and will be discontinued. We further recommend that one more winter season is sampled (in 2021) to confirm the preliminary seasonal results, and that more work is undertaken to determine the effectiveness of different bait types. A longer time-series will allow for investigating the influence of the level of protection on the abundance and diversity of fish and shark species in the MPA.

Table 11.1 Fish and elasmobranch diversity and relative abundance recorded across seasons at West Coast National Park Marine Protected Area. The recorded species were detected by BRUVs over two years (2018 – 2019). Source: SANParks Cape Research Centre.

Family	Species	Scientific name	IUCN Status	# Sites	Frequency of occurrence	
					Summer	Winter
Clinidae	Superklipfish	Clinus superciliosus	Least Concern	8	0.13	0.03
Atherininae	Cape silverside	Atherina breviceps	Not evaluated	18	0.29	0.06
Sparidae	Steentjie	Spondyliosoma emarginatum	Least Concern	29	0.47	0.09
Sparidae	White stumpnose	Rhabdosargus globiceps	Vulnerable	18	0.29	0.06
Sparidae	Hottentot	Pachymetopon blochii	Least Concern	1	0.02	0
Ariidae	White seacatfish	Galeichthys feliceps	Not evaluated	4	0.05	0.03
Sparidae	Strepie	Sarpa salpa	Least Concern	1	0.02	0
Rajidae	Spearnose skate	Rostroraja alba	Endangered	1	0	0.03
Chaetodontidae	Doublesash butterflyfish	Chaetodon marleyi	Least Concern	1	0.02	0
Sparidae	Blacktail	Diplodus capensis	Least Concern	3	0.05	0
Triakidae	Smooth-hound shark	Mustelus mustelus	Vulnerable	1	0.02	0
Scyliorhinidae	Puffadder shyshark	Haploblepharus edwardsii	Endangered	3	0	0.03
Triglidae	Cape gurnard	Chelidonichthys capensis	Least Concern	4	0.07	0
Pomatomidae	Elf	Pomatomus saltatrix	Vulnerable	2	0.04	0
Sepiidae	Cuttlefish	Sepia vermiculata	Data deficient	1	0.02	0

The Saldanha Bay Water Quality Forum Trust (SBWQFT) commissioned Anchor Environmental to undertake experimental seine-net sampling of near shore fish assemblages at a number of sites throughout the Saldanha-Langebaan system during 2005, and annually over the period 2008 – 2021 as part of the monitoring of ecosystem health "State of the Bay" programme. Seine-net surveys were conducted during late summer to early autumn, as this was the timing of peak recruitment of juveniles

to the near-shore environment, as well as the timing of most of the earlier surveys. Since 2008, seinenet surveys have therefore been conducted during March – April of each year. These studies have made a valuable contribution to the understanding of the fish and fisheries of the region. This chapter presents and summarises the data for the 2021 seine-net survey and investigates trends in the fish communities by comparing this with data from previous seine-net surveys (1986/87, 1994, 2005, 2008 – 2020) in the Saldanha-Langebaan system.

11.2 Methods

11.2.1 Field sampling

Experimental seine netting for all surveys was conducted using a beach-seine net, $30 \, \text{m}$ long, $2 \, \text{m}$ deep, with a stretched mesh size of $12 \, \text{mm}$. Replicate hauls (3-5) were conducted approximately $50 \, \text{m}$ apart at each site during daylight hours. The net was deployed from a small inflatable boat $30-50 \, \text{m}$ from the shore. Areas swept by the net were calculated as the distance offshore multiplied by the mean width of the haul. Sampling during 1986-87 was only conducted within the lagoon where $30 \, \text{m}$ hauls were made, whilst $39 \, \text{and} \, 33 \, \text{replicate}$ hauls were made at $8 \, \text{and} \, 11 \, \text{different}$ sites during $1994 \, \text{m} \, 2005 \, \text{surveys}$, respectively in both the Bay and Lagoon. During 2007, $21 \, \text{hauls}$ were made at seven sites in the Bay and Lagoon and over the period 2008-2012, two to three hauls have been made at each of $15 \, \text{sites}$ every April. Since the $2013 \, \text{survey}$, a sixteenth site was added in the lagoon at Rietbaai (Figure 11-1). Large hauls were sub-sampled on site, the size of the sub-sample estimated visually, and the remainder of the catch released alive.

11.2.2 Data analysis

Numbers of fish caught were corrected for any sub-sampling of large hauls that took place in the field prior to data analysis. All fish captured were identified to species level (where possible, larval fish to Family level) and abundance calculated as the number of fish per square meter sampled. The resulting fish abundance data were used for analysis of spatial and temporal patterns.

The number of species caught and average abundance of fish (all species combined) during each survey were calculated and graphed. The average abundance of the most common fish species caught in the three main areas of the system, namely Small Bay, Big Bay and Langebaan lagoon during each survey, were similarly calculated and presented graphically. The average abundance of the five most ubiquitous species in the system over all survey years was calculated and plotted for each sampling site.

Trends in the average abundance of key species that are of importance in local fisheries were analysed using a one-way ANOVA and post-hoc unequal N HSD tests in the software package STATISTICA 13.5. Abundance data for all sites throughout the Bay were $\log (x + 1)$ transformed to account for heteroscedacity (unequal variance) prior to analysis.

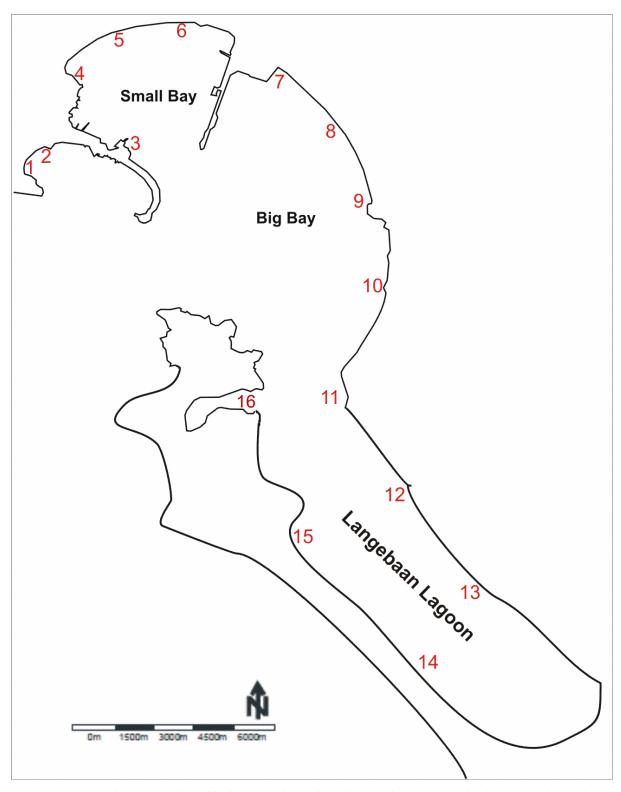


Figure 11-1 Sampling sites within Saldanha Bay and Langebaan lagoon where seine net hauls were conducted during the 2005 and 2007 – 2021 annual sampling events. 1: North Bay west, 2: North Bay east, 3: Small craft harbour, 4: Hoedjiesbaai, 5: Caravan site, 6: Blue water Bay, 7: Sea farm dam, 8: Spreeuwalle, 9: Lynch point, 10: Strandloper, 11: Schaapen Island, 12: Klein Oesterwal, 13: Bottelary, 14: Churchaven, 15: Kraalbaai, 16: Rietbaai.

11.3 Results

11.3.1 Description of inter annual trends in fish species diversity.

For the first time in the 2021 survey, a juvenile snoek *Thrysites atun* and a juvenile panga *Pterogymnus laniarius* were caught in Big Bay samples (Figure 11-2). Both these species are important in the boatbased line fisheries, with snoek the dominant component of west coast commercial landings and panga common in Southwestern and Eastern Cape catches. Adult snoek are nomadic with spawning occurring along the shelf break (150 – 400 m), whilst panga spawn primarily on the Agulhas Bank and are found in both reef and sandy bottom habitats (Booth & Hecht 2013, Kerwath and Wilke 2013). This takes the total species count in all surveys to date to 53. Fish diversity (total number of species caught) across all surveys remains highest and similar in Big Bay (41) and in Small Bay (37), compared to the Lagoon (26). Species richness is typically similar in Small Bay and Big Bay, although the number of species sampled has been less variable over time in Small Bay (Figure 11-3). Slightly more variation in the number of species caught over the period of sampling is apparent for Langebaan Lagoon and Big Bay, with the most diverse samples collected from Big Bay during 2012 (Figure 11-3). In the 2021 survey, fish diversity in Big Bay was up from the historical low in 2019 and the second highest on record (19 species). Diversity in Langebaan Lagoon samples equalled the long-term average), but remained just below average in Small Bay, with 12 species caught (Figure 11-3).

Figure 11-2 Panga Pterogymnus laniarius (top) and snoek Thrysites atun (bottom) were caught in seine net hauls for the first time during the 2021 survey.

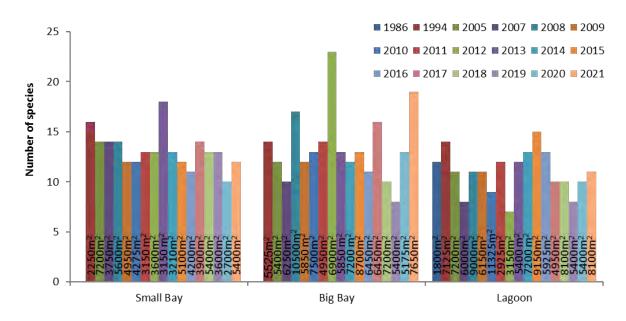


Figure 11-3 Number of fish species caught during 18 seine-net surveys in Saldanha Bay and Langebaan lagoon conducted over the period 1986 – 2021. The total area netted in each area and survey is shown.

The actual species composition in the different areas does change substantially between years, but the same ubiquitous species occur in nearly all surveys. Within Small Bay, at least seven species (Cape silverside, gobies of the genus *Caffrogobius*, super klipvis, Cape sole, harders, white stumpnose and bluntnose guitar fish) have occurred in all surveys to date, with two additional species, namely blacktail only absent in the 2015, 2017 and 2020 samples, and pipefish absent in the 2005, 2015, 2020 and 2021 samples. Gurnard were captured in the first six surveys, but not over the period 2011 – 2014, and were again absent in the four most recent surveys (2018 – 2021).

Four of the 37 species recorded in Big Bay occurred in all surveys (gurnard, Cape sole, harders and white stumpnose). False Bay klipvis were only absent in the earliest 1994 survey and in 2019, whilst Cape silverside has been absent from two surveys (2007 and 2018). Elf was only absent in one of the 13 surveys conducted over the period 1994 – 2017, but they have not been recorded in Big Bay during the last four surveys (2018 – 2021). For the second consecutive year in the history of the 17 seine net surveys undertaken since 1994, not a single elf was captured at any of the 16 sites surveyed throughout the Bay and Lagoon in 2021. This is concerning as much of the remaining boat-based recreational fishing effort that previously focused on white stumpnose, appears to have shifted to elf (personal observation) and four years of apparent poor recruitment to the surf zone nursery habitats does not bode well for future catches. Sand sharks were not caught in Big Bay during the 2014, 2016 and 2019 surveys, but were caught in every other survey conducted to date, including 2021.

Six of the 26 species found in the lagoon (silversides, gobies, Cape sole, harders, Knysna sand gobies and white stump) occurred in all surveys and these species were all present in 2021 samples. Small Bay has the highest proportion of "resident" species that are there consistently, whilst a larger proportion of the Big Bay ichthyofauna, although more diverse, occur seasonally or sporadically in catches. Short term fluctuations in diversity and abundance of near shore sandy beach fish

communities with changes in oceanographic conditions are the norm rather than the exception (see for e.g., Clark 1994). During the 2021 survey, ten white steenbras L. lithognathus juveniles (9 – 12 cm Total Length) were caught at the Hoedjiesbaai site, and one individual (16 cm TL) at Kraal Baai. This is only the third time in the survey history that juvenile white steenbras have been recorded and is notable as these juveniles are considered to be obligatory estuarine dependents up to about three years of age (~25 cm TL) (Bennett & Lamberth 2013).

11.3.2 Description of inter-annual trends in fish abundance in Small Bay, Big Bay and Langebaan lagoon

The overall fish abundance (all species combined) shows high inter annual variability in all three areas of the Bay (Figure 11-4). Harders and silversides numerically dominated the catches for all surveys and large variation in the catches of these abundant shoaling species is the main cause of the observed variability between years. Overall, the catches made during the 2012 survey were the lowest on record for all three areas. Over the last eight years, 2014 – 2021, the overall abundance of fish has compared favourably with earlier surveys, but as mentioned above, this largely reflects the abundance of harders and silversides (Figure 11-4).

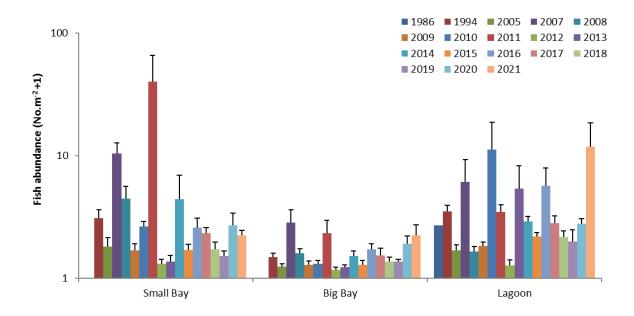


Figure 11-4 Average fish abundance (all species combined) during 18 seine-net surveys conducted in Saldanha Bay and Langebaan lagoon (Error bars show one Standard Error of the mean). The data are transformed (x + 1) and displayed on a logarithmic axis.

Abundance of white stumpnose, nude goby and blacktail in seine net hauls that was above average in Small Bay during the 2007 and 2008 surveys but have remained below these maxima since 2009 (Figure 11-5). It may be that the peak densities attained by these species during 2007 – 2008 were the exception, and the lower densities recorded before and after this period, represent the more typical situation. The concerning declining trend in white stumpnose and blacktail abundance over the 2012 – 2015 period in Small Bay was thought to have reversed with the third highest white stumpnose abundance and second highest blacktail abundance recorded in 2016 samples, but unfortunately this moderate "recovery" was not sustained. Blacktail juveniles were absent from Small Bay catches in 2017, remained scarce in 2018 samples (five individuals), recovered somewhat in 2019 (61 individuals), were absent in 2020 and only two were caught in 2021. White stumpnose abundance in Small Bay increased dramatically in 2021 from that recorded in the preceding three surveys, with 473 individuals caught, but remains well below the historical peaks in 2007 (12 331) and 2008 (1 566). The Small Bay fish community does appear to have deteriorated in health since the start of the fish monitoring programme, with substantial and consistent declines in abundance of several of the more common species.

Within Big Bay, average harder, silverside, white stump, and Cape sole abundance observed during the 2021 sampling compared favourably to earlier surveys (Figure 11-5). White stumpnose abundance within Big Bay over the period 2015 – 2018 had recovered somewhat from the very low 2013 and 2014 results, crashed again in 2019 and then recovered slightly in 2020 to levels similar to the 2013 - 14 period (Figure 11-5). The 2021 white stumpnose abundance estimates are the fourth highest on record and the best recorded since 2011 (Figure 11-5). This recovery in white stumpnose abundance was seen in both Big Bay and the Lagoon and suggest a relatively good recruitment to juvenile nursery habitats took place during the summer of 2020 – 21. The strong elf recruitment in Big Bay evident in the 2016 and 2017 sampling has not re-occurred, with the species entirely absent from Big Bay catches for the last four surveys (four of the five times this has occurred in the 17-year survey history). Elf start to become sexually mature at one year (Maggs & Mann 2013), but as larger and older fish spawn exponentially more eggs, it will likely be several years before the strong 2016 and 2017 cohorts will be able contribute significantly to recruitment in the Bay (presuming the cohort survives beyond maturity and does not emigrate from the Bay). In the 2019 survey, elf were only caught at the Bluewater Bay site in Small Bay (33 fish) and a single individual at Kraalbaai in the lagoon, in 2020 and 2021 no elf were caught at any of the 16 sampled sites. Despite the concerning absence of elf recruits, the Big Bay juvenile fish community was diverse and the abundance of the most common species was above average, suggesting an overall good state of fish community health in 2021 (Figure 11-5).

The abundance of harders, silversides *Caffrogobius* sp., white stumpnose and Knysna sand goby in Langebaan lagoon during 2021 survey compared favourably with earlier surveys (Figure 11-5). The recovery in Knysna sand goby, *Caffrogobius* sp. and white stump abundance in 2021 is encouraging and suggest the lagoon fish community was in a good state of health in 2021.

Naturally high variability in recruitment strength is common for marine fish species and it is probably at least partly natural environmental fluctuations rather than anthropogenic factors that caused the poor recruitment of most species in 2009 and 2012 as abundance was low throughout the system. The lower-than-average recruitment into the surf zones suggests that these were "poor" years for egg, larval and juvenile survival within the Bay as a whole. Either the environmental conditions were not suitable for the survival of eggs and larvae, or it was not good for the survival of young juveniles. The

improved recruitment of most species seen during the 2016, 2017 and 2021 surveys suggested improved environmental conditions that facilitated survival of eggs, larvae and juveniles during the preceding summer. The recovery in abundance estimates of juvenile white stumpnose suggests that the spawning capacity of the adult stock may have recovered to a degree, but without data on the status of the adult stock (e.g., catch per unit effort from the fisheries or research angling) this is speculation as the high fecundity of serial batch spawning marine fish, means that a good recruitment can arise from a small spawner stock under favourable environmental conditions. Further monitoring will reveal if the apparent recovery is sustainable. The concerning lack of elf recruits may likewise be a result of reduced spawner biomass due to high fishing mortality or environmental factors (almost certainly both).

11.3.3 Temporal trends in key fishery species

The spatially separate analysis of fish survey data by site or embayment (Big Bay, Small Bay and Langebaan Lagoon) is a valid approach for the purposes of ecosystem health monitoring whereby areas of concern need to be identified. The analyses presented above have identified a concerning decrease in abundance of most of the dominant species in Small Bay in surveys over the period 2008 - 2015 and a notable decrease in white stumpnose abundance throughout the system over this same period. The 2016 and 2021 surveys revealed some encouraging signs of increased white stumpnose recruitment in Small Bay, but 2017 - 2020 catches were much lower than average. The inter-annual variation in recruitment of white stumpnose could be due to natural variability in spawning success and survival (poor and good year classes are normal), but given the sustained declines throughout the system, and the findings of Arendse (2011) and Parker et al. (2017), it appears that recruitment overfishing was the cause. Recruitment overfishing can be defined as overfishing of the adult population so that the number and size of mature fish (spawning biomass) is reduced to the point that it did not have the reproductive capacity to replenish itself. Recent research suggests that the Saldanha bay harder stock is also overexploited with changes to management measures (increased mesh size, reduced fishing mortality) required to rebuild stocks (Horton et al. 2019). To further investigate temporal variation in recruitment of species important in the Bay's fisheries (blacktail, elf, harders, steentjies and white stumpnose) univariate statistical analysis (ANOVA) was used to test for significant differences in the average abundance of each species between survey years. Saldanha Bay and Langebaan Lagoon appears to function as a semi-closed system with respect to the demographics of many of the key fishery species (based of tagging and life history studies, e.g., harders: Horton et al. 2019; white stumpnose: Kerwath et al. 2009, Attwood et al. 2010; steentjies: Tunley et al. 2009; elf: Hedger et al. 2010, and smooth hound sharks: da Silva et al. 2013). Furthermore, different sites may be more intensively utilized by juvenile fish in different years depending on prevailing weather and oceanographic conditions. To assess trends in recruitment of key fishery species to surf zone habitats for the Bay and Lagoon as a whole, abundance data from all sites were therefore combined for this analysis. These analyses revealed statistically significant inter-annual variation in the abundance of blacktail, harders and white stumpnose, but not in the average density of elf and steentjies (Figure 11-6, Figure 11-7).

Harders are the most abundant harvested species and inter annual variation in abundance of recruits was greater than for the other species, with estimated abundance in 2007, 2010 and 2011 being

significantly greater than most other sampling events (F_{16} = 5.22, p < 0.01, Tukey test p < 0.05). The abundance of juvenile harders in 2020 & 2021 hauls was the fifth and fourth highest on record and only significantly lower than that recorded in 2011. Estimated white stumpnose abundance in 2007 and 2008 was significantly greater than nearly all other years, whilst the estimated abundance from the 2021 survey was higher than average and was only significantly less than the very high abundance recorded in 2007. Steentjie and elf abundance also showed high inter-annual variation with relatively high average abundance of steentjie juveniles recorded in 2005 and 2011 and relatively high average abundance of elf juveniles in 2007, 2008, 2011, 2012, 2016 and 2017 (the highest recorded to date), which was followed by zero catches in 2018, 2020 and 2021. The intra annual variability in abundance of these two species, a result of zero catches at many sites, however, means that these differences are not statistically significant. The density of blacktail juveniles in sampled habitats was significantly higher in 2008 than in all other years, there was an absence of blacktail recruits in the 2015 and 2017 samples and few thereafter (Figure 11-6, Figure 11-7).

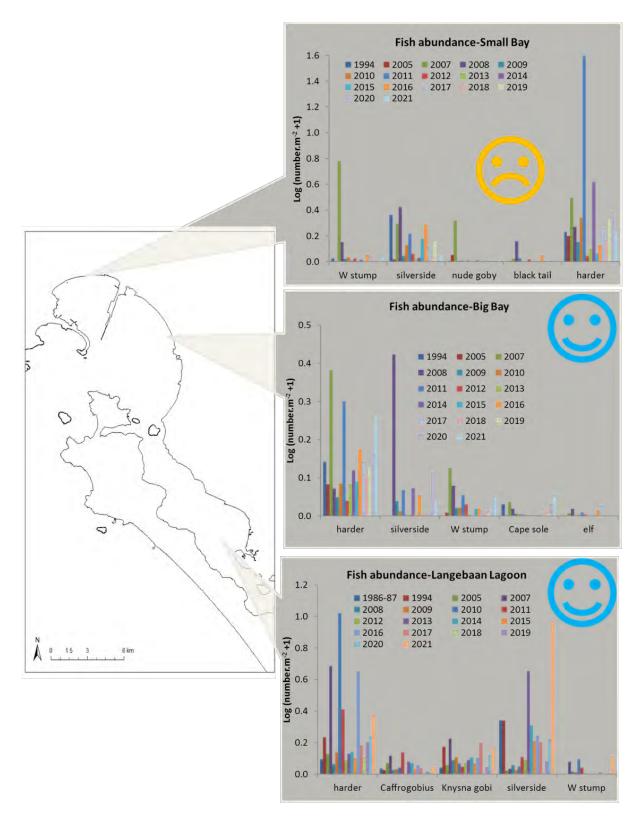


Figure 11-5 Abundance of the most common fish species recorded in annual seine-net surveys within Saldanha Bay and Langebaan Lagoon (1986/87, 1994, 2005 & 2007 – 2021).

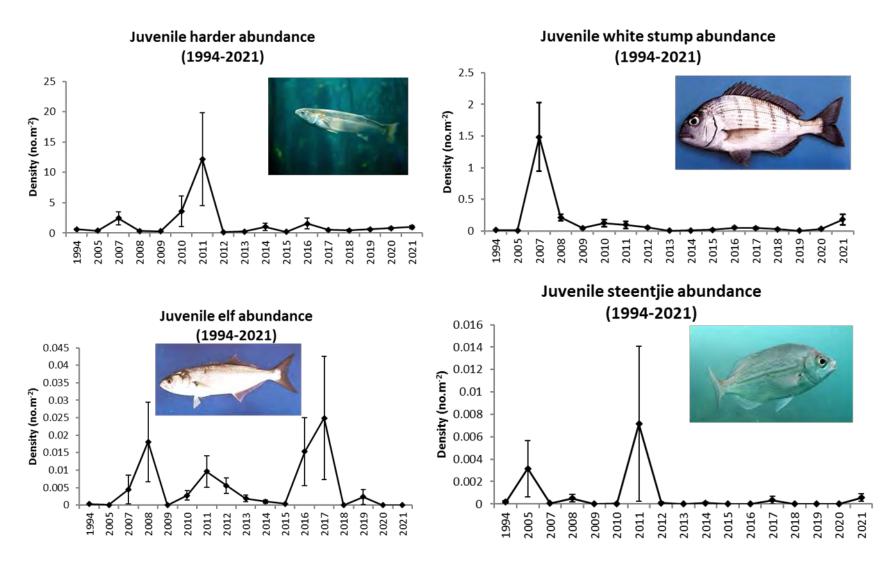


Figure 11-6 Average annual density of key fishery species at all sites sampled in all surveys (1994 – 2021). Error bars indicate SE.

Figure 11-7 Continued. Average annual density of key fishery species at all sites sampled in all surveys (1994 – 2021). Error bars indicate SE.

11.4 Conclusion

Fish diversity and overall fish abundance does not show a declining trend in Small Bay, but it must be acknowledged that overall abundance is dominated by harders, which appear resilient to decreases in water quality. The abundance of most of the other common species in Small Bay (white stump, gobies and black tail) remain low relative to earlier surveys, whilst some other species like pipefish and gurnards have been absent in recent surveys. The fish community health in Small Bay in 2021 is considered to be in a moderately poor state compared to historical levels. In contrast, the 2021 survey revealed a relatively high diversity and abundance of fish in Big Bay and Langebaan Lagoon and the fish communities in these areas are rated as been in a good state of health overall.

This finding is consistent with most of the seine net survey history, where fish abundance at sites within or near the Langebaan MPA appeared to be stable within the observed inter-annual variability. This reflects natural and human induced impacts on the adult population size, recruitment success and use of the near-shore habitat by fish species; but may also be a result of the benefits of protection from exploitation and reduced disturbance at some sites due to the presence of the Langebaan MPA. Certainly, the studies by Kerwath *et al.* (2009), Hedger *et al.* (2010) and da Silva *et al.* (2013) demonstrated the benefits of the MPA for white stumpnose, elf and smooth hound sharks; and the protection of harders from net fishing in the MPA undoubtedly benefits this stock in the larger Bay area. The pressure to reduce this protection by allowing access to Zone B for commercial gill net permit holders should be resisted. This not only poses a threat to the productivity of the harder stock but also to other fish species that will be caught as bycatch. Harder recruitment to nearshore nursery areas appears to have not changed significantly over the monitoring period since 1994. A recent stock assessment, however, does indicate that the Saldanha-Langebaan harder stock is overexploited, and effort reductions and commercial net gear restrictions are recommended to rebuild the stock (Horton *et al.* 2019).

The significant declines in juvenile white stumpnose abundance that occurred throughout the system over the period 2007 – 2020 suggested that the protection afforded by the Langebaan MPA was not enough to sustain the fishery at the historical high effort levels. Arendse (2011) found the adult stock to be overexploited using data collected during 2006 – 2008 already, and the evidence from the seine net surveys conducted since then certainly suggested that recruitment overfishing has occurred. The annual seine net surveys did act as an early warning system that detected poor recruitment and should have allowed for timeous adjustments in fishing regulations to reduce fishing mortality on weak cohorts and preserve sufficient spawner biomass. Unfortunately, despite repeatedly expressing concern about the collapse of white stump recruitment in State of the Bay Reports since at least 2013 and supporting the implementation of the harvest control measures recommended by Arendse (2011); namely a reduction in bag limit from 10 to 5 fish per person per day and an increase in size limit from 25 cm TL to 30 cm TL, the warning calls were not heeded. A statistically comprehensive analysis of fishery dependent and survey data confirmed the collapse of the Saldanha -Langebaan white stump stock and the fishery yield in recent years is a fraction of its historical peak or potential (Parker et al. 2017). The 2021 seine net survey has revealed an encouraging increase in juvenile white stump in Big Bay and Langebaan Lagoon, with estimated abundance similar to levels last seen during the 2008 – 2011 period. It is likely that the protection of spawner biomass in the Langebaan MPA and the high fecundity of female white stumpnose, in conjunction with the reduced targeting of the species has allowed for some recovery of the stock. Ongoing monitoring will reveal if this apparent recovery in white stumpnose recruitment is sustained, but at this stage, to facilitate recovery it remains prudent to lobby for increased harvest control measures for this important fishery.

The last five seine net surveys have, however, revealed some concerning declines in elf recruitment to surf zone nurseries, and it is recommended that this should also be carefully monitored in the future. Interpretation of the recruitment signal of exploited fish species would be greatly enhanced if there was ongoing monitoring of recreational catch and effort in the system. Only commercial linefishers are required to submit catch returns and as most of the white stumpnose and elf fishing effort is recreational, there is a substantial gap with respect to catch-per-unit-effort data for this sector. Such data would provide another direct line of evidence as to the status of exploited fish stocks in the Saldanha Bay-Langebaan lagoon system.

The monetary value of the recreational fishery in Saldanha-Langebaan should not be regarded as regionally insignificant as a lot of the expenditure associated with recreational angling is taking place within Langebaan and Saldanha itself. Furthermore, the once popular white stumpnose fishery was undoubtedly a major draw card to the area and has probably contributed significantly to the residential property market growth the region has experienced. These benefits should be quantified by an economic study of the recreational fisheries. The value of the Bay and Lagoon as a fish nursery and the economic value of the resultant fisheries could then be quantitatively considered when the environmental impacts of the proposed future developments in the region are assessed.

The monitoring record from the annual seine net surveys will prove increasingly valuable in assessing and mitigating the impacts of future developments on the region's ichthyofauna. Extending the seine net monitoring record would also facilitate analysis of the relationship between recruitment to the near shore nursery habitat and future catches in the commercial and recreational fisheries in the Bay. As fishing effort continues to increase, at some point fishing mortality will need to be contained, if the fisheries are to remain sustainable. We think that point arrived at least eight years ago for the

Saldanha-Langebaan white stumpnose fishery and recommended that resource users lobby the authorities to implement the recommended harvest control measures. Regional species-specific fishery management has been implemented elsewhere in South Africa (e.g., Breede River night fishing ban to protect dusky kob). White stumpnose in Saldanha Bay appear to be an isolated stock and there is good on-site management presence in the form of SANParks and DFFE, and we think this approach would work well in Saldanha-Langebaan. We again recommend the reduction of bag limit and an increase in size limit for white stumpnose in the Saldanha Bay Langebaan region. Although recruitment overfishing appears to have been taking place for several years now, the stock is not extirpated, and the situation is reversible. Reductions in fishing mortality can be achieved by effective implementation of more conservative catch limits and have an excellent chance of improving the stock status, catch rates and the size of white stumpnose in the future fishery. Indeed, there is circumstantial evidence that a reduction in fishing mortality occurred in response to poor catch rates and this possibly resulted in improved white stumpnose recruitment as observed in the 2021 seine net survey. We also support the recommendation of Horton et al. (2019) for a reduction in harder fishing effort and gear changes (increase in minimum mesh size) to facilitate stock recovery. Short term reductions in fishing mortality will have an economic cost but will yield substantially greater socio-economic benefits for fishers in the medium to longer term as the sustainable catch from an optimally exploited fish stock greatly exceeds that from a collapsed stock.

12 BIRDS AND SEALS

12.1 Introduction

Saldanha Bay and Langebaan Lagoon provide extensive and varied habitat for waterbirds and seals. This includes sheltered deep-water marine habitats associated with Saldanha Bay itself, sheltered beaches in the Bay, islands that serve as breeding refuges for seabirds and seals, rocky shoreline surrounding the islands and at the mouth of the Bay, and the extensive intertidal salt marshes, mud and sandflats of the sheltered Langebaan Lagoon. Langebaan Lagoon has 1 750 ha of intertidal mudand sandflats and 600 ha of salt marshes (Summers 1977). Extensive seagrass *Zostera capensis* beds are present in the upper parts of Langebaan Lagoon, while beds of the red seaweed *Gracilaria verrucosa* are mainly found at the mouth and patchily distributed over the sandflats in the lagoon. Drainage channels also contribute to habitat diversity around the lagoon. Most of the plant communities bordering the lagoon belong to the West Coast Strandveld, a vegetation type which is seriously threatened by agricultural activities and urban development. Twelve percent of this vegetation type is conserved within the West Coast National Park which surrounds much of the lagoon (Boucher & Jarman 1977, Jarman 1986). Although there are no rivers flowing into the Lagoon, it has some estuarine characteristics due to the input of fresh groundwater in the southern portion of the lagoon.

Saldanha Bay and Langebaan Lagoon are not only extensive in area but provide much of the sheltered habitat along the otherwise very exposed West Coast of South Africa. There are only four other large estuarine systems which provide sheltered habitat comparable to Langebaan Lagoon for birds along the West Coast — the Orange, Olifants, Berg and Rietvlei/Diep. There are no comparable sheltered bays and relatively few offshore islands. Indeed, these habitats are even of significance at a national scale. While South Africa's coastline has numerous estuaries (about 300), it has few very large sheltered coastal habitats such as bays, lagoons or estuarine lakes. The Langebaan-Saldanha area is comparable in its conservation value to systems such as Kosi, St Lucia and Knysna.

A total of 283 bird species have been recorded within the boundaries of the West Coast National Park (Birdlife International 2011). At least 56 non-passerine waterbird species commonly use the area for feeding or breeding (University of Cape Town, Animal Demography Unit Coordinated Waterbird Counts); 11 breed on the islands of Malgas, Marcus, Jutten, Schaapen and Vondeling alone. These islands support nationally important populations of African Penguin, Cape Gannet, Swift Tern, Kelp and Hartlaub's Gull, and four species of marine cormorant, as well as important populations of the endemic African Oystercatcher. The lagoon is an important area for migratory waders and terns, as well as for numerous resident waterbird species. Seabirds are counted annually on all the islands by Department of Forestry, Fisheries and Environment staff; and bi-annually in Langebaan Lagoon as part of the Coordinated Water Counts (CWAC) Programme conducted by the Animal Demography Unit (ADU) at the University of Cape Town (UCT).

In contrast, the Cape fur seal *Arctocephalus pusillus pusillus* is the only seal species that breeds in Southern Africa and its occurrence and population trends in Saldanha Bay will be discussed in the last section of this chapter.

12.2 Birds of Saldanha Bay and the islands

12.2.1 National importance of Saldanha Bay and the islands for birds

Saldanha Bay and the islands are important not so much for the diversity of birds they support, but for the sheer numbers of birds of a few species in particular. The islands of Vondeling (21 ha), Schaapen (29 ha), Malgas (18 ha), Jutten (43 ha), Meeuw (7 ha), Caspian (25 ha) and Marcus (17 ha), support important seabird breeding colonies and make up one of only a few such breeding areas along the West Coast of South Africa. They support nationally important breeding populations of African Penguin (recently up-listed to Endangered under IUCNs red data list criteria), Cape Gannet (Vulnerable), Cape Cormorant (recently up-listed to Endangered under IUCNs red data list criteria), White-breasted Cormorant, Crowned Cormorant (Near Threatened), Bank Cormorant (Endangered), Kelp and Hartlaub's gulls, Caspian Tern and Swift Tern.

In addition to seabird breeding colonies, the islands also support important populations of the rare and endemic African Oystercatcher (Near-threatened). These birds are resident on the islands but are thought to form a source population for mainland coastal populations through dispersal of young birds.

The DFFE conducts ongoing bird counts on all islands to track population trends of each of these species over time. Each island is normally visited several times a year to ensure that each species is counted during its peak breeding season. The maximum counts for each species obtained in a calendar year are then used to estimate population sizes. Normally, all islands are visited roughly three times per calendar year except for Malgas (nine times) and Vondeling (less than three times due to accessibility) (Rob Crawford, Department of Environmental Affairs, pers. comm. 2016). Due to the coronavirus lockdowns, however, counts during 2020 were much reduced with surveys only taking place at four of the islands (Jutten, Malgas, Meeuw and Schaapen) and no counts available for Cape Gannet, Caspian Tern, Swift Tern and White Breasted Cormorants (Azwianewi Makhado, DFFE personal communication). Due to the reduced sampling effort in 2020 the available counts may not reflect the peak of the breeding season (i.e., are possibly underestimates of the breeding population) and the 2020 data should be interpreted taking note of the reduced sampling effort. Section 12.2.2 provides data on long-term trends of each of these important seabirds and the African Oystercatcher, using the available data collated by the DFFE.

12.2.2 Ecology and status of the principle bird species

The African Penguin Spheniscus demersus is endemic to southern Africa, and breeds in three regions: central to southern Namibia, Western Cape and Eastern Cape in South Africa (Whittington et al. 2005a). The species has recently been up-listed to Endangered, under IUCNs 'red data list' due to data revealing rapid population declines as a result of numerous factors including pollution (from oil spills), changes in the abundance and distribution of small pelagic fish populations, competition with commercial fisheries and seals for food and predation pressure from Kelp Gulls and Cape Fur Seals, as well as potential exposure to conservation-significant pathogens (David et al. 2003, Pichegru et al. 2009, Crawford 2009,

Birdlife International 2011, Crawford *et al.* 2011, 2014, Weller *et al.* 2014, 2016, De Moor & Butterworth 2015, Gremillet *et al.* 2016, Parsons *et al.*2016, Sherley *et al.* 2020). The Namibian population collapsed in tandem with the collapse of its main prey species, the sardine *Sardinops sagax* (Ludynia *et al.* 2010). In South Africa the penguins breed mainly on offshore islands in the Western and Eastern Cape with strongly downward trends at all major colonies (Whittington *et al.* 2005b).

The global population of African penguins (including birds breeding on four Namibian Islands) hit a historical low of ~17 700 breeding pairs in 2019 with a high probability of having declined by almost 65% since 1989 (Sherley *et al.* 2020). Throughout South Africa, the African Penguin population declined from an average of 48 000 pairs over the period 1979 – 2004 to just 17 000 pairs in 2013 and 13 600 pairs in 2019 (Crawford *et al.* 2014, Sherley *et al.* 2020). The number of African penguins breeding in the Western Cape decreased in a similar fashion from some 92 000 pairs in 1956, to 18 000 pairs in 1996. There was a significant recovery to a maximum of 38 000 pairs in 2004, before another dramatic collapse to 11 000 pairs in 2009, equating to a total decline of 60.5% in 28 years (Crawford *et al.* 2008a, b). West Coast penguin colonies (north of Cape Town) have fared the worst in South Africa, with an unsustainable average annual decline of 10% over the last 20 years (Sherley *et al.* 2020). This thought to be linked to a distribution shift of their main prey species sardines and anchovies (see below), with the Eastern Cape penguin colonies now holding ~41% of the national breeding population, up from ~27% in 1979 (Sherley *et al.* 2020).

In Saldanha Bay the population initially grew from 552 breeding pairs in 1987 to a peak of 2 156 breeding pairs in 2001 and then underwent a severe and continuous decline to 144 breeding pairs in 2019 and just three pairs recorded in 2020 (this may be an underestimate due to a COVID caused decrease in 2020 sampling effort) (Figure 12-1). This reduction in numbers is consistent with the overall downward trend evident since 2002 and strongly reinforces the argument that immediate conservation action is required to prevent further losses of these birds. In light of the ongoing decline in African Penguin numbers nationally, a Biodiversity Management Plan for the African Penguin was gazetted in 2013, with aims: "To halt the decline of the African Penguin population in South Africa within two years of the implementation of the management plan and thereafter achieve a population growth which will result in a downlisting of the species in terms of its status in the IUCN Red List of Threatened Species". Despite the successful implementation of many of the actions listed in the plan,

these aims were not attained, and African Penguins in South Africa have continued to decline. This has led to the recent gazetting of a second revised draft Biodiversity Management Plan for implementation over the period 2019 – 2024 (Government Gazette No. 42775;18 October 2019). This draft plan attributes population declines mostly to a scarcity of prey and recommends pelagic fishery exclusion zones around colonies, seasonal closures at penguin feeding grounds before and post moult, oil spill risk management and colony specific management such as predator control.

The changes in African Penguin population size at the islands in Saldanha is believed to be partially linked to patterns of immigration and emigration by young birds recruiting to colonies other than where they fledged, with birds tending to move to Robben and Dassen Islands (Whittington *et al.* 2005b). However, once they start breeding at an island, they will not breed anywhere else.

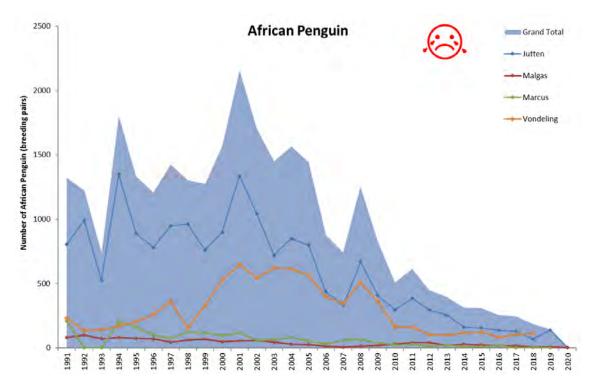


Figure 12-1 Trends in African Penguin populations at Jutten, Malgas, Marcus and Vondeling islands in Saldanha Bay from 1991 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

Penguin survival and breeding success has been linked to the availability of pelagic sardines *Sardinops sagax* and anchovies *Engraulis encrasicolus* within 20 – 30 km of their breeding sites (Pichegru *et al.* 2009). Diet samples taken from penguins at Marcus and Jutten Islands showed that the diet of African penguins in the Southern Benguela from 1984 to 1993 was dominated by anchovy (Laugksch & Adams 1993). During periods when anchovies are abundant, food is more consistently available to penguins on the western Agulhas Bank than at other times (older anchovy remain there throughout the year and sardines are available in the region in the early part of the year). The reduced abundance of anchovy in the 1980s may partly explain the decrease in the African penguin population evident from 1987 to 1993 clearly reflected in the Saldanha data (Figure 12-1). Subsequently the penguin population at Saldanha bay increased in tandem with a "boom" period for the South African sardine

stock that increased from less than 250 000 tonnes in 1990 to over four million tons in 2002 (Figure 12-2). Anchovy biomass also increased from the late 1990s, peaked at over 4 million tonnes in 2001, remained relatively high (compared to the 1980s and 1990s) at between 2 - 4 million tonnes in most years until 2014 (Figure 12-2). Although both anchovy and sardine were still abundant along the west coast during the "boom" period around the turn of the century, much of the growth in biomass in these small pelagic stocks occurred to the east of Cape Agulhas benefiting seabirds at colonies along the south and east coast. Subsequently, the sardine stock crashed over the period 2004 – 2007 and the proportion of the sardine stock along the west coast declined dramatically at this time. The numbers of African Penguins on the Saldanha Bay Islands followed a similar trajectory, despite anchovy remaining abundant off the West Coast and an increase in the proportion of the sardine stock west of Cape Agulhas up until 2013 (Figure 12-1, Figure 12-2). In the last six years however, the estimated sardine biomass along the west coast has declined dramatically, with almost none detected in the 2018 and 2019 acoustic surveys (Figure 12-2). Anchovy biomass too has recently declined to about 800 000 tonnes in 2019, the second lowest estimate in the last two decades and the estimated biomass on the west coast was at its fourth lowest level since the turn of the century (Figure 12-2). Small pelagic fish availability therefore remains relatively low for penguins breeding along the west coast, including the Saldanha Bay Islands.

Several studies have identified addittional drivers of African Penguin populations at the colony level; these include oiling and predation by seals and kelp gulls, with the importance fishing and food availability decreasing at small colony size (< 3 500 breeding pairs) (Ludynia et al. 2014, Weller et al. 2014, 2016). There is including considerable uncertainty around the causes of African penguin population decreases which is a result of multiple pressures, some operating throughout the species range and others operating at different intensities at different colonies. One of the measures currently being employed to curb these declines is the use of no-take zones for purse-seine fishing. This strategy, recently tested at St Croix Island in the Eastern Cape, was effective in decreasing breeding penguins' foraging efforts by 30% within three months of closing a 20 km zone to purse-seine fisheries (Pichegru et al. 2010). In this case, the use of small no-take zones presented immediate benefits for the African penguin population dependent on pelagic prey, with minimum cost to the fishing industry, while protecting ecosystems within these habitats and important species. However, experimental fishing closures at Dassen and Robben Islands have not delivered such positive results, resulting in published rebuttals labelling the findings of Pichegru et al. (2010) premature. The revised, Draft Biodiversity Management Plan for the African penguin does consider a decline of food availability as a major driver of African Penguin population decline and recommends fishery closures around colonies (Government Gazette No. 42775; 18 October 2019).

The reduction in colony sizes at most of the islands in Saldanha Bay will have had severe negative consequences for penguins. When Penguins breed in large colonies, packed close to one another, they are better able to defend themselves against egg and chick predation by Kelp gulls. Also, these losses are trivial at the colony level. However, the fragmented colonies and the rise in gull numbers associated with the rapidly expanding human settlements in the area during the 1980s, meant that gull predation became problematic. Kelp gull numbers in Saldanha Bay have decreased dramatically in recent years (see below), but the population remains at more than 2 000 pairs and gull predation on penguin eggs almost certainly remains problematic. Research has indicated that the provision of correctly designed artificial nest sites that provide protection both from gull predation and extreme temperatures (half concrete pipes were found to be superior to fibreglass artificial burrows) can be

effective in enhancing fledging success (Pichegru 2012). Similarly, predation by seals (on land and around colonies) is having an increasingly negative impact on these dwindling colonies (Makhado *et al.* 2006, 2009). Additional stress, such as turbidity and increased vessel traffic, will not only impact penguins directly, but is likely to influence the location of schooling fish that the penguins are targeting and their ability to locate these schools. There are also concerns that toxin loads influence individual birds' health, reducing their breeding success and/or longevity (Game *et al.* 2009).

Parsons *et al.* (2016) conducted a large-scale health assessment on the African Penguin and found that this species is potentially exposed to conservation-significant pathogens. Disease constitutes a major ecological force and has been shown to play an even greater role in threated populations (Friend *et al.* 2001 in Parsons *et al.* 2016). The effect of diseases on seabird population dynamics is currently poorly understood. Both, disease outbreaks as well as chronic diseases should both be considered as potential threats to the African Penguin and should be investigated further as part of the conservation efforts (Parsons *et al.* 2016).

In summary, the initial collapse of the penguin colonies in the area is probably related to food availability around breeding islands and in areas where birds not engaged in breeding are foraging, particularly before and after moulting. However, now that colonies have shrunk so dramatically, the net effect of local conditions at Saldanha Bay are believed to be an increasingly important factor in the continued demise of African penguin colonies at the islands. Concerningly, numbers of breeding pairs recorded in 2020 are the lowest on record for the tenth year in a row, whist the biomass of their small pelagic fish prey (particularly sardines) along the west coast is also at a historically low level.

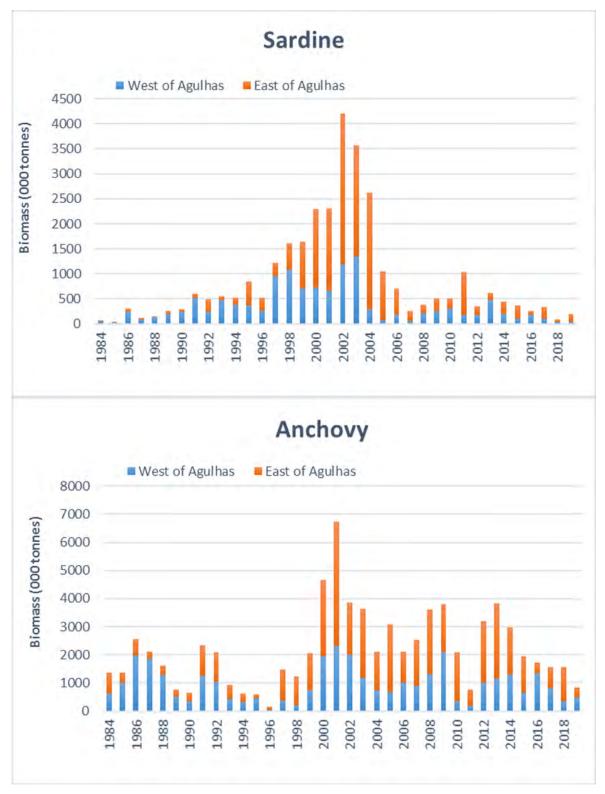


Figure 12-2 Long-term trends in the biomass of small pelagic fish (sardine and anchovy) to the west and east of Cape Agulhas based on hydro acoustic surveys conducted bi-annually from 1984 – 2019 (Data source: Department of Forestry, Fisheries and the Environment 2021).

The Kelp Gull Larus dominicanus vetula breeds primarily on offshore islands, as well as a small number of mainland sites. The Islands in Saldanha Bay support a significant proportion of South Africa's breeding population. Within this area, the majority breed on Schaapen, Meeuw and Jutten Islands, with additional small but consistent breeding populations on Vondeling and Malgas islands. Small numbers of breeding kelp gulls were recorded on Marcus Island in 1978, 1985 and 1990 – 92, but breeding has since ceased, probably due to the

causeway connecting the island to the mainland allowing access to mammal predators (Hockey *et al.* 2005). Kelp Gulls are known to eat the eggs of several other bird species (e.g., African penguins, Cape Cormorants and Hartlaub's Gulls). Prior to the 1960s, numbers of Kelp Gulls on offshore islands were controlled to protect the guano and egg producing species (Crawford *et al.* 1982).

Post 1970, Kelp Gull populations were no longer controlled, which, together with the supplementary food provided by fisheries and landfill sites resulted in the doubling of breeding pairs in South Africa by 2002 (Whittington *et al.* 2016). The introduction and spread of the invasive alien mussel species *Mytilus galloprovincialis* could also have contributed toward the increased availability of food. Consequently, pressures on guano-producing seabird populations shifted from guano exploitation to egg predation by increasing Kelp Gull numbers.

Since 2000, the populations on the islands have been steadily decreasing following large-scale predation by Great White Pelicans *Pelecanus onocrotalus* that was first observed in the mid-1990s (Crawford *et al.* 1997). During 2005 and 2006 pelicans caused total breeding failure of Kelp Gulls at Jutten and Schaapen Islands (de Ponte Machado 2007) the effects of which are still apparent (Figure 12-3). Recent counts show that Kelp Gull numbers remain below those at the start of the comprehensive counting period although the decline appears to have slowed in the last five years (Figure 12-3). The loss of breeding pairs at the Saldanha Bay Islands since 2000 were to some degree offset by an increase in numbers breeding on mainland sites, especially around greater Cape Town and along the south coast (Whittington *et al.* 2016).

Witteveen *et al.* (2017) found anthropogenic debris in Kelp Gull nests, especially in colonies located near landfill sites and coastal sites where there was a limited vegetation available for construction. Debris in nests can lead to injury or death as a result of entanglement of chicks and adults. Often ropes and straps are used by Kelp Gulls to construct nests. Plastic bags and food wrappers mostly appear to accumulate during the chick rearing period as those items were mostly regurgitated. Whether anthropogenic debris is playing an important role in the steady decreasing trend of Kelp Gull populations off the Saldanha Islands is, however, unknown.

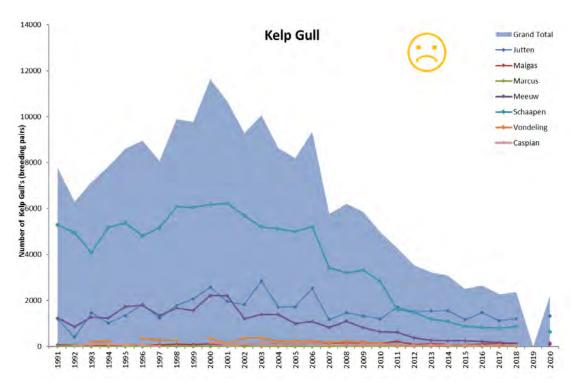


Figure 12-3 Trends in breeding population of Kelp gulls at Jutten, Malgas, Marcus, Meeuw, Schaapen, Vondeling and Caspian Islands in Saldanha Bay from 1985 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

Hartlaub's Gull, Larus hartlaubii, is about the 10th rarest of the world's roughly 50 gull species. It is endemic to southern Africa, occurring along the West Coast from Swakopmund to Cape Agulhas. It breeds mainly on protected islands but has also been found to breed in sheltered inland waters. Hartlaub's Gulls are relatively nomadic and can alter breeding localities from one year to the next (Crawford *et al.* 2003). The numbers breeding on the different islands are highly erratic, as are the total numbers in the Bay (Figure 12-4). The highest and most consistent numbers of breeding birds are

found on Malgas, Jutten and Schaapen islands, with a few birds breeding Vondeling Island between 1991 and 1998 and last in 2006 when 30 pairs were recorded. They have also been recorded breeding on Meeuw Island in 1996, from 2002 to 2004, 2012 – 2014, 2017 and 2020. There are substantial inter-annual fluctuations in numbers of birds breeding, suggesting that in some years an appreciable proportion of the adults do not breed (Crawford *et al.* 2003). Natural predators of this gull are the Kelp Gull, African Sacred Ibis and Cattle Egret, which eat eggs, chicks and occasionally adults (Williams *et al.* 1990). In Saldanha Bay there is no discernible upward or downward trend over time. The total number of breeding pairs recorded in 2018 was just 36 pairs on Jutten and Malgas Islands, whilst in 2019 and 2020, 996 and 976 breeding pairs, respectively were recorded with the majority on Schaapen Island.

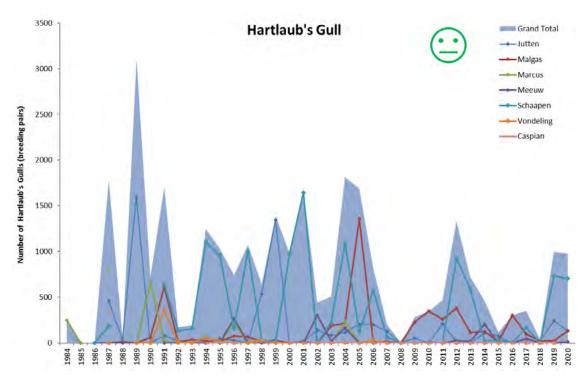


Figure 12-4 Trends in breeding population of Hartlaub's Gulls at Jutten, Malgas, Marcus, Meeuw, Schaapen, Vondeling and Caspian Islands in Saldanha Bay from 1984 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

The Swift Tern, Thalasseus bergii, is a widespread species that occurs as a common resident in southern Africa. Swift Terns breed synchronously in colonies, usually on protected islands, and often in association with Hartlaub's Gulls. Sensitive to human disturbance, their nests easily fall prey to Kelp Gulls, Hartlaub's Gulls and Sacred Ibis (Le Roux 2002). During the breeding season, fish form 86% of all prey items taken, particularly pelagic shoaling fish, of which the Cape Anchovy (Engraulis encrasicolus) is the most important prey species. The

steady increase in Swift Tern numbers between 2002 and 2005 coincided with a greater abundance of two of their main prey species, sardines and anchovies (Figure 12-2). However, since 2005, the population in the Western Cape has shifted south and eastward, coinciding with a similar shift of their prey species (Crawford 2009). In southern Africa, Swift Terns show low fidelity to breeding localities, unlike the African Penguin, Cape Gannet and Cape Cormorant, which enables them to rapidly adjust to changes in prey availability (Crawford 2009, 2014). In Saldanha Bay, Jutten Island has been the most important island for breeding Swift Terns over the past 30 or more years, but breeding numbers are erratic at all the islands. The breeding population shifted to Schaapen Island in 2007, but no swift terns were reported breeding on islands in the Bay for the three years following this, the longest absence on record. Subsequent to this, Swift Terns have bred on the Saldanha Islands nearly every year, albeit with the typical, erratic variability. In the last three years the numbers recorded have fluctuated from amongst the highest on record in 2018, to just two pairs in 2019 and zero in 2020 (Figure 12-5).

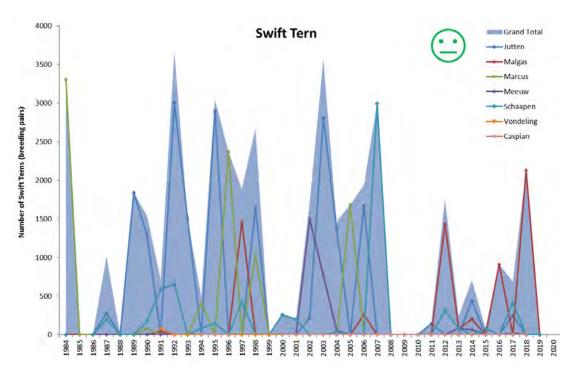


Figure 12-5 Trends in breeding population of Swift Terns at Jutten, Malgas, Marcus, Meeuw, Schaapen, Vondeling and Caspian Islands in Saldanha Bay from 1984 – 2019 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021). No data available for 2020 due to COVID.

Cape Gannets Morus capensis are restricted to the coast of Africa, from the Western Sahara, around Cape Agulhas to the Kenyan coast. In southern Africa they breed on six offshore islands, three off the Namibian coast, and two off the west coast of South Africa (Bird Island in Lambert's Bay and Malgas Island in Saldanha Bay), and one (Bird Island) at Port Elizabeth. The Cape Gannet is listed as Endangered on the IUCNs global Red Data List, due to its restricted range and population declines (Birdlife International 2018).

Cape Gannets breed on islands which afford them protection from predators. They feed out at sea and will often forage more than a hundred kilometres away from their nesting sites (Adams & Navarro 2005). This means that only a small proportion of foraging takes place within Saldanha Bay. The quality of water and fish stocks in Saldanha Bay should therefore not have a significant effect on the Cape Gannet population. The bird colony at Malgas Island has shown substantial population fluctuation since the early 1990s and an erratic decline since 1996 (Figure 12-6). The 2001 – 2014 data revealed a dramatic decline in the breeding population on Malgas Island. Numbers of breeding pairs recovered somewhat in 2017 but then declined steeply again to low levels in 2019 that were less than half the peak recorded in the mid-1990s. The decline in numbers at Malgas Island contrasts with population figures for Bird Island, off Port Elizabeth, where numbers have increased. The total South African gannet population appears to respond to the population dynamics of small pelagic fish (particularly sardines), with the number of breeding pairs averaging at 123 thousand pairs since 1995 (Crawford et al. 2014). A study suggested that Cape Gannet population trends are driven by food availability during their breeding season (Lewis et al. 2006). Pichegru et al. (2007) showed that Cape Gannets on the west coast have been declining since the start of the eastward shift of the pelagic fish in the late 1990s. This has resulted in west coast gannets having to increase their foraging efforts. During the breeding season, they forage in areas with very low abundance of their preferred prey, and feed primarily on low-energy hake trawl fishery discards which constituted 93% of total prey intake (Crawford et al. 2006, Pichegru et al. 2007). A bioenergetics model showed that enhanced availability of low-energy hake fishery discards does not seem to compensate for the absence of natural prey and a study of foraging energetics suggested that Gannets tracked from Malgas Island were not maintaining their energy budget during feeding flights (Pichegru et al. 2007, Gremillet et al. 2016). Despite only a small, documented overlap (13%) in Cape Gannet foraging zones from Malgas Island with the purse-seine fishery, the total fishery catch was estimated at 41% of the food requirements of the colony (Okes et al. 2009). Some of these studies have called for increased restrictions on purseseine fishing in the vicinity of bird colonies, but these conclusions have been challenged by fishery scientists who point out that small pelagic fish biomass was actually increasing in the area at the time the Cape Gannet numbers started declining (Figure 12-2). Gannets with their extensive foraging range and diverse diets have proved adaptable to the changes in pelagic fish distribution and nationally numbers have not declined (Crawford 2014).

Possibly of greater significance for the Malgas Island Cape Gannet Colony, and of more concern at a local level, are high rates of predation by Cape fur seals *Arctocephalus pusillus*, Kelp Gulls and until recently, the Great White Pelican *Pelecanus onocrotalus* (Makhado *et al.* 2006, Pichegru *et al.* 2007). Kelp Gull predation accounts for between one and two thousand gannet breeding failures per season in average years (Pelican Watch *pers. comm.* 2017). Furthermore, Cape Fur Seals prey on fledgling sea

birds that land in the waters around their home islands for the first time (David *et al.* 2003, Makhado *et al.* 2009). Seal numbers nationally increased at an average of 3.5% per annum since 1971 until 1993 when aerial census of seal colonies was undertaken (David *et al.* 2003). In Saldanha waters, seal numbers have increased dramatically since 2000 when they started re-colonising Vondeling Island. Annual census of seal pups on Vondeling Island recorded a dramatic increase up until 2013 after which numbers have fluctuated around 20 000 (see Section 12.5.1) and the consequent increase in competition for already depleted food resources has led groups of young male seals to augment their normal diet by hunting cormorant and gannet fledgling on their first forays from the islands (Pelican Watch *pers. comm.* 2017).

Estimates of Cape Gannet mortality caused by Cape Fur Seals were 6 000 fledglings around Malgas Island in the 2000/01 breeding season, 11 000 in 2003/04 and 10 000 in 2005/06 (Makhado et al. 2006). This amounted to about 29%, 83% and 57% of the overall production of fledglings at the island in these breeding seasons, respectively, despite an ongoing "problem" seal culling programme around Malgas Island that was initiated in 1993 (David et al. 2003, Makhado et al. 2009). These seal predation rates were considered unsustainable and largely responsible for the 25% decline in the Malgas Island Cape Gannett population between 2001 and 2006 (Makhado et al. 2006). Seal predation of seabirds is ongoing and it was estimated by the Department of Environmental Affairs seal culling team that in January 2016 "... all young gannets landing on the waters around Malgas were taken by seals..." (Pelican Watch pers. comm. 2017). These recent findings have changed the overall health of the Gannet population on Malgas Island from Fair to Poor based on the ongoing predation by fur seals. Management measures were implemented between 1993 and 2001, and 153 fur seals seen to kill Gannets were shot (Makhado et al. 2006). This practice has continued in an effort to improve breeding success (Makhado et al. 2009). The effects of this may be manifest in the slight recovery in Gannet numbers between 2006 and 2009, but numbers have declined further since then suggesting that predation and other pressures such as food availability remain problematic (particularly in light of ongoing declines in small pelagic fish biomass along the west coast). Unfortunately, no counts of Gannet breeding pairs were conducted during 2020 or 2021.

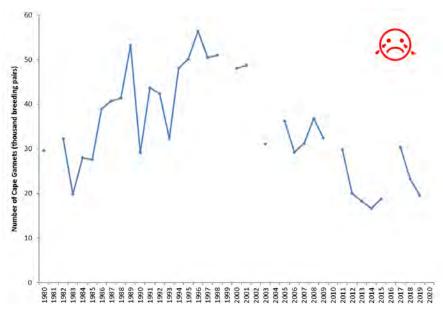


Figure 12-6 Trends in breeding population of Cape Gannets at Malgas Island, Saldanha Bay from 1980 – 2019 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021). No data available for 2020 due to COVID.

Cape Cormorants *Phalacrocorax capensis* are endemic to southern Africa, where they are abundant on the west coast but less common on the east coast, occurring as far east as Seal Island in Algoa Bay.

They breed between Ilha dos Tigres, Angola, and Seal Island in Algoa Bay, South Africa. They generally feed within 10-15 km of the shore, preying on pelagic goby *Sufflogobius bibarbatus*, Cape anchovy *Engraulis capensis*, pilchard *Sardinops sagax* and Cape horse mackerel *Trachurus trachurus* (du Toit 2004).

Key colonies of the Cape Cormorant in South Africa and Namibia have undergone very rapid population declines over the past three generations and the Cape Cormorant has therefore been up listed to Endangered (BirdLife International 2018). Declines are primarily believed to have been driven by collapsing pelagic fish stocks (BirdLife International 2015). However, pelagic fish stocks increased greatly in the late 1990s and early 2000s, and although sardine biomass subsequently crashed, anchovy biomass remained relatively

high until recently (Figure 12-2). This suggests that other factors are also involved in declining Cape Cormorant numbers. The species is susceptible to oiling and avian cholera outbreaks. This trend currently shows no sign of reversing, and immediate conservation action is required to prevent further declines (Crawford *et al.* 2013, 2015).

In South Africa, numbers decreased during the early 1990s following an outbreak of avian cholera, predation by Cape fur seals and White Pelicans as well as the eastward displacement of sardines off South Africa (Crawford *et al.* 2007). A semi-systematic count by the Pelican Watch on Jutten in December 2015, suggests that about 3 000 young Cape Cormorants were taken by seals during the fledging period. There are large inter-annual fluctuations in breeding numbers due to breeding failure, nest desertion and mass mortality related to the availability of prey, for which they compete with commercial fisheries. This makes it difficult to accurately determine population trends on the Saldanha Islands. In addition, during outbreaks of avian cholera, tens of thousands of birds die. Cape Cormorants are also vulnerable to oiling and are difficult to catch and clean. Discarded fishing gear and marine debris also entangles and kills many birds. Kelp Gulls prey on Cape Cormorant eggs and chicks and this is exacerbated by human disturbance, especially during the early stages of breeding, as well as the increase in gull numbers (du Toit 2004).

The Saldanha Bay population has been quite variable since the start of monitoring in 1988, with the bulk of the population residing on Malgas and Jutten Island in recent years, until 2019 when the 2 089 breeding pairs recorded were found exclusively on Malgas Island, but in 2020 they were again abundant on Jutten (Figure 12-7). Overall, the number of breeding pairs declined gradually since the 1990s, and although interannual variability is high there appears to be no trend in the last decade. In 2013, a total of only 801 breeding pairs were recorded, representing the lowest level recorded to date (Figure 12-7). Between 2013 and 2016, a short-lived recovery of breeding pairs to 9 273 was linked to an increase in the number of breeding pairs on Malgas Island. The numbers of breeding pairs dropped once again to a total of 2 089 in 2019 but recovered to 8 240 pairs in 2020 (Figure 12-7).

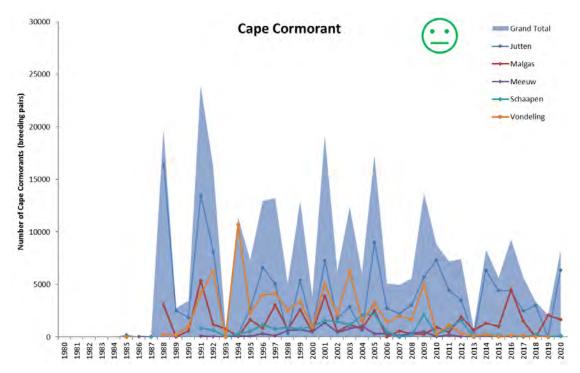


Figure 12-7 Trends in breeding population of Cape Cormorants at Jutten, Malgas, Meeuw Schaapen, and Vondeling islands in Saldanha Bay from 1980 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

Bank Cormorants Phalacrocorax neglectus are endemic to the Benguela upwelling region of southern Africa, breeding from Hollamsbird Island, Namibia, to Quoin Rock, South Africa. They seldom range farther than 10 km offshore. Their distribution roughly matches that of kelp Ecklonia maxima beds. They prey on various species of fish such as the pelagic goby Sufflogobius bibarbatus, crustaceans and cephalopods, feeding mainly amongst kelp where they catch West Coast rock lobster, Jasus Ialandii (du Toit 2004). The total population

decreased from about 9 000 breeding pairs in 1975 to less than 5 000 pairs in 1991 – 1997, to 2 800 pairs in 2006 (Kemper *et al.* 2007). The South African population approximately halved from 1. 500 pairs in 1978 – 1980 to 800 pairs in 2011 – 2013 (Crawford *et al.* 2015). One of the main contributing factors to the decrease in the North and Western Cape colonies was a major shift in the availability of the West Coast rock lobster from the West Coast to the more southern regions, observed between the late 1980s and early 1990s to the turn of the century (Cockcroft *et al.* 2008). The abundance of lobsters was further severely affected by an increase in the number and severity of mass lobster strandings (walkouts) during the 1990s and increases in illegal fishing, with the national stock rock lobster status now estimated less than 2% of pristine biomass (Cockcroft *et al.* 2008, DFFE 2020). Ongoing population declines led to the Bank Cormorant's status being changed from Vulnerable to Endangered (Birdlife International 2011).

Breeding pair count data from the Saldanha Bay area shows the dramatic decrease in the population at Malgas Island, which was previously the most important island for this species. The number of breeding pairs on Jutten, Marcus and Vondeling has declined steadily since 2003 on all the islands. Overall, the population in Saldanha Bay has declined drastically by approximately 99% since 1990 (Figure 12-8). Currently numbers of breeding pairs are the lowest on record, with just three pairs recorded in 2019. These declines are mainly attributed to scarcity of their main prey, the rock lobster which in turn has reduced recruitment to the colonies (Crawford 2007, Crawford *et al.* 2008b). Bank Cormorants are also very susceptible to human disturbance and eggs and chicks are taken by Kelp Gulls and Great White Pelicans. Increased predation has been attributed to the loss of four colonies in other parts of South Africa and Namibia (Hockey *et al.* 2005). Smaller breeding colonies are more vulnerable to predation which would further accelerate their decline. Birds are also known to occasionally drown in rock-lobster traps, and nests are often lost to rough seas.

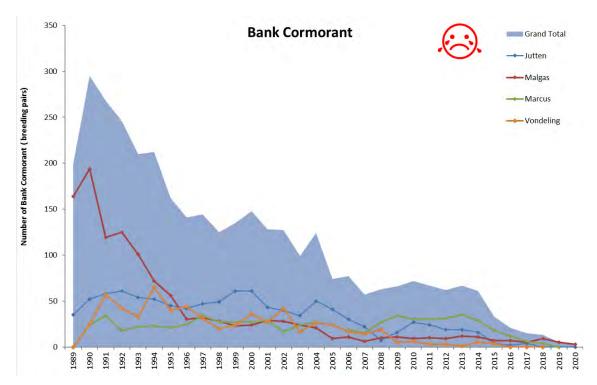


Figure 12-8 Trends in breeding population of Bank Cormorants at Jutten, Malgas, Marcus and Vondeling islands in Saldanha Bay from 1980 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

The White-breasted Cormorant Phalacrocorax lucidus, also known as Great Cormorant, occurs along the entire southern African coastline, and is common in the eastern and southern interior, but occurs only along major river systems and wetlands in the arid western interior. The coastal population breeds from Ilha dos Tigres in southern Angola, to Morgan Bay in the Eastern Cape. Along the coast, White-breasted Cormorants forage offshore, mainly within 10 km of the coast, and often near reefs. White-breasted Cormorants that forage in the marine environment feed on bottom-living, mid-water and surface-dwelling prey, such as sparid and mugillid fishes e.g., Steentjies, white stumpnose and harders (du Toit 2004). This

species forages in Saldanha Bay and Langebaan Lagoon, making it susceptible to local water quality and fishing activities (Hockey *et al.* 2005).

Within Saldanha Bay, breeding effort has occasionally shifted between islands. White-breasted Cormorants bred on Malgas Island in the 1920s, and low numbers of breeding pairs were counted on Marcus and Jutten Islands intermittently between 1973 and 1987 when they stopped breeding there and colonized Schaapen, Meeuw and Vondeling islands (Crawford $et\ al.$ 1994). Most of the breeding population was on Meeuw in the early 1990s but shifted to Schaapen in about 1995. By 2000, the breeding numbers at Schaapen had started to decline and the breeding population had shifted entirely back to Meeuw by 2004, where it has remained since (Figure 12-9). Overall, numbers of breeding pairs were more or less stable until 2012 but have declined steeply since then. The last five annual counts (2015 – 2019) were substantially down from the 100-150 breeding pairs recorded in most years prior to 2012. Only 16 pairs were recorded in 2019 representing the lowest number recorded in the past 31 years, whilst no data were provided for White-breasted Cormorants in 2020 (this may have been a result of reduced sampling effort).

Human disturbance poses a threat at breeding sites. These cormorants are more susceptible to disturbance than the other marine cormorants, and leave their nests for extended periods if disturbed, exposing eggs and chicks to Kelp Gull predation. Other mortality factors include Avian Cholera, oil pollution, discarded fishing line and hunting inland (du Toit 2004). White Breasted Cormorants also predate on fish caught in gill nets utilized in the harder fishery and risk becoming entangled in the gear and drowning. Effort in the harder fishery has increased in recent years and the average size of harders in the Saldanha- Langebaan fishery has decreased (see Chapter 11 on fish), potentially negatively affecting foraging opportunities for White Breasted Cormorants in the Bay. Due to Schaapen Islands' close proximity to the town of Langebaan, the high boating, kite-boarding and other recreational uses of the area may have been an important source of disturbance to these birds. The substantial growth in participation in recreational water sports (particularly kite boarding) over the last two decades could have been a contributing factor to the shift in breeding location from Schaapen to Meeuw Island in 2004, but this appears unlikely given that the opposite shift happened ten years previously.

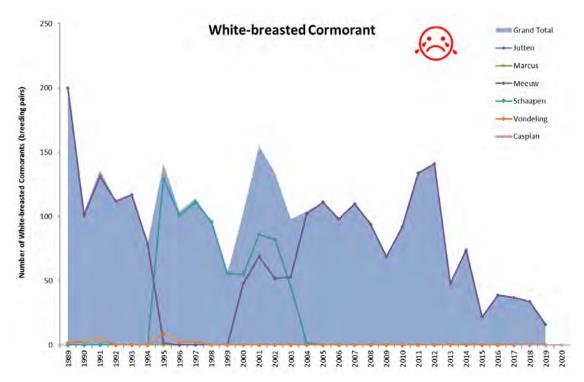


Figure 12-9 Trends in breeding population of White-breasted Cormorants at Jutten, Marcus, Meeuw, Schaapen, Vondeling and Caspian islands in Saldanha Bay from 1980 – 2019 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021). No data available for 2020 due to COVID.

The **Crowned Cormorant** *Microcarbo coronatus* is endemic to Namibia and South Africa, occurring between the Bird Rock Guano Platform in southern Namibia and Quoin Rock, South Africa. It is listed as Near Threatened on the IUCNs Red Data List due to its small and range restricted population, making it very vulnerable to threats at their breeding colonies (Birdlife International 2018). This species is highly susceptible to human disturbance and predation by fur seals, particularly of fledglings. Crowned Cormorants generally occur within 10 km from the coastline and occasionally in estuaries and sewage works up to 500 m from the sea. They feed on slow-moving benthic fish and

invertebrates, which they forage for in shallow coastal waters and among kelp beds (du Toit 2004). Populations of this species have been comprehensively counted since 1991 (Figure 12-10). Since then, numbers have shown considerable interannual variations with an overall decreasing trend (Figure 12-10). Currently, numbers are well below average, and the lowest in the last three decades. Furthermore, the trajectory in population size has been downwards for the last decade.

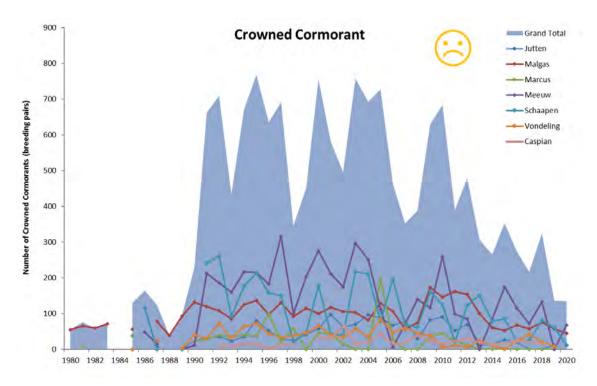


Figure 12-10 Trends in breeding population of Crowned Cormorants at the Jutten, Malgas, Marcus, Meeuw, Schaapen, Vondeling, and Caspian islands in Saldanha Bay from 1980 – 2020 measured in number of breeding pairs (Data source: Department of Forestry, Fisheries and the Environment 2021).

The African Oystercatcher Haematopus moquini is endemic to southern Africa and is currently listed as Least Concern on the IUCN Red Data Species List (Birdlife International 2017). Their global numbers increased dramatically from the 1980s, which was attributed primarily to the introduction and of alien proliferation the mussel М. galloprovincialis, as well as due to the enhanced protection of the Oystercatcher throughout much of its range (Hockey & van Erkom Schurink 1992, Loewenthal 2007). This population growth led to

the revision of the original Endangered status in 2017 (Birdlife International 2017). The African Oystercatcher breeds in rocky intertidal and sandy beach areas from Namibia to southern KwaZulu-Natal.

African Oystercatchers are resident on the islands, where highest numbers are encountered at Marcus, Malgas and Jutten Islands (Figure 12-11). The islands in Saldanha Bay contribute a fair proportion to the global population that was estimated at 6 670 in 2007 (Loewenthal 2007). The population stabilised in the early 2000s (Figure 12-11). This possibly reflects stabilisation in the alien Mediterranean mussel biomass as the island rocky shore ecosystems settle into their new equilibrium. Oystercatchers could be affected by water quality in Saldanha Bay in as much as it affects intertidal

invertebrate abundance. Like most of the birds described above, they are, however, vulnerable to catastrophic events such as oil spills. Threats to the breeding success of these birds include human-induced habitat degradation, uncontrolled dogs predating on chicks and the drowning of chicks hiding from humans and their associated pets (Loewenthal 2007). Due to the sad passing of the two champions of the Oystercatcher Conservation Project (Prof. Phil Hockey and Dr Douglas Loewenthal) the regular censuses of oystercatchers in Saldanha Bay have stopped and no data has been collected since 2016.

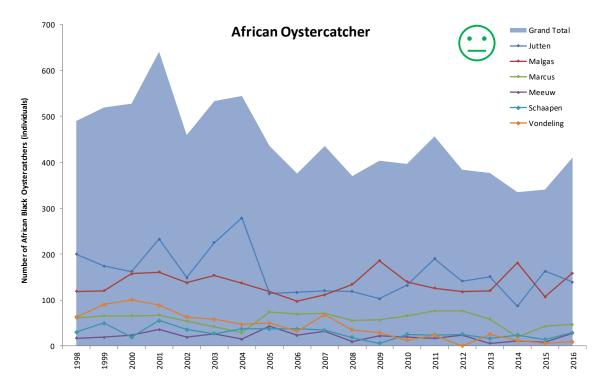


Figure 12-11 Trends in breeding population of African Oystercatchers on Jutten, Malgas, Marcus, Meeuw, Schaapen, and Vondeling Islands from 1988 - 2016. (Data source: Department of Environmental Affairs: Oceans & Coasts 2019). No data has been collected since 2016.

12.3 Birds of Langebaan Lagoon

12.3.1 National importance of Langebaan Lagoon for waterbirds

Langebaan Lagoon, with its warm, sheltered waters and abundance of prey, supports a high diversity and abundance of waterbirds, especially in summer when it is visited by thousands of migratory waders from the northern hemisphere. A number of commonly found migratory waders are globally recognised as Near Threatened and include Red Knot *Calidris canutus*, Curlew Sandpiper *Calidris ferruginea*, Bar-tailed Godwit *Limosa lapponica* and Eurasian Curlew *Numenius arquata*. Langebaan Lagoon represents a critical 'wintering' area for migratory waterbirds in South Africa (Underhill 1987) and is recognised as an internationally important site under the Ramsar Convention on Wetlands of International Importance, to which South Africa is a signatory.

The true importance of Langebaan Lagoon for waders cannot be assessed without recourse to a comparison with wader populations at other wetlands in southern Africa. During the summer of 1976 to 1977, wader populations at all coastal wetlands in the south-western Cape were counted (Siegfried 1977). The total population was estimated at 119 000 birds of which 37 000 occurred at Langebaan. Only one other coastal wetland, the Berg River estuary, contained more than 10 000 waders. Thus, Langebaan Lagoon held approximately one third of all the waders in the south-western Cape (Siegfried 1977). Studies were extended to Namibia (then South West Africa) in the summer of 1976 – 77. Walvis Bay Lagoon contained up to 29 000 waders and Sandvis had approximately 12 000 waders. Therefore, it was determined that Langebaan Lagoon was the most important wetland for waders on the west coast of southern Africa (Siegfried 1977).

Taking species rarity and abundance into account, Langebaan Lagoon has been ranked fourth of all South African coastal lagoons and estuaries in terms of its conservation importance for waterbirds (Turpie 1995). With regard to density and biomass of waders, Langebaan Lagoon compared favourably to other internationally important coastal wetlands in West Africa and Europe.

Waterbird numbers on Langebaan Lagoon have, however, declined dramatically since monitoring began in the 1970s. Decreases in both migratory and resident wader numbers are a common trend around the South African coast. Decreases in numbers of migrants can be attributed to loss of breeding habitat and hunting along their migration routes as well as human disturbance and habitat loss on their wintering grounds. The fact that numbers of resident waders may also be declining suggests that local human disturbance is also to blame at Langebaan Lagoon. In 1985, Langebaan Lagoon was declared a National Park (West Coast National Park), and recreational activities such as boating, angling and swimming have since been controlled within the Lagoon through zonation. Nevertheless, the dramatic increases in visitor numbers to the area over the last three decades and the more recent increases in sporting activities impact on some of the important feeding areas in the lagoon. The area most impacted by increased visitor numbers and water sports activities are the sandflats near Oesterwal, that in the 1970s, were identified as one of the most important feeding areas for waders.

12.3.2 The main groups of birds and their use of habitats and food

The waterbirds of Langebaan Lagoon can be grouped into seven categories, namely (1) Cormorants, darters, and pelicans; (2) wading birds; (3) waterfowl; (4) waders (5) gulls and terns (6) kingfishers; and (7) birds of prey (Table 12.1). The relative contribution of the various bird groups to the bird numbers in the lagoon differs substantially in summer and winter, due to the prevalence of migratory birds in summer (Figure 12-12). Currently, waders account for about 60% of the birds in Langebaan Lagoon during summer, nearly all of these being migratory. In winter, the contribution by resident waders increases to around 8%, and numbers of wading birds increase from 26% to 61% of total bird numbers. The influx of waders into the area during summer accounts for most of the seasonal change in community composition. Most of the Palaearctic migrants depart synchronously in early April, but the immature birds of many of these species remain behind, accounting approximately 13% of the total waterbird numbers. The resident species take advantage of relief in competition for resources and use this period to breed. The migrants return over a longer period in spring, with birds beginning to filter in from August, rising rapidly in numbers during September and November. In the 1970s, it was determined that the most important sandflats, in terms of the density of waders they support, were in Rietbaai, in the upper section of Langebaan Lagoon, and at the mouth, near Oesterwal. The important roosting sites were the salt marshes, particularly between Bottelary and Geelbek (Summers 1977).

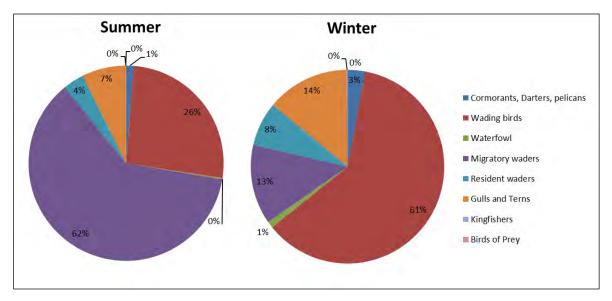


Figure 12-12 Present average numerical composition of the waterbirds on Langebaan Lagoon during summer (2015 – 2021) and winter (2015 – 2019) (Data source: CWAC data, Animal Demography Unit at the University of Cape Town).

 Table 12.1
 Major waterbird groups found in Langebaan Lagoon, and their defining features.

Bird group	Defining features, typical/dominant species		
Cormorants, darters & pelicans	Cormorants, darters and pelicans are common as a group, but are dominated by the marine cormorants which breed on the Saldanha Bay islands. Great White Pelicans visit the Bay and lagoon to feed, but they breed beyond the area at Dassen Island. African Darters <i>Anhinga rufa</i> are uncommon and are more typical of lower salinities and habitats with emergent vegetation which are not common in the study area.		
Wading birds	This group comprises the egrets, herons, ibises, flamingos and spoonbills. Loosely termed piscivores, their diet varies, with fish usually dominating, but often also includes other vertebrates, such as frogs, and invertebrates. The ibises were included in this group, though their diet mainly comprises invertebrates and is fairly plastic. They tend to be tolerant of a wide range of salinities. Wading piscivores prefer shallow water up to a certain species dependant wading depth.		
Waterfowl	This group includes waterfowl in the orders Podicipediformes (grebes), Anseriformes (ducks, geese) and Gruiformes (rails, crakes, gallinules, and coots). Waterfowl occur in fairly large numbers because of the sheer size of the study area, but they are not as dense as they might be in freshwater wetland habitats or nearby areas such as the Berg River floodplain. Piscivorous waterfowl comprises the Grebes; herbivorous waterfowl are dominated by species that tend to occur in lower salinity or freshwater habitats, such as the Southern Pochard and the rallids, and are therefore not common in the lagoon. The omnivorous waterfowl comprises ducks which eat a mixture of plant material and invertebrate food such as small crustaceans. Species include the Yellow-billed Duck, Cape Teal, Red-billed Teal and Cape Shoveller. Although varying in tolerance, these species are tolerant of more saline conditions.		
Waders	This group includes all the waders in the order Charadriiformes (e.g., Greenshank, Curlew Sandpiper). Waders feed on invertebrates that mainly live in intertidal areas, at low tide, both by day and night (Turpie & Hockey 1993). They feed on a whole range of crustaceans, polychaete worms and gastropods, and adapt their foraging techniques to suit the type of prey available. Among the waders, plovers stand apart from the rest in that they have insensitive, robust bills and rely on their large eyes for locating prey visually. Oystercatchers have similar characteristics, using their strong bills to prise open shellfish. Most other waders have soft, highly sensitive bills and can locate prey by touch as well as visually. Those feeding by sight tend to defend feeding territories, whereas tactile foragers often forage in dense flocks. The influx of waders into the area during summer accounts for most of the seasonal change in community composition. Most of the Palaearctic migrants depart quite synchronously around early April, but the immature birds of many of these species remain behind and do not don the breeding plumage of the rest of the flock. The resident species take advantage of relief in competition for resources and use this period to breed. The migrants return more gradually in spring, with birds beginning to trickle in from August, and numbers rising rapidly during September to November. Waders require undisturbed sandflats in order to feed at low tide and undisturbed roosting sites at high tide. In the 1970s it was determined that the most important sandflats, in terms of the density of waders they support, were in Rietbaai, in the upper section of Langebaan Lagoon, and at the mouth, near Oesterwal. The important roosting sites were the salt marshes, particularly between Bottelary and Geelbek (Summers 1977).		
Gulls and terns	This group comprises the rest of the Charadriiformes and includes all the gull and tern species occurring in the lagoon. These species are primarily piscivorous, but also feed on invertebrates. Gulls and terns are common throughout the area. Although their diversity is relatively low, they make up for this in overall biomass, and form an important group. Both Kelp Gulls and Hartlaub's Gulls occur commonly in the lagoon.		
Kingfisher	Kingfishers prefer areas of open water with overhanging vegetation. They are largely piscivorous but also take other small prey. Common species to the lagoon include the Pied Kingfisher.		
Birds of prey	This group are not confined to a diet of fish, but also take other vertebrates and invertebrates. Species in this group include African Fish Eagle, Osprey and African Marsh Harrier.		

Approximately 56 non-passerine waterbird species are regularly recorded at Langebaan Lagoon (species recorded more than 20% of the time; See Table 16.2 in APPENDIX 1 for a list of non-passerine waterbird species that were recorded in Langebaan Lagoon in 2020). About two thirds of these waterbird species are waders, of which 20 species are regular migrants from the Palaearctic region of Eurasia. Important non-waders which utilise the system are Kelp and Hartlaub's Gulls, Greater Flamingo, Sacred Ibis and Common Tern. Resident waterbird species which utilise the rocky and sandy coastlines include the African Oystercatcher and the White-fronted Plover, both of which breed in the area. The waterbirds of Langebaan Lagoon are comprised of five different taxonomic orders (Table 12.2). A total of 117 bird species (i.e., including rare vagrants, terrestrial bird species, and passerines) have been recorded at Langebaan Lagoon as part of the CWAC surveys, of which 60 are South African non-passerine resident waterbird species and 26 are migrant waterbird species. The most species-rich order, the Charadriiformes, include a total of 31 wader species, three gull species and eight tern species (note the Antarctic Tern was recorded for the first time in August 2018) (Table 12.2). There are 14 resident wading bird species which include flamingos, herons, egrets, ibises and spoonbills.

Other birds that commonly occur on the lagoon include passerine species such as the Cape Wagtail *Motacilla capensis* and the Brown-throated Martin *Riparia paludicola*, as well as the Hadeda *Bostrychia hagedashn* (order Ciconiiformes). These species have been excluded from the waterbird categories due to their widespread distribution in non-coastal habitats.

Table 12.2 Taxonomic composition of non-passerine waterbirds in Langebaan Lagoon (excluding rare vagrants) (Data source: CWAC data, Animal Demography Unit at the University of Cape Town. Orders are listed in line with the 7th Edition of the Roberts Birds of South Africa).

Common groupings	Order	No. of SA resident species	No. of migrant species
Cormorants, darters, pelicans	Ciconiiformes (Cormorants, darters, pelicans)	8	
Wading birds	Ciconiiformes (Herons, egrets, ibises, spoonbill, flamingoes)	14	
	Ciconiiformes (Grebes)	2	
Waterfowl	Anseriformes (Ducks, geese)	8	
	Gruiformes (Rails, crakes, gallinules, coots)	5	
Waders	Charadriiformes	11	20
Gulls	Charadriiformes	3	
Terns	Charadriiformes	3	5
Kingfishers	Alcediniformes	3	
Direct of prov	Falconiformes	2	1
Birds of prey	Strigiformes	1	
Total			26

12.3.3 Inter-annual variability in bird numbers

Irregular waterbird surveys were conducted at Langebaan Lagoon from 1934, but, due to the large size of the lagoon, these early counts were confined to small areas. It was not until 1975 that annual summer (January or February) and winter (June or July) surveys of the total population of waders at high tide, when waders congregate to roost on saltmarshes and sand spits, were conducted by members of the Western Cape Water Study Group (WCWSG) (Underhill 1987). The WCWSG monitored Langebaan continuously up to 1991, and since 1992 the Lagoon has been monitored biannually by the Co-ordinated Waterbird Counts (CWAC), organised by the Animal Demography Unity (ADU) at the University of Cape Town. These data sets provide the opportunity to examine the long-term trends in waterbird numbers at Langebaan Lagoon up to the present day. Note that due to the COVID-19 pandemic and associated control measures, unfortunately no counts were conducted during the winter of 2020.

Waterbird numbers on Langebaan Lagoon have declined dramatically since monitoring began in the 1970s. This is largely due to changes in the numbers of waders, which used to account for more than 90% of water bird numbers (Figure 12-13). In the 1970s and 1980s, migratory waders commonly numbered over 35 000 during summer, and over 10 000 in winter. Migratory wader bird numbers have since decreased significantly with only 2 483 individuals recorded in summer 2011 (the lowest on record). Over the period 2011 – 2020, numbers have fluctuated around 5 000 (range: 2 795 – 9 539) individuals (Figure 12-13 and Figure 12-14). Total numbers of bird counted in the lagoon over the summers of 2019 and 2020 were the lowest on record, but a large increase in the number of migratory waders was recorded in 2021. The 12 940 migratory waders counted in the summer of 2021 is the highest in the last decade. The reasons for this increase are not known but it is postulated that reduced human activity throughout their range may have facilitated the modest recovery. The estimated population of nearly 13 000 migratory waders in summer 2021 is still only about 40% of the pre-1990 average of ~33 000 birds, but this is a dramatic improvement over the last decade when only about 10% of the pre 1990 average number have been recorded. Drastic population declines in four species, including the Ruddy Turnstone, Red Knot, Grey Plover, and Curlew Sandpiper typify this downward trend in summer migratory bird numbers (Figure 12-15). Most importantly, Curlew Sandpiper numbers dropped from a pre-1990 average of just over 20 000 birds to a minimum in 2011 with only 413 individuals. Prior to 1990, this species accounted for almost two thirds of the total summer migratory wader numbers in the lagoon. The overall recovery in migrant wader numbers in 2021 was not seen in all species, for example Curlew Sandpiper, Ruddy Turnstone and Grey plover counts were recovered to a similar level (approximately 30 – 40% of pre 1990 numbers), whilst Red Knot numbers showed almost no increase and remained well below their historical peak (Figure 12-15). Resident wader numbers have fluctuated widely over time, reaching a near maximum only recently in the winter of 2013 with 1 273 birds (Figure 12-14). This notwithstanding, resident bird numbers appear to be on a negative trajectory since 2007 with no signs of recovery in the last five years. The winter 2019 count was the lowest on record and unfortunately there was no count for the winter of 2020 (Figure 12-14). The 2021 summer count of resident waders (605) was, however, relatively high compared to recent years, which suggests that these residents may have also benefited from reduced disturbance during 2020 COVID lockdowns. Note that the increase in wading bird counts probably does not imply a demographic recovery i.e., a population increase, as the time frame of COVID lockdowns is probably too short for such a response (although some reduction in human caused

mortality may have occurred e.g., hunting). It does, however, show a local increased use of the Langebaan habitat possibly in response to decreased human activity.

The reasons for the long-term declines, particularly in migratory wader numbers, are diverse and poorly understood, but seem to be a combination of loss and degradation of their breeding sites as well as of their over-wintering grounds during their non-breeding period (Dias et al. 2006). Hunting of migratory waterbirds is a strong tradition in several European and North African countries and is thought to contribute towards global declines in migratory water birds (Bregnballe et al. 2006). The downward trend in migrant wader numbers seems to echo global trends in certain wader populations. Indeed, Ryan (2012) reports on similar declines in migrant waders throughout the Western Cape over the last three decades, irrespective of the protection status of the areas where counts were undertaken. This suggested that factors outside of the Western Cape were at least partially responsible for the observed trends and probably reflected global population declines (Ryan 2012). Conditions at Langebaan Lagoon could also have contributed to the decline in wader numbers over the last two decades. The most likely problems are that of siltation of the system reducing the area of suitable (e.g., muddy) intertidal foraging habitat, loss of seagrass beds with their associated invertebrate fauna (Pillay et al. 2010 see Chapter 8), and human disturbance, which has been shown to have a dramatic impact on bird numbers in other estuaries (Turpie & Love 2000). In 1985, Langebaan Lagoon was declared a National Park (West Coast National Park), and recreational activities such as boating, angling, kite surfing and swimming have since been controlled within the Lagoon through zonation. Nevertheless, some important feeding areas such as Oesterwal, lie within the zones that are highly utilised for recreation.

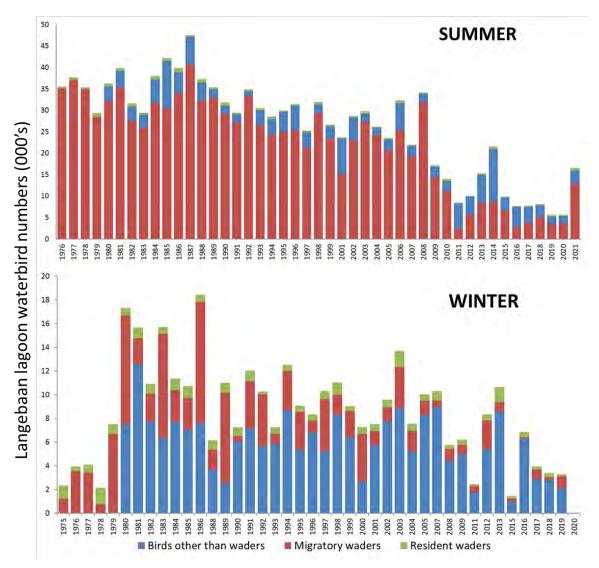


Figure 12-13 Long-term trend in the numerical composition of waterbirds in the Langebaan Lagoon during summer (top) and winter (bottom) (1975 – summer 2021). Note that no data was collected in the summer of 1975, as well as in the winter of 1987, 2006, 2010, 2014 and 2020 (Data source: Coordinated Waterbird Count data, Animal Demography Unit at the University of Cape Town 2021).

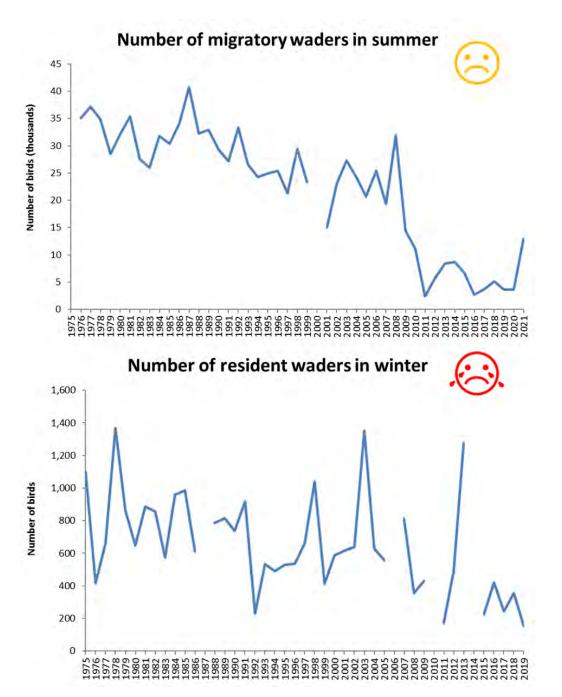


Figure 12-14 Long-term trends in the numbers of summer migratory (top) and winter resident (bottom) waders on Langebaan Lagoon for the years 1976-summer 2021 (Data source: Coordinated Waterbird Count data, Animal Demography Unit at the University of Cape Town 2021).

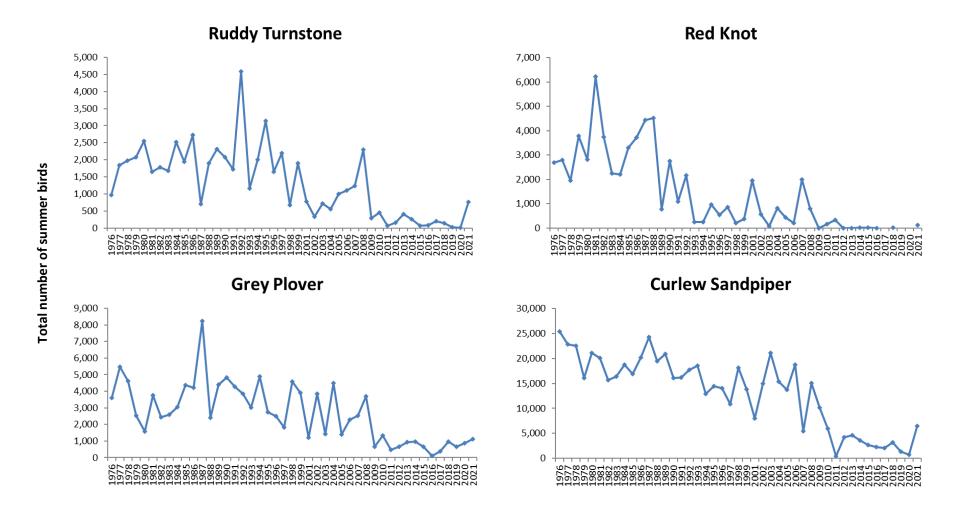


Figure 12-15 Long-term trends in the numbers of four summer migratory waders (Ruddy Turnstone, Red Knot, Grey Plover and Curlew Sandpiper) on Langebaan Lagoon for the years 1976 – 2021 (Data source: Coordinated Waterbird Count data, Animal Demography Unit at the University of Cape Town 2021).

12.4 Overall status of birds in Saldanha Bay and Langebaan Lagoon

Except for Bank Cormorants, the populations of the seabirds breeding on the islands of Saldanha Bay were on an increasing trajectory from the start of monitoring in the 1980s and 90s until around 2000. Factors that probably contributed to this include the reduction and eventual cessation of guano collecting in 1991, banning of egg collecting, increases in the biomass of small pelagic fish particularly sardines over this period, and in the case of the African Oystercatcher the increase in mussel biomass as a result of the spread of the Mediterranean mussel.

On the islands of Saldanha Bay, populations of all these species then started to decline, particularly, the penguins, gannets, crowned cormorants and kelp gulls, which have declined to 0.14%, 40% (in 2019), 23% and 20%, respectively of their populations at the turn of the century. Declines in the numbers of seabirds breeding on the Saldanha Bay Islands can be attributed to several causes. These include (1) emigration of birds to colonies further south and east along the South African coast in response to changes in the distribution and biomass of small pelagic fish stocks, (2) starvation as a result of a decline in the biomass of sardines nationally, and particularly along the west coast over the last decade, (3) competition for food with the small pelagic fisheries within the foraging range of affected bird species, (4) predation of eggs, young and fledglings by Great White Pelicans, Kelp Gulls and Cape Fur Seals, and (5) collapse of the West Coast Rock Lobster stock upon which Bank Cormorants feed.

However, because populations are so depressed, conditions at the islands in Saldanha, particularly predation by Cape Fur Seals, Pelicans and Kelp Gulls, have now become the major factors in driving current population decreases for many seabird species. Direct amelioration actions (*Pelican Watch*, problem seal culling) to decrease these impacts at the islands have had mixed results, with the former proving more effective than the latter. Cape Fur Seal and Kelp Gull predation continue to pose a major threat to seabird survival at the Saldanha Bay Island colonies.

Decreasing numbers of migrant waders utilising Langebaan Lagoon reflects a global trend, which can be attributed to loss of breeding habitat and hunting along their migration routes as well as human disturbance and habitat loss on their wintering grounds. The fact that numbers of resident waders have also declined, however, suggests that unfavourable conditions persisting in Langebaan Lagoon as a result of anthropogenic disturbance may be partly to blame. Resident wader numbers in the winter of 2019 dropped to the lowest recorded in the 40-year count record, a continuation of the declining trend over the last decade. In Langebaan Lagoon, drastic population declines in four species of migratory waders, including the Ruddy Turnstone, Red Knot, Grey Plover and Curlew Sandpiper have signified this downward trend in summer migratory bird numbers. Most importantly, Curlew Sandpiper numbers had dropped from a pre-1990 average of just over 20 000 birds to just 700 birds in 2020. For the first time in a decade, however, Curlew Sandpiper numbers increased to over 6 000 in 2021, and although this still equates to only ~ 40% of the pre-1990 average summer count it represents a considerable increase from counts undertaken during the preceding decade. Similar magnitude increases in the numbers of Ruddy Turnstones and Grey Plovers were recorded in 2021. Migratory wader counts in summer appeared to stabilize at around 3 000 – 5 000 birds over the period 2015 – 2020 and recovered significantly to about 13 000 birds in 2021. Ongoing seasonal counts will ascertain if this recovery is sustained or if it was only a once-off anomaly associated with the extraordinary global COVID-19 pandemic. It is highly recommended that the status of coastal and

wading bird species continues to be monitored and that these data are used to inform and assesses the efficacy of management interventions aimed at halting the observed declines and supporting recovery of the region's birds.

12.5 Seals

12.5.1 Cape Fur Seals

The Cape fur seal *Arctocephalus pusillus* is the only seal species that breeds in Southern Africa. Its range extends from the centre of Angola to the east coast of South Africa, with breeding colonies extending south from Baia dos Tigres on the southern border of Angola, through Namibia, down the west coast of South Africa and around to Algoa Bay in the Eastern Cape of South Africa (Figure 12-16).

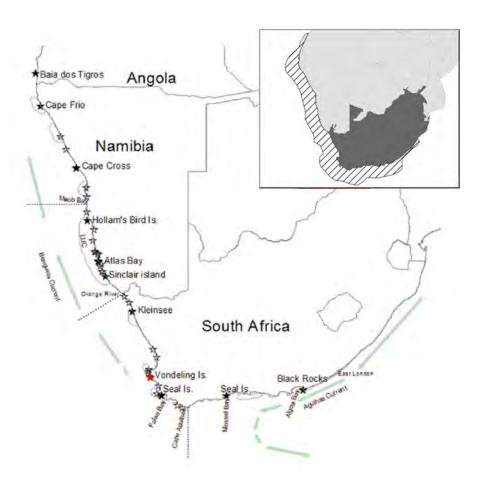


Figure 12-16 Distribution of selected Cape fur seal breeding colonies of Southern Africa with insert showing complete distribution of seal sightings in Southern Africa. The red star indicates the location of the recently established breeding colony at Vondeling Island just outside Saldanha Bay (Adapted from Kirkman *et al.* 2013).

Historically (before 1900), it is likely that seals were present on most (if not all) islands off South Africa and Namibia, where they prefer to breed as they are protected from mainland predators. However, populations on many of the islands were significantly depleted or disappeared completely as a result of uncontrolled hunting, and human occupation of the islands for the collection of guano and other

seabird related products (Kirkman *et al.* 2007). Subsequent to the ban on seal hunting, the Cape Fur seal population recovered, showing an almost 20-fold growth in numbers in the 20^{th} century before stabilizing at about two million animals (Butterworth *et al.* 1995, Kirkman *et al.* 2007). In addition, the number of breeding colonies have increased since 1970 from 23 to 40 colonies (Kirkman *et al.* 2013). The overall population count has reportedly remained largely unchanged since 1993 and is estimated at 1.5 - 2.0 million, however, the distribution of these seals has been shown to vary in relation to prey distribution and shortages (Kirkman *et al.* 2007, Kirkman *et al.* 2013, Kirkman *et al.* 2019).

Seal populations along the west coast of South African exhibited a fairly stable distribution over the period 1976 to 2006, with the centre of the distribution of the breeding colonies remaining fixed within the region (Kirkman *et al.* 2013). However, more recently, it has been noted that there is a general shift southwards of St Helena Bay with new breeding colonies being established on Vondeling Island, at Cape Point and potentially on the south coast near Betty's Bay (DFFE, Mduduzi Seakamela, pers. comm. 2020). It is possible that this southward shift coincides with the eastwards shift of small pelagic fish species which are a key food source for the seals (see Figure 12-2). Although seals historically would frequent the seabird islands (Jutten, Malgas and Vondeling) around Saldanha Bay, coming on land (hauling out) to rest or sun themselves, it is only since the turn of the century that a breeding colony has been established on Vondeling Island — south of the entrance to Saldanha Bay (Figure 12-17).

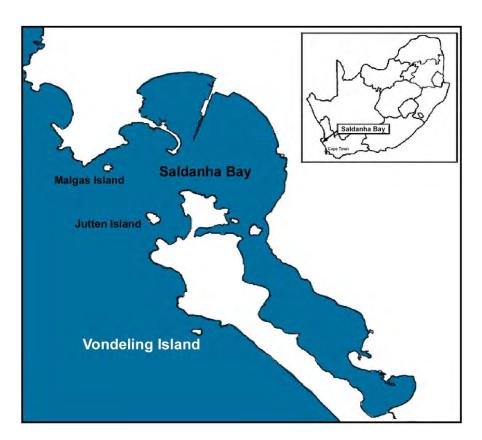


Figure 12-17 Location of the Seabird Islands, and the location of newly established seal breeding colony on Vondeling Island.

The Department of Environmental Affairs (DEA, now DFFE) monitors seal populations at 11 colonies in South Africa through aerial surveys which are undertaken to count pup numbers and hence to track seal population trends over time. Although these counts are normally only undertaken every three years, because it is a newly established breeding colony, aerial surveys have been conducted at Vondeling Island every year since 2006 (DFFE, Mduduzi Seakamela, *pers. comm.* 2020). Initially, the number of pups on the island increased dramatically up until 2010, thereafter (2010 – 2013), the rate of increase slowed and pup numbers on the island have fluctuated significantly in recent years - peaking at 23.4 thousand pups in 2014 and dropping to 16.7 thousand in 2018 (Figure 12-18). These fluctuations suggest that the island may have reached carrying capacity, with the annual changes linked to the availability of prey resources and increases and decreases in the colony size mirroring those of sardines and anchovies on the West Coast (see Figure 12-2).

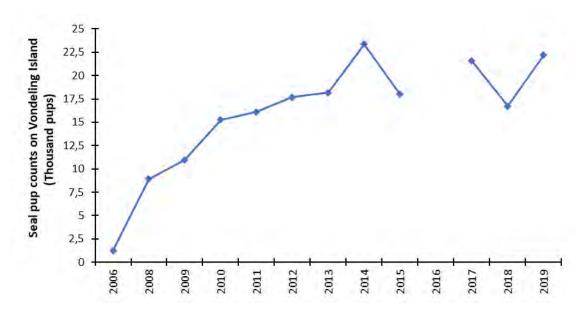


Figure 12-18 Trends in seal pup counts collected during aerial surveys conducted at Vondeling Island, Saldanha Bay from 2006 – 2019. No data available for 2016 and 2020 (Source: former DEA: Oceans and Coasts).

Cape Fur Seals are amongst the largest marine top predators found in and around Saldanha Bay. They are opportunistic, generalist feeders that have been shown to benefit from human activities including utilisation of discards from fishing boats, or taking fish directly from fisherman (Wickens *et al.* 1992, Makhado *et al.* 2009). In addition, seals compete with seabirds, such as penguins and gannets, as well as with commercial fisheries, for small pelagic fish which form a key part of their diets (Crawford *et al.* 2011, De Moor & Butterworth 2015). Kirkman *et al.* (2013) suggested that the increasing numbers of seals on Vondeling island may lead to increased pressure to cull seals both from a fisheries perspective as well as to protect important seabird species on which seals are known to prey. In fact, some culling has been undertaken of seals off the west coast in recent years in an attempt to limit the mortality of seabirds that are of conservation importance. The culling of 'problem' seals seen killing Cape gannet fledglings at Malgas Island, located north west of the Vondeling breeding colony, resulted in a reduced mortality of gannet fledglings, however, seals learnt to avoid the boat used for culling, and the predation of seabirds around the island is ongoing (Makhado *et al.* 2009).

Concerns have also been raised that, with the increased number of seals along the shores surrounding Saldanha Bay and with the addition of finfish aquaculture in the Bay, seal numbers within the Bay will likely increase, along with the occurrence of problem seals. This is supported by the presence of groups of seals that can be seen hauling out onto the finfish cages currently located within the Bay (Figure 12-19). In a review paper, Callier et al. 2018, showed that numerous species of fish as well as benthic invertebrate species, such as crabs and starfish, are attracted to finfish cages. This attraction is a result of both the protection offered by the structure and the additional food in the form of fish feed and waste material surrounding these cages, as well as secondary attractions of predators drawn to smaller species accumulating around the cages. Globally, it has been shown that seals are attracted to, and may become more abundant in areas with fish farms, than areas without (Callier et al. 2018). Additionally, seals have been shown to consume mussels and associated benthic organisms in and around shellfish aquaculture farms and the fish and larger benthic invertebrates attracted to finfish cages (Roycroft et al. 2004, Callier et al. 2018). The floats or pontoons of the cages themselves also offer a solid structure above water on which the seals can haul out, thus automatically making them more visible in an area where they could previously not have been easily seen (Figure 12-19). It is standard practise to deter seals and reduce the impacts of seals attracted by finfish farms and associated fish, through the use of seal blinds and predator nets (Callier et al. 2018).

Figure 12-19 Cape Fur Seals gathering on finfish cages within Saldanha Bay in April 2019. The cage on the left was empty, with no predator nets installed, while the cage on the right has stock in it and is surrounded by predator nets.

Studies investigating the predation of seabirds by seals at Malgas Island outside Saldanha Bay show that the 'problem' seals are restricted to sub-adult males which average less than 5 years old (Makhado et al. 2006, 2009). These individuals are not confined to the breeding colonies and are too young to be part of a breeding harem, and therefore tend to be more nomadic with inconsistent feeding areas. Conversely, data collected by DFFE using GPS tracks attached to female Cape Fur Seals tagged on Vondeling Island, indicates that these animals favour offshore feeding grounds and do not enter Saldanha Bay at all (Figure 12-20 and Mduduzi Seakamela pers. comm. 2020). It is likely that in order to maintain sufficient body fat and health to produce enough milk to support their pups, these females prefer the high-quality food provided by the small pelagic fish species as opposed to irregular and limited food sources associated with fledgling birds and aquaculture. In addition, the females are more likely to be disturbed by human activities, selecting to avoid contact with humans to reduce the risk of conflict and therefore the risk of not returning to the breeding colony and their pups. This is supported by research showing that breeding and pupping harbour seals on the west coast of North America have been displaced by shellfish aquaculture activities (Becker et al. 2011). Therefore, although seals are likely attracted to the aquaculture sites within Saldanha Bay, chances are that their numbers will not continue to increase significantly as they are restricted to sub-adult males. Additionally, the carrying capacity of Vondeling Island appears to have been reached and the overall population within Southern Africa has remained stable over the last 30 years.

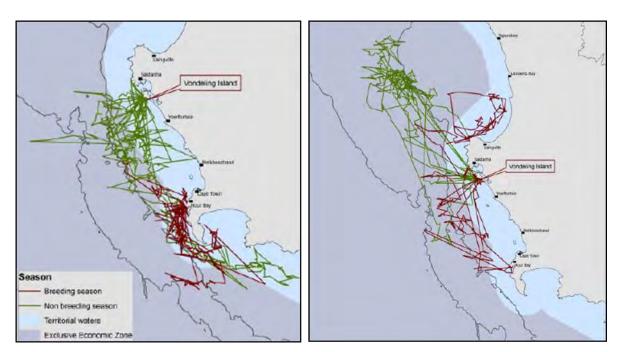


Figure 12-20 GPS tracks of female Cape fur seals tagged on Vondeling Island showing the routes travelled during the breeding and non-breeding season (Source: DEA: Oceans and Coasts).

13 ALIEN AND INVASIVE SPECIES IN SALDANHA BAY AND LANGEBAAN LAGOON

13.1 Background information

13.1.1 General information and definitions

Human-induced biological invasions have become a major cause for concern worldwide. The life history characteristics of alien species, the ecological resilience of the affected area, the presence of suitable predators, biotic resistance and propagule pressure are some of the many factors that could determine whether an alien species becomes a successful invader or not. Biological invasions can have a negative impact on biodiversity and result in local or even global extinctions of indigenous species. Alien species invasions can also have tangible and quantifiable socio-economic impacts and management of these species are thus vital. A pre-cautionary approach to prevent biological invasions is often considered the most efficient method of management and can include identifying and managing important pathways of introduction. If species are already present, however, regular monitoring and management protocols should be implemented to reduce the impacts of these invaders on the receiving environment and biota.

Until recently, alien species were recognised as invasive if they were found to have an environmental impact. However, much debate has occurred around the definition of environmental impacts in relation to an alien species (impact intensity, frequency, significance, positive versus negative, etc.) and consequently only few studies have attempted to determine whether an alien species can in fact be considered invasive or not (Robinson *et al.* 2016). The revised, internationally accepted approach recognises an alien species as invasive if the species has self-replacing populations over several generations and has expanded its range beyond the point of introduction (Wilson *et al.* 2009, Blackburn *et al.* 2011, Richardson *et al.* 2011). This approach has been proposed for South African marine invasion biology research going forward (Robinson *et al.* 2016).

13.1.2 Marine alien species in South Africa

Robinson et al. (2020) report a total of 95 alien marine species occurring in South African waters, of which 56 are considered invasive. A further 39 (Mead et al. 2011a) species are currently regarded as cryptogenic (of unknown origin and potentially introduced), but very likely introduced to South Africa (Robinson et al. 2016). The additions and changes since Mead et al. (2011) reported in Robinson et al. (2016), are considered below. Four species were removed from the 2011 alien species list. The polychaete Hydroides elegans, for example, was reassigned as cryptogenic (Çinar 2013), while the oyster Ostrea edulis and the urchin Tetrapygus niger were removed from the list as these populations no longer exist in mariculture dams previously surveyed, and were also absent from adjacent intertidal and subtidal areas of the coast (Mabin et al. 2015). Finally, the dune plant Ammophila arenaria was also removed as it is covered by the terrestrial alien plant list. Five species were added to the list, including the barnacle Austrominius modestus (Sandison 1950), the amphipod Ericthonius difformis (Peters et al. 2014), the pea crab Rathbunixa occidentalis (Clark & Griffiths 2012), and the red algae Asparagopsis armata and A. taxiformis (Bolton et al. 2011). Three name changes were also noted. First, the polychaete Neanthes succinea, which has been assigned to the genus Alitta (Read & Glasby

2017), and second, the hydrozoan *Moerisia maeotica*, which has been assigned to the genus *Odessia* (Schuchert 2017). Finally, the widespread tunicate *Ciona intestinalis* was found to represent two morphologically separate species, namely *C. intestinalis* and *C. robusta*. Of these two species, *C. robusta* is in fact the alien species that occurs in South Africa (Brunetti *et al.* 2015, Robinson *et al.* 2016).

Since 2014, there have been seven additions to the list of known marine alien species in South Africa. Five of these have been introduced to Saldanha Bay. These include the South American sunstar *Heliaster helianthus* and the Chilean stone crab *Homalaspis plana* (Peters & Robinson 2018) — both are native to Chile and were reported from Saldanha Bay in 2015 and 2017, respectively. It should be noted, however, that only one individual of each was found, despite extensive intertidal and subtidal surveys in 2018. Nevertheless, these species have been added to the alien species list of South Africa and should also be added to a watchlist, as even if these were isolated individuals recorded previously, reintroduction is probable.

The barnacle *Perforatus perforatus* (Biccard & Griffiths *pers. comm.* 2017), the Japanese skeleton shrimp *Caprella mutica* (Peters & Robinson 2017) and the South West African porcelain crab *Porcellana africana*, have also been detected in Saldanha Bay and Langebaan Lagoon. It should be noted that *P. africana* was previously incorrectly identified as the European porcelain crab, *P. platycheles* (Griffiths *et al.* 2018) and that it was first discovered in 2012 on Schaapen Island (*Prof. George Branch pers. obs.*) and has since extended its range throughout Saldanha Bay. Results from the present State of the Bay monitoring programme detected the presence of *P. africana* in Small Bay at the Dive School (intertidal zone) and in biofouling samples collected from Hoedtjiesbaai, the Yacht Club and Small Bay mussel raft 21. *P. africana* was also detected in biofouling samples collected from the shellfish aquaculture precinct in Big Bay.

The semi-terrestrial isopod, *Ligia exotica* was reported as alien to South Africa by Greenan *et al.* (2018) and officially reported only from Durban harbour by Barnard (1932). The native range of this species is unknown, although it lives in the upper intertidal and supralittoral zone (Roman 1977), where it grazes on diatoms and encrusting algae (Schultz 1977). Greenan *et al.* (2018) found extensive cryptic diversity within *Ligia* isopods in Southern Africa and recommends taxonomic re-evaluation of this group. The Maritime earwig *Anisolabis maritima*, was first discovered in 2015 on the east coast at Port Shepstone (Griffiths 2018). It is, however, thought to have been introduced more than a century ago (1880 – 1902). Although this species is technically an insect and not is not strictly marine, it does occur and feed in the upper littoral zone (Bennett 1904, Griffiths 2018).

13.1.3 Marine alien and invasive species in Saldanha Bay

At present, at least 67 alien species are known to occur along the west coast (Robinson *et al.* 2020), 29 of which occur in Saldanha Bay and/or Langebaan Lagoon. All of these, except *H. helianthus*, *H. plana*, *P. perforatus* and the previously reported anemone *Sagartia ornata*, are considered invasive (Table 16.3). Of the 39 cryptogenic species, 19 are likely to be found in Saldanha Bay and/or Langebaan Lagoon and six have already been identified from the Bay. Comprehensive genetic analyses are urgently required to determine the definite status of the cryptogenic species (Griffiths *et al.* 2008). With new introductions being discovered every year and with the status of existing species

changing regularly as new information becomes available, the list of alien species present in South Africa is considered a "work in progress".

Other noteworthy invasive species commonly found in the study area include the invasive Mediterranean mussel Mytilus galloprovincialis (Hockey & van Erkom Schurink 1992), the Western pea crab Rathbunixa occidentalis (Clark & Griffiths 2012), the barnacle Balanus glandula (Laird & Griffiths 2008), the Pacific South American mussel Semimytilus algosus (de Greef et al. 2013) and the porcelain crab P. africana. Interestingly, the abundance of M. galloprovincialis on rocky shores in Saldanha Bay has been decreasing in the last few years (Section 13.3.8). The reason behind this decline is, at this stage, still unclear, although this trend has been noted for M. galloprovincialis in the past (Hanekom & Nel 2002, Robinson et al. 2007a) and might be due to numerous factors, including predation pressure and environmental factors. B. glandula, on the other hand, has shown a steady increase in abundance over time at most sites where it has been recorded in the Bay, and remains one of the more abundant species on the mid-shore in Saldanha Bay (Section 13.3.2). R. occidentalis is now well established and has slowly been increasing in number over time in both Big Bay and Small Bay (Section 13.3.5). It was also present again this year in Langebaan Lagoon. It may be in the process of expanding into more exposed and deeper habitats outside of the Bay, including Danger Bay. This notable increase in abundance of this crab raises concern and highlights the need for management actions. As mentioned above, P. Africana has expanded its distribution throughout Saldanha Bay having first been recorded in 2012 on Schaapen Island, Langebaan Lagoon.

13.1.4 Potential vectors of introduction to South Africa

Of the 95 marine alien species recognised in South Africa, 91% of these introductions have been associated with shipping activities such as ballast water discharge and hull fouling. In addition, 50 of the reported alien species are confined to sheltered areas such as harbours. These findings emphasise the importance of shipping as a pathway of introduction (Robinson *et al.* 2020) and highlight the need for implementing more efficient protocols to monitor vessels entering South African harbours, the treatment of hull fouling before entering and the regular monitoring of harbours for alien species. As ballast water tends to be loaded in sheltered harbours throughout the world, the species that are transported originate from these habitats and therefore have trouble adapting to South Africa's exposed coast. This might explain the relatively low number of introduced species that have become established along the coast (Griffiths *et al.* 2008) and the high number found in sheltered bays such as Saldanha.

Both land and sea-based mariculture have also been identified as important vectors for the introduction of alien marine species. For example, it has been shown that translocated oysters act as vectors for marine alien species all over the world. Oysters attach to rocks, walls and other surfaces and are colonised by fouling organisms, which can be exported into other countries on the oyster spat. Alien species imported on oyster shells may have significant ecological impacts in areas where they establish (Haupt *et al.* 2010).

13.1.5 Patterns related to invasion success of alien species

Marine scientists are trying to find new ways to predict invasion success and the spread of established invasive species to facilitate early detection and to inform focused management interventions. One method has been exploring the link between biological characteristics of invasive species in relation to their observed success. For example, invasive species are often more efficient at utilising resources when compared to native species. Recent research on the invasive M. galloprovincialis shows that the success of this species on the west coast of South Africa could be explained, at least partially, by the species' capability to utilise food resources more efficiently when compared to other mussel species (invasive S. algosus and native Aulacomya atra) (Alexander et al. 2015). Alexander et al. (2015) showed that M. galloprovincialis was the most efficient consumer of algal cells at colder temperatures when the resource was presented in both low and high starting densities. These results may explain the observed success of this species on the west coast of South Africa relative to the new invader S. algosus, which, based on the results of this study, is predicted to become established along the south coast of South Africa. This is linked to the finding that algae consumption was more efficient in warmer water. Conversely, results from a recent study exploring the relationship between invasion success of predatory crabs and their biological traits, could not identify any specific traits associated with their success. This was due to an unexpected gap in the basic biological knowledge for even this conspicuous alien group (Swart et al. 2018). Such a lack of knowledge makes it difficult to draw conclusions between traits and invasion success and emphasizes the need and importance of basic knowledge of species to explore drivers behind invasion success.

13.2 Study approach to monitor alien species within Saldanha Bay

Sampling and monitoring of alien species within Saldanha Bay, forms part of the State of the Bay monitoring programme. Data for this initiative is obtained from both the Benthic Macrofauna monitoring survey initiated in 2004 (Chapter 9) and the Rocky Intertidal monitoring survey initiated in 2005 (Chapter 10).

The locations of the eight rocky shore sampling sites include the Dive School and the Jetty (both sites situated along the northern shore in Small Bay), Schaapen Island East and West (located at the entrance to Langebaan Lagoon and considered sheltered sites), Marcus Island, the Iron Ore Terminal, and Lynch Point (all located in Big Bay), and North Bay (situated in Outer Bay at the entrance to Saldanha Bay) (Figure 13-1). The very sheltered sites include the Dive School and Jetty; the sheltered sites include Schaapen Island East and West; the semi-exposed sites include the Iron Ore Terminal and Lynch Point and the exposed sites include Marcus Island and North Bay.

Sampling of benthic macrofauna has been undertaken every year since 2004 and includes monitoring sites in Big Bay, Small Bay, Langebaan Lagoon and for the first time in Outer Bay North (Figure 13-2).

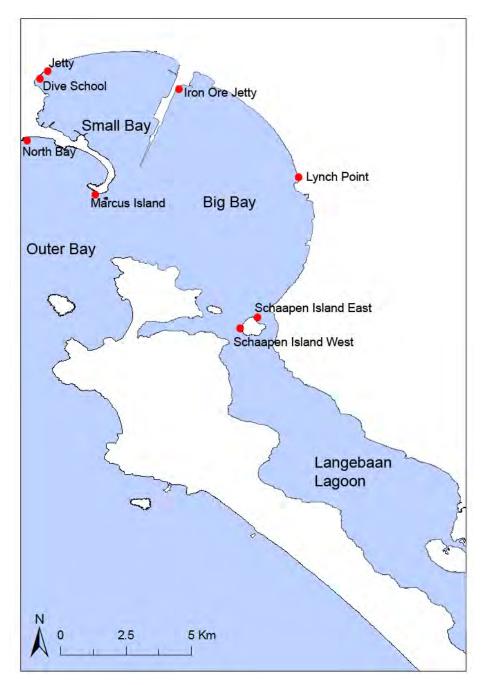


Figure 13-1 Rocky shore study sites in Saldanha Bay indicated by red dots.

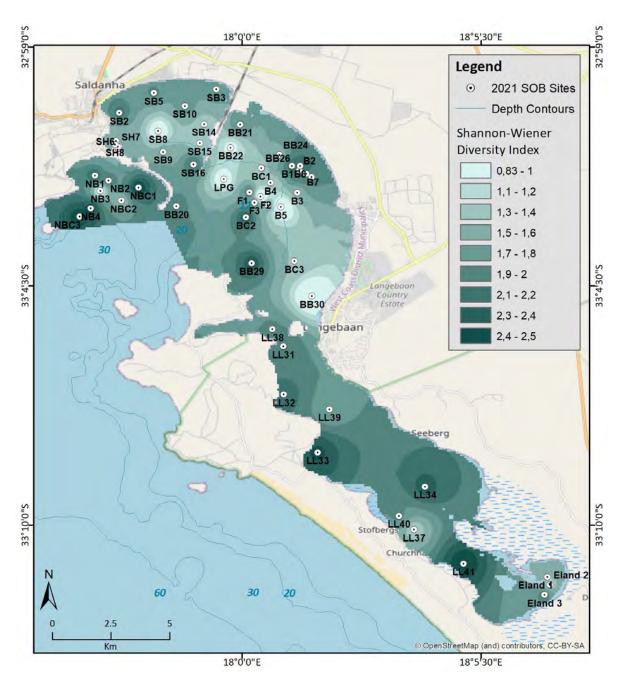


Figure 13-2 Sampling sites and respective depth ranges (m) in Saldanha Bay and Langebaan Lagoon for 2021 macrofauna sampling.

13.3 Alien and invasive species confirmed in Saldanha Bay and/or Langebaan Lagoon

Below follows information for all the known alien and invasive species occurring in Saldanha Bay and/or Langebaan Lagoon. Information on the cryptogenic barnacle, *Amphibalanus amphitrite amphitrite* is also presented. Additional information for these and other cryptogenic species are presented in the APPENDIX 1 (Table 16.3). Species occurrence is listed as either confirmed or likely (not confirmed from Saldanha Bay, but inferred from the regional distribution of the species). In addition to the general information presented below, abundance and biomass data is also presented for three of the invasive species present in the Bay, i.e., the Acorn barnacle *Balanus glandula*, the European mussel *M. galloprovincialis* and the Western pea crab *Rathbunixa occidentalis*. Data for both *B. glandula* and *M. galloprovincialis* were obtained from the rocky shore surveys, whereas data for *R. occidentalis* were obtained from the benthic macrofauna survey. Future surveys in Saldanha Bay will be used to confirm the presence of unconfirmed listed species and to ascertain if any additional or newly arrived introduced species are present.

13.3.1 Shell worm Boccardia proboscidea

Boccardia proboscidea is a small (20 mm long) tube-dwelling worm found in shallow sand-lined burrows on the surfaces of oysters, abalone and other shellfish. It occurs naturally on the Pacific coast of North America and Japan (Simon et al. 2009, Picker & Griffiths 2011). In South Africa, it is known to occur at a number of oyster and abalone farms and has also been recorded in Saldanha Bay outside aquaculture facilities (Haupt et al. 2010). Oceanographic modelling and population genetic approaches revealed that B. proboscidea has the potential to

Shell worm Boccardia proboscidea (Photo: Geoffrey Read).

disperse and establish itself along the South African coast, despite biogeographic boundaries. Although this is partly attributed to its broad thermal tolerance and flexible reproductive strategy, it is believed that anthropogenic movement will be the primary factor governing its spread and establishment in southern Africa (David *et al.* 2016).

13.3.2 Acorn barnacle Balanus glandula

The presence of *Balanus glandula*, which originates from the Pacific coast of North America, was first recognized in South Africa in 2008 (Simon-Blecher *et al.* 2008, Laird & Griffiths 2008). It seems, however, that this species has been in South Africa since at least the early 1990s. It is has been observed to be the most abundant intertidal barnacle in Saldanha Bay and indeed along much of the southern west coast (Laird & Griffiths 2008). The species has recently been reported to have spread east, past Cape Point, which was until

Acorn barnacle Balanus glandula (Photo: Prof. C.L. Griffiths).

now, thought of as a biogeographical barrier (Robinson et al. 2015). Recent research shows that when compared to the indigenous barnacle species *Notomegabalanus algicola*, *B. glandula* is more efficient at algae uptake irrespective of water temperature or algal cell concentration. Furthermore, warmer conditions on the south coast enhanced the uptake of algae cells, which could result in *B. glandula* spreading further east than currently observed (Pope et al. 2016). The State of the Bay surveys and studies conducted elsewhere suggest that this species competes directly with other intertidal species for space on the shore.

B. glandula looks very similar to the indigenous tooth barnacle, Chthamalus dentatus, which may account for the fact that it went undetected for so long (Figure 13-3). B. glandula has reportedly displaced populations of the indigenous and formerly abundant C. dentatus species which is now very rare on South African west coast shores (Laird & Griffiths 2008). B. glandula was first correctly identified in the State of the Bay surveys in Saldanha Bay in 2010 and as such, data for this species is only presented from 2010. It is very likely, however, that it had been present during earlier surveys, but was mistaken for C. dentatus.

Data from the State of the Bay surveys suggest that *B. glandula* has, over the past decade, been most abundant on the mid-shore, with the highest densities recorded at semi-exposed rocky shores sites (Iron Ore Terminal and Lynch Point), followed by the exposed rocky shore sites (North Bay and Marcus Island). Fluctuation in percentage cover of this species is also most prevalent at these sites. It was very abundant when first detected in 2010, reaching a maximum of 74% cover at the Iron Ore Terminal in 2011. Maximum densities recorded at other intertidal monitoring sites in Saldanha Bay are as follows: 27% cover at Lynch Point (2021), 21% cover at North Bay (2019) and 14% cover at Marcus Island (2014). This barnacle occupied a larger surface area of the shore at North Bay, Lynch Point and Marcus Island during the 2021 survey than it did during the previous year. The presence of this species has always been low at the very sheltered Dive school and Jetty sites, although not as sparse as at the sheltered Schaapen Island East and West sites. Here, *B. glandula* populations only reached a percentage cover of 0 – 1.5%. One exception includes 2011, where densities on Schaapen East reached 20%.

The percentage cover at the Iron Ore Jetty has, in the past, always been relatively high. The consistently low percentage cover of this species at this site during the past two years is noteworthy. The abundance at the Iron Ore Jetty had decreased to such an extent that less than 0.2% of the midshore has been occupied by this barnacle over the past two years. This species had the highest percentage cover at Lynch Point during the 2021 survey, followed by North Bay and Marcus Island where it accounted for 16%, 15% and 10% cover of the mid-shore, respectively. The lowest total percentage cover for all sites over the past decade was recorded during the 2020 survey. Considering the trend observed over the past decade, the percentage cover of B. glandula is expected to decrease in the future. Several factors might play a role in the fluctuation in percentage cover of Balanus. Barnacles compete with other species, such as limpets, for space on the mid-shore. The presence of limpets is known to decrease population sizes by dislodging newly settled barnacles (Miller & Carefoot 1989). It should be noted that major any increases in population size for B. glandula would be an indication of an influx of new propagules from elsewhere, as this barnacle cannot self-fertilise (Kado 2003). In light of recent findings that found no significant impact of B. glandula on community structure at Marcus Island (Sadchatheeswaran et al. 2018), B. glandula is not believed to have any significant impacts on communities in Saldanha Bay, and even less so when population sizes are small. However, as densities do tend to fluctuate, monitoring of this species should continue, especially since it is one of the more abundant species on the shore in Saldanha Bay.

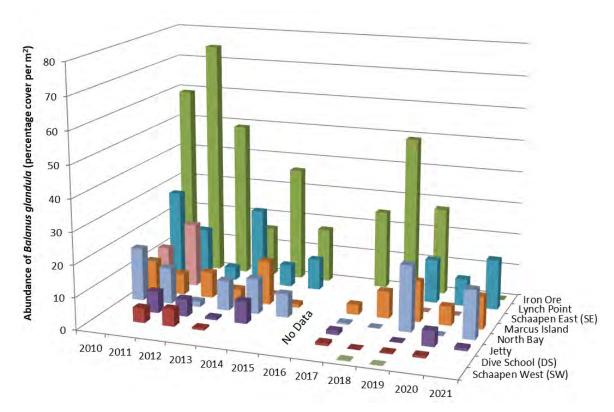


Figure 13-3 Changes in the abundance (% cover) of the acorn barnacle *Balanus glandula* at eight rocky intertidal sites on the mid-shore in Saldanha Bay over the period 2010 – 2021. Data are shown as an average of percentage cover on the mid-shore. No samples were collected 2016. See Figure 13-1 for locations of these sampling stations.

13.3.3 Hitchhiker amphipod Jassa slatteryi

Jassa slatteryi is a small (9 mm) inconspicuous amphipod that constructs tubes of soft mud or crawls around on seaweeds, hydroids and other marine growth (Colan 1990, Picker & Griffiths 2011). It is common on piers, buoys and other structures in Saldanha Bay. It was first collected in South Africa in the 1950s, but incorrectly classified as the South African species, J. falcata. It was only after the genus was revised, that it was correctly identified as J. slatteryi and classified as alien in South Africa. It is suspected that it was introduced directly via ship fouling or ballast water transfer from its

Hitchhiker amphipod *Jassa slatteryi* (Photo: Prof. C.L. Griffiths).

native habitat in Pacific North America or another invaded temperate harbour. It is small and occurs in high densities and is probably a valuable food source for fish and other predators.

13.3.4 European shore crab Carcinus maenas

Carcinus maenas is a native European crab species that has been introduced on both the Atlantic and Pacific coasts of North America, in Australia, Argentina, Japan and South Africa (Carlton & Cohen 2003). It is typically restricted to sheltered, coastal sites and appears thus far to have been unable to establish on the open wave-swept coastline in South Africa (Hampton & Griffiths 2007). In South Africa, it was first collected from Table Bay Docks in 1983 and later in Hout Bay

European shore crab Carcinus maenas (Photo: Prof. C.L. Griffiths).

Harbour. It has established dense populations in both harbours where it has reportedly decimated shellfish populations (Robinson *et al.* 2005). Surveys in Saldanha Bay have not turned up any live specimens of this species to date, but a single dead specimen was picked up by Robinson *et al.* (2004) in Small Bay at the Small Craft Harbour. To date no further specimens have been found. It is unlikely that there exists an extant population in Saldanha Bay.

13.3.5 Western pea crab Rathbunixa occidentalis

The Western Pea crab *Rathbunixa occidentalis*, formerly *Pinnixa occidentalis*, is a small Pinnotherid crab with a carapace width of < 2.5 cm (Zmarzly 1992). It was originally described from California by MJ Rathbun in 1893 (Rathbun 1894), although its native range is presently reported to include North America's entire west coast, from Alaska to Mexico (Zmarzly 1992). *R. occidentalis* is a deep-water species and prefers depths ranging from 11-319 m (Ocean Biogeographic Information System 2011). These crabs can be free-living, although they are commonly known to live in symbiosis with other animals. This usually includes living inside bivalves or ascidians or the burrows of polychaetes or spoon worms (echiurans) (McDermott 2009). Mutualistic relationships, such as these, are known to facilitate the establishment and spread of introduced species.

The Western pea crab appears to have established itself in Saldanha Bay in the period between 1999 (at which time no specimens were recorded in a comprehensive set of samples from Saldanha Bay) and 2004, when it was recorded at three sites in Big Bay and at one site in Small Bay (detection rate of 30% and 6%, respectively). At this stage, it was still listed as unidentified. The vector of introduction is unclear, although this crab was potentially introduced via ship fouling or ballast water (Clark and Griffiths 2012). It was only identified as R. occidentalis

Western pea-crab Rathbunixa occidentalis (Photo: Anchor Environmental Consultants).

in the collections from the Saldanha Bay State of the Bay surveys in 2010 (Anchor Environmental Consultants 2011). The rate of detection of this crab (i.e., the percentage of sites where the species was detected), has been determined across all of the sites that are sampled each year (i.e., Big Bay, Small Bay and Langebaan Lagoon) Figure 13-4). Furthermore, the average abundance and biomass of the Western pea crab was analysed within Big Bay and Small Bay (Figure 13-5).

The rate of detection has fluctuated over the years at Langebaan, Small Bay and Big Bay. Interestingly *R. occidentalis* was also detected in Danger Bay when it was sampled in 2015 — an indication that the species has expanded its distribution outside of Saldanha Bay (Figure 13-4). In 2019, the average abundance of *R. occidentalis* in Big Bay, peaked at 200 crabs/m², although the abundance has decreased again in 2020 and even more so in 2021. However, these findings are not statistically significant (as indicated by the overlapping standard error bars), this could be attributed to the highly variable abundance at the different sites within Big Bay (Figure 13-5).

During the 2019 and 2020 surveys, *R. occidentalis* was present at six of the nine Big Bay sites that were sampled, unlike most other years where this species was only recorded at four or fewer sites. Data from the 2021 survey show that *R. occidentalis* was detected at five sites (out of eight sampled) in Big Bay (BB21, BB25, BB29, BB30 and LPG) and four sites (out of ten sampled) in Small Bay (SB1, SB9, SB15

and SB16). It was also detected at four of the ADZ monitoring sites in Big Bay (B2, B3, B7, B8) and at one of the Outer Bay North (NB1) ADZ monitoring sites. R. occidentalis has been sporadically present in low densities (four individuals/ m^2) at three sites within Langebaan Lagoon (LL40, LL33 and LL31) over the past decade (Figure 13-4). Only the latter site, located close to the mouth of the lagoon, was found to support populations of this crab for three consecutive years in a row (2018 - 2020). R. occidentalis was not detected at any of the Langebaan Lagoon monitoring sites during the present 2021 survey.

In conclusion, these data suggest that *R. occidentalis* is now well established in both Big Bay and Small Bay and is present within Langebaan Lagoon. The average abundance and biomass of the alien crab in Big and Small Bay has fluctuated over time, with no trend being apparent thus far (Figure 13-5). The status of this crab within Danger Bay is currently not confirmed and more sampling effort is thus needed at this site. Although no conclusive trend in the spread and site preference of this species is apparent, the pea crab does seem to flourish in deeper water habitats and is generally absent from or occurs in low densities in locations close to the iron ore and multi-purpose terminals. The impact of *R. occidentalis* on, and its role in the benthic community of Saldanha Bay, remains undetermined. This gap in knowledge highlights the need for more in-depth studies and potential management action.

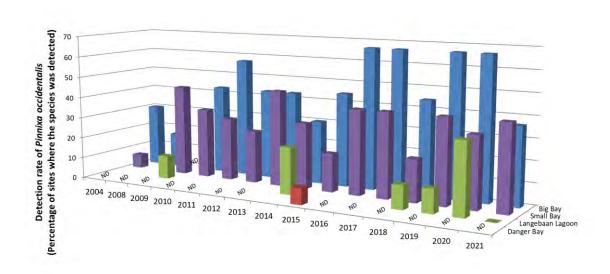


Figure 13-4 The detection rate (percentage of sites where the species was detected) of the Western Pea crab Rathbunixa occidentalis in Big Bay, Small Bay, Langebaan Lagoon and Danger Bay in the period 2004 — 2021. Note that Langebaan Lagoon and Danger Bay were first sampled in 2004 and 2014, respectively. No data were collected in the period 2005 — 2007. 'ND' denotes that no data was collected in the region for that year.

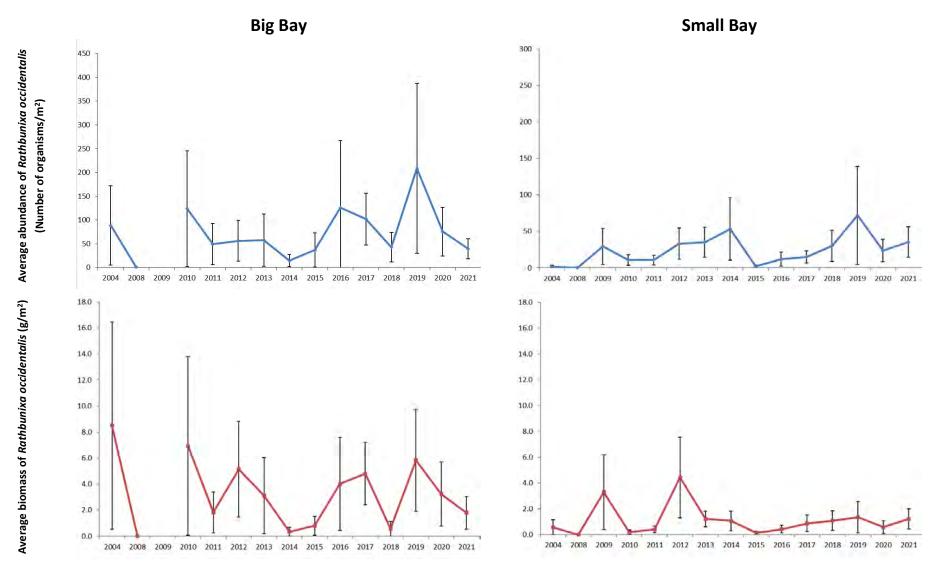


Figure 13-5 Average abundance (top) and biomass (bottom) of the Western Pea crab *Rathbunixa occidentalis* in Saldanha Bay, Big Bay (left) and Small Bay (right) from 2004 – 2021. No data were collected from 2005 – 2007 and no data were collected for Big Bay in 2009.

13.3.6 Lagoon snail *Littorina saxatilis*

Littorina saxatilis was first recorded in South Africa in 1974 (Day 1974), and the only known populations are those in Langebaan and Knysna lagoons (Hughes 1979, Robinson et al. 2004, Picker & Griffiths 2011). In its home range in the North Atlantic, this species occurs in crevices on rocky shores (Gibson et al. 2001), but in South Africa, it is restricted to sheltered salt marshes and lagoons, where it occurs on the stems of the cord grass Spartina maritima (Hughes 1979). It occurs only in the upper reaches of Langebaan Lagoon, between Bottelary and Churchhaven, and has not spread further afield than this in at least 20 years (Robison et al. 2004). It is not considered to be a major threat to the Lagoon or Bay ecosystems.

Lagoon snail *Littorina saxatilis* (Photo: Prof. C.L. Griffiths).

13.3.7 Pacific oyster Crassostrea gigas

Crassostrea gigas is native to Japan and Southeast Asia. This oyster was introduced to the Knysna

Estuary in South Africa in the 1950s with the intention to farm. The species has been farmed in the Kowie and Swartkops estuaries as well as at three marine locations, Algoa Bay, Saldanha Bay and Alexander Bay (Robinson *et al.* 2005).

Initially, the species was never considered an invasive threat as the oysters seemed unable to reproduce and settle successfully under the local environmental conditions which differ from its native habitat. However, farmed populations have spread throughouthe country. Using DNA sequencing, Robinson *et al.* (2005b) confirmed the presence of three naturalised populations of *C. gigas* in South Africa (specifically the Breede, Knysna and Goukou estuaries). The highest densities of individuals

Pacific oyster Crassostrea gigas (Photo: Serge Gofas. Source: Marinespecies.org.

were found in the Breede Estuary (approximately 184 000 individuals). In Saldanha Bay, *C. gigas* were originally farmed in the Seafarm dam east of the Iron Ore Terminal and are now farmed in baskets moored in the Bay. Feral populations of this oyster have established inside the dam, which is open to Big Bay. However, self-sustaining populations outside of the dam have not been noted to date.

Translocated oysters act as vectors for the introduction of marine alien species all over the world. Oysters attach to rocks, walls and other surfaces and are exposed to colonisation by fouling organisms, which can be transported to other countries. Marine alien species imported on oyster shells may have

significant ecological impacts in areas where they establish (Haupt *et al.* 2010) (e.g., Disc lamp shell *Discinisca tenuis*—Section 13.3.10).

13.3.8 European mussel Mytilus galloprovincialis

Mytilus galloprovincialis was first detected in South Africa (in Saldanha Bay) in 1979 (Mead et al. 2011b) but its presence was only confirmed in 1984 (Grant et al. 1984, Grant & Cherry 1985). At this stage, the population was already widespread in the country, being the most abundant mussel species on rocky shores between Cape Point and Lüderitz. This species has subsequently extended its distribution range as far as East London (Robinson et al. 2005). It is suspected that M. galloprovincialis was most likely first introduced to the country between the late 1970s and early 1980s (Griffiths et al. 1992) and the reason for the late detection is due to the fact that it is easily confused with the indigenous black mussel, Choromytilus meridionalis. Mytilus is, however, easily distinguished by the trained eye, being fatter, and having a pitted resilial ridge. The preferred habitat of the two species also differs with M. galloprovincialis occurring higher on the shore and away from sand-inundated sites. M. galloprovincialis is commercially cultured in Saldanha Bay and elsewhere, and is widely exploited by recreational and subsistence fishers (Robinson et al. 2005 & 2007a).

In Europe, M. galloprovincialis is known to form dense subtidal beds directly sandy bottoms on (Ceccherelli & Rossi 1984). While this species is typically found on exposed rocky shores in the intertidal in southern Africa, it was recently reported to grow subtidally on the kelp, Ecklonia maxima in False Bay. Implications could include negatively impacting kelp ecosystems and a decrease in useable kelp for economic purposes. It could also uproot kelp beds which in turn could lead to the spread of native and invasive species

European mussel Mytilus galloprovincialis (Photo: Prof. C.L. Griffiths.)

(Lindberg et al. 2020). Mytilus began establishing dense intertidal beds on the sandy centre banks of Langebaan Lagoon in the mid-1990s (Hockey & van Erkom Schurink 1992, Hanekom & Nel 2002, Robinson & Griffiths 2002, Robinson et al. 2007a), with biomass peaking at an estimated eight tonnes in 1998 (Robinson & Griffiths 2002). The population subsequently crashed, decreasing in size by 88% by early 2001 (Hanekom & Nel 2002) and had died off completely by mid-2001, leaving only empty shells and anoxic sand (Robinson et al. 2007a). The reason for the die off is still unclear and impacts on the macrobenthic infauna on the banks was evident for at least six months after most of the dead mussel shells had been removed by SANParks in late 2001.

At Marcus Island, a comparison of intertidal communities pre- and post-invasion of *M. galloprovincialis* (1980 vs 2001), *S. algosus* and *B. glandula* (1980 vs 2012), demonstrated that the indigenous mussels *C. meridionalis* disappeared by 2012, and *A. atra* decreased in abundance. While

recruits of the limpet *Scutellastra granularis* initially benefited from the arrival of *M. galloprovincialis*, adults were adversely affected (Sadchatheeswaran *et al.* 2015). Although *M. galloprovincialis* did not alter habitat complexity when replacing *C. meridionalis* on the low-shore at Marcus Island, it was responsible for diminishing habitat complexity when replacing *A. atra* on the mid-shore. Here, *M. galloprovincialis* was responsible for a reduction in abundance and diversity of other species (Sadchatheeswaran *et al.* 2015). *Mytilus* has also been shown to overshadow interannual and seasonal changes of intertidal rocky shore communities on Marcus Island and was found to be the most important factor influencing community composition (Sadchatheeswaran *et al.* 2018). As a result, *M. galloprovincialis* is considered to be an alien ecosystem engineer within the intertidal zone of the South African west coast (Sadchatheeswaran *et al.* 2015).

Saldanha Bay State of the Bay Surveys recording *M. galloprovincialis* were initiated in 2005 and included at eight rocky shore sites. These sites included the Dive School, the Jetty, Marcus Island, the Iron Ore Terminal, Lynch Point, North Bay and Schaapen Island East and West (Figure 13-6). No sampling was done in 2006, 2007 or 2016. Surveys indicated that *M. galloprovincialis* was generally predominant at exposed rocky shore sites (i.e., Marcus Island, Lynch Point, North Bay, Iron Ore Terminal), reaching higher densities than at the more sheltered sites (Dive School, Jetty and Schaapen Island East and West). Over the past 15 years, this mussel's percentage cover per m² at these sheltered sites, has never exceeded 5%, and was frequently recorded as 0% at Schaapen Island East and West. The density at the jetty slightly increased in 2020 and is higher than for previous years before returning to levels similar to those previously recorded in the present 2021 survey. Observations revealed that this invasive mussel is by far the most dominant faunal species on the rocky shores and can cover up to 100% of the available space across substantial portions of the shore. It reaches its highest densities low down on the shore, in areas exposed to high wave action.

Since the start of the surveys and up until 2015, M. galloprovincialis increased steeply in abundance at the exposed sites, reaching maximum densities at Marcus Island in 2008 (39%), Lynch Point (58%) and North Bay (23%) in 2012, and at the Iron Ore Terminal in 2015 (40%). Recent surveys have revealed that densities of M. galloprovincialis have since decreased in certain areas, and it is now present in lower densities at Marcus Island, North Bay and the Iron Ore Terminal than in previous years. The abundance of this mussel at the latter site had decreased to such an extent that no mussels were recorded there during the 2020 survey — very low densities were recorded at the Iron Ore Jetty during the present 2021 survey. The reason for the decrease in abundance of M. galloprovincialis is not clear, although such a sudden, unexplained decrease in abundance has been noted for this species in the past. It has been hypothesised that this decreasing trend may reflect a new ecosystem equilibrium as predator numbers have probably responded to Mytilus as a new food source and now exert more control on the abundance of this invasive species. In addition, marine alien mussels such as M. galloprovincialis have been found to become parasitised by endolithic bacteria which can cause shell damage, reduced attachment ability and death. Such parasitism has been recorded in South Africa and could explain the reduction in the abundance of this mussel species (Zardi et al. 2009), although this is only speculation and has not been confirmed in Saldanha Bay. High trace metal concentrations could also affect the survival of these mussels. A lab study on Mytilus edulis found that even low concentrations of environmental trace metals such Pb, Mn and Cd can affect reproduction and survival (Fraser et al. 2017). High concentrations of trace metals have been reported in the mussels in Saldanha Bay in 2020 and in the past, sometimes even exceeding the recommended levels for foodstuffs (Chapter 6). These high concentrations could be responsible for a decrease in mussels

in Saldanha Bay. Furthermore, the decrease at the iron ore site can be linked to the high levels of lead due to the export of lead ore from the multipurpose quay.

In light of the fact that *M. galloprovincialis* occurs subtidally in its native range and has recently been reported subtidally elsewhere in South Africa, the presence of this species should be monitored subtidally within Saldanha Bay.

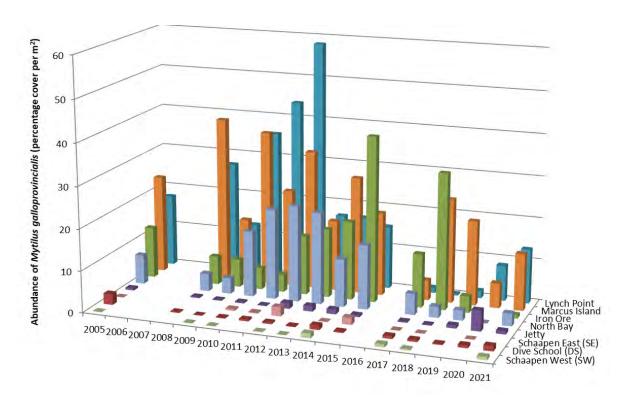


Figure 13-6 Changes in the abundance (% cover) of the Mediterranean mussel *Mytilus galloprovincialis* at eight rocky intertidal sites in Saldanha Bay over the period 2005 – 2021. Data are shown as an average of percentage cover on the mid and low-shore. No samples were collected in 2006, 2007 and 2016. See Figure 13-1 for locations of these sampling stations.

13.3.9 Pacific South American mussel Semimytilus algosus

The Pacific South American mussel *Semimytilus algosus* is a small (up to 50 mm) elongated, relatively flat and smooth brown mussel, with a green tinged shell. This species originates from Chile and has been long known from Namibia (since the 1930s, Kensley & Penrith 1970) but was only recently (2010) found in South Africa. It is unknown when *S. algosus* arrived in South Africa. It is likely that it was transported southwards from Namibia either by shipping as a new invasion or through range expansion from the Namibian population (de Greef *et al.*

Pacific South American mussel *Semimytilus algosus* (Photo: Prof. C.L. Griffiths).

2013). The present geographic range of *S. algosus* in South Africa extends some 500 km, from Bloubergstrand in the south to Groenriviersmond in the north (de Greef *et al.* 2013).

At exposed sites, this species proliferates on the low-shore, numerically dominating intertidal organism abundance, with extremely dense beds constituting a significant proportion of the total intertidal biomass (de Greef *et al.* 2013). A recent study addressed the lack of information available on subtidal mussel communities (Skein *et al.* 2018a). This study confirmed that *S. algosus* has a strong preference for wave exposed shores and forms dense intertidal beds along the west coast (de Greef *et al.* 2013, Skein *et al.* 2018a). However, the subtidal surveys found that *S. algosus* represents the dominant species at sheltered sites on the west coast and forms equally dense beds at exposed sites when compared to the indigenous species (Skein *et al.* 2018a). These findings may explain why *S. algosus* has previously been found on mussel farm ropes in Saldanha Bay. A subtidal reef survey to confirm or deny the presence and spread of *S. algosus* could provide more information on adaptability of this species. Furthermore, subtidal specimens were generally found to be considerably larger than those found in the intertidal zone. *S. algosus* attained maximum sizes larger than 120 mm, in contrast to 54 mm in the intertidal zone (Skein *et al.* 2018a). It has been proposed that mussels smaller than 60 mm could be vulnerable to predators which could have implications for the future spread and success of the species (de Greef *et al.* 2013).

In a laboratory study conducted by Alexander *et al.* (2015) algae consumption exhibited by *S. algosus* was shown to be more efficient in warm water than in cold water, which led to the conclusion that this species may have the potential to establish along the south coast of South Africa (Alexander *et al.* 2015). In conclusion, the establishment of large individuals in the subtidal zone could have important implications for the future invasion of *S. algosus* as large mussels contribute proportionally more to the reproductive output of the population (van Erkom Schurink and Griffiths 1991, Skein *et al.* 2018a). Given these findings, it is suggested that this species be closely monitored.

13.3.10 Disc lamp shell *Discinisca tenuis*

The disc lamp shell *Discinisca tenuis* is a small (20 mm diameter) disc shaped brachiopod with a semi-transparent, hairy, fringed shell. It was first recorded clinging on oysters grown in suspended culture in Saldanha Bay in 2008 (Haupt *et al.* 2010). More recently, it has been reported as living freely outside of the oyster culture operation on Schaapen Island (Peters *et al.* 2014). This species is endemic to Namibia and is thought to have been introduced to South Africa with cultured oyster imports from this country (Haupt *et al.* 2010). This species reportedly reaches very high densities in it home

Disc lamp shell *Discinisca tenuis* (Photo: Prof. C.L. Griffiths).

range and could become a significant fouling species in Saldanha Bay in the foreseeable future, although no previous history of invasion exists for this brachiopod.

13.3.11 Vase tunicate Ciona robusta

C. robusta was initially misidentified as C. intestinalis, which was recently found represent morphologically separate species, namely C. intestinalis and C. robusta. Of these two species C. robusta is in fact the species that occurs in South Africa (Brunetti et al. 2015, Robinson et al. 2016). C. robusta is a tall (15 cm), cylindrical yellowish solitary ascidian with soft floppy, transparent test. It forms large aggregations on submerged structures in harbours and lagoons from Saldanha Bay to Durban. It was

A typical aggregation of *Ciona robusta* (Photo: National Museums Northern Ireland).

originally introduced from the North Atlantic prior to 1955. It is an economically important pest as it rapidly fouls hard marine surfaces. It is known to smother and kill mussels on aquaculture facilities, especially mussel ropes.

13.3.12 Jelly crust tunicate *Diplosoma listerianum*

Diplosoma listerianum is a colonial sea squirt that forms thin, fragile, yellow to dark grey jelly-like sheets up to 50 cm in diameter that grow over all types of substrata on sheltered shores between Alexander Bay and Durban (Monniot et al. 2001, Picker & Griffiths 2011). It is believed to have been accidentally introduced from Europe prior to the 1949, probably as a fouling organism.

Jelly crust tunicate Diplosoma listerianum (Photo: Prof. C.L. Griffiths).

13.3.13 Brooding anemone Sagartia ornata

The only known records of the brooding anemone *Sagartia ornata* in South Africa are from Langebaan Lagoon (West Coast National Park — WCNP), where it occurs intertidally in seagrass beds, attached to rocks covered by sand, and in loose rocks resting on fossilized oyster beds (Acuña *et al.* 2004, Robinson *et al.* 2004, Picker & Griffiths 2011, Robinson & Swart 2015). *S. ornata* was first detected in 2001 (Acuña *et al.* 2004) and was probably introduced unintentionally through shipping via the Saldanha Bay harbour (Robinson *et al.* 2004). Its home range extends throughout Western Europe, Great Britain and the Mediterranean (Manuel 1981), where it occurs in crevices on rocky shores and on kelp holdfasts (Gibson *et al.* 2001). Introduced species commonly exploit novel habitats, which may reflect the adaptive ability of *S. ornata*.

Robinson & Swart (2015) recently established the status and distribution of this alien anemone, which represents the first comparison to the baseline data collected in 2001 (Robinson et al. 2004). The distribution of S. ornata has changed within the lagoon and the species is now found in Nanozostera capensis (Cape eelgrass) instead of in Spartina maritima (spiky cord grass) beds. No apparent reason explains the increase in S. ornata abundance compared to 2001 (increasing from 426 ± 81 to 508 ± 218 individuals/m²).

Brooding anemone Sagartia ornata (Photo: Prof. C.L. Griffiths).

Sandy-shore areas invaded by this anemone, support a higher invertebrate abundance, biomass and diversity, as well as altered community structures. Communities thus appear to be impacted by *S. ornata,* less so through its role as a predator, but rather as a result of impacts on the habitat structure and associated indirect impacts

on native biota (Robinson & Swart 2015). *S. ornata* consolidates sand and traps coarse sediment (*Dr Tammy Robinson pers. obs.*), which has the potential to significantly change the soft sediment infaunal community by altering abiotic factors (e.g., water movement, sediment characteristics) (Ruiz *et al.* 1997, Berkman *et al.* 2000, McKinnon *et al.* 2009).

The habitat types currently preferred by *S. ornata* in South Africa are geographically restricted and limit the potential of this alien species to significantly affect indigenous biota within the WCNP. This species has been categorised as 'naturalised', which means that it has established self-sustaining populations at the point of introduction but has failed to expand its range beyond Langebaan Lagoon. However, it does have the potential to spread into Saldanha Bay and along the South African west coast, where conditions and habitats are similar to that in its home range (Robinson & Swart 2015).

13.3.14 Alien barnacle Perforatus perforatus

This species is known only by its scientific name *Perforatus perforatus* (Note: previously misidentified and reported as *Minesiniella regalis*) and as yet has not been assigned a common name. The presence of *P. perforatus* in Saldanha Bay was first recognised in 2011 and was picked up as "an unfamiliar barnacle" at the Dive School in Saldanha Bay as part of the Rocky Shore Intertidal survey in that year. It constitutes the first known record of this barnacle species in South Africa. This species is included in the Sub-family, *Concavinae* (Pitombo 2004) — animals with an extended sheath and longitudinal abutment present on the inner surface of the radii and a bifid sutural edge present on the outer. Characters of the terga, a pronounced beak, closed spur-furrow and absence of longitudinal striations (Newman 1982, Zullo 1992) confirm the identification to species level. This species is frequently encountered on the rocky shores during the Rocky Shore surveys. In 2021, this barnacle was again recorded at the Dive School, where its percentage cover was recorded as 0.71% in the low-shore.

This species originates from the Pacific coast of North America, with live material recorded intertidally from Baja California, Mexico (Pilsbry 1916). It is difficult to tell when exactly it was introduced to Saldanha Bay in South Africa as, to the untrained eye, it can be easily confused with the local volcano barnacle, *Tetraclita serrata*. However, past reports from the annual State of the Bay monitoring programme have shown that *T. serrata* has never been recorded at the dive school in Saldanha Bay and that *P. perforatus* appeared for the first time in April 2011. It is likely that the introduction

Perforatus perforatus (Pilsbry, 1916) (Photograph: Dr Nina Steffani).

of this species occurred via shipping given the high amount of shipping traffic in Saldanha Bay much like the alien acorn barnacle, *B. glandula*, which was also introduced from the Pacific coast of North America (Laird & Griffiths 2008).

13.3.15 Acorn barnacle Amphibalanus amphitrite amphitrite

This cryptogenic barnacle species was recorded from Saldanha Bay in the baseline survey in 2005. Only in 2012 was this species recognised to be *Amphibalanus amphitrite amphitrite*, the cryptogenic barnacle which is a prolific fouling species worldwide. This species has longitudinal striations on the exterior shell, which is marked with thick, sparse, purple longitudinal stripes. *A. amphitrite amphitrite* is easily confused with another 'purple-pink striped' species which has not yet been identified (Biccard 2012).

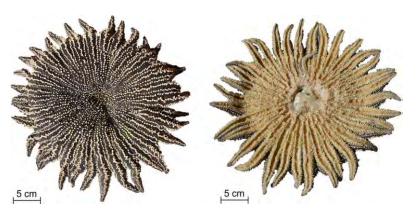
Amphibalanus amphitrite amphitrite (Photo: Prof. C.L. Griffiths).

This species is common member of the fouling community and is frequently found attached to

man-made substrata (walls, buoys, ropes and hulls) and is frequently recorded during the Rocky Shore surveys. In 2021, the barnacle was only recorded at Lynch point. Percentage cover recorded at this site was 0.37% in the mid-shore and 0.35% in the low-shore.

13.3.16 North West African porcelain crab Porcellana africana

The porcelain crab, Porcellana africana, was previously incorrectly identified as the European porcelain crab, P. platycheles (Griffiths et al. 2018). Up to date, P. africana is the first and only known alien porcelain crab in South Africa. P. africana is native to the region between Senegal and Western Sahara in North West Africa. Here, it occurs intertidally and subtidally to a depth of 22 m on rocky shores and boulder beaches (Chace 1956). Species within this genus are cryptic filter feeders and detritivores (Stevcic 1988). Due to the high shipping traffic in Saldanha Bay, P. africana was most likely introduced via shipping, by means of ballast water or hull fouling. It was first discovered in South Africa in relatively high numbers on Schaapen Island, Langebaan Lagoon in 2012 (Prof. George Branch 2012, pers. obs.). However, its date of introduction has been estimated to be between 2003 and 2009. It is now well established and abundant in Saldanha Bay on the northern, eastern and western shores. Here, it occurs across the intertidal zone under boulders and loose rocks as well as in beds of M. galloprovincialis. They are no longer present in Langebaan Lagoon and are also absent from the mouth


European porcelain crab *Porcellana africana* (Photos: Top -Prof. C.L. Griffiths. Bottom - Dr Jess Dawson).

of the Bay. This has been attributed to the absence of rocks and boulders in this area (Griffiths et al.

2018). Based on numbers recorded in 2016, it is estimated that the population densities of this porcelain crab can range from anything between 15 to 976 crabs per linear metre of shoreline. This species was recorded at the Dive School during the 2021 sampling campaign, although only one individual was found. During the macrofauna sampling, dozens of this crab was found in several sampling stations within Small Bay, although none were recorded inside the sampling quadrats. As such, the abundance of this crab within Small Bay can unfortunately not be quantified at this stage. Ecological impacts by this species in Saldanha Bay have not yet been quantified, although impacts on native benthic invertebrates are not anticipated. This species is not a typical prey item and due to its feeding habits, will not pose a major threat or compete with native species. This species should, however, be monitored as it has demonstrated its ability to expand its range and increase in numbers in a short period of time (Griffiths *et al.* 2018). More subtidal surveys should be conducted to quantify the abundance of this crab within the Bay.

13.3.17 South American sunstar Heliaster helianthus

Heliaster helianthus (Lamarck, 1816) is commonly known as the South American multiradiate sunstar. It is native to southern Peru and northern and central Chile where it occurs in the intertidal and shallow subtidal (Castilla & Paine 1987). This species can grow to be up to 20 cm in diameter (Barahona & Navarrete 2010) with up to

Heliaster helianthus (Lamarck, 1816) (Photo: Dr Tammy Robinson).

40 arms (Madsen 1956). *H. helianthus* is a ferocious, generalist predator, its diet consisting mainly of the local mussels, *S. algosus* (Tokeshi 1989) and *Perumytilus purpuratus*. It occasionally shifts its diet to other prey species when mussels are scarce (Barahona & Navarrete 2010). It is mostly free from natural predators within the intertidal zone, although the seastar *Meyenaster gelatinosus* (Gaymer & Himmelman 2008) and to some degree the crab *Homalaspis plana* (Castilla 1981) and rockfish *Graus nigra* (Fuentes 1982), are known to predate upon this species in the subtidal zone. This species sexually reproduces via external fertilisation (Castilla *et al.* 2013) and has planktotrophic larvae with a high longevity. This allows for long distance dispersal (Navarrete & Manzur 2008), a trait that could facilitate invasion.

H. helianthus was first discovered in Saldanha Bay in 2015 on the seafloor under a pier within Small Bay, close to Hoedjiesbaai (Peters & Robinson 2018). The area is characterised by sand and rocks. The specimen was a large adult with 35 arms and measuring 33.42 cm in diameter. Only a single individual was found and subsequent subtidal and intertidal surveys in the surrounding rocky shore habitats in 2016, revealed no other individuals (Peters & Robinson 2018). This species has the ability to spread and survive in both Saldanha Bay and along the west coast, as in its native range, it inhabits both subtidal and intertidal habitats (Gaymer & Himmelman 2008) and because the natural prey species of

H. helianthus, i.e., *S. algosus,* is already abundant within Saldanha Bay. In its native range, *H helianthus,* is a keystone species, playing an important role in structuring intertidal and subtidal communities (Paine *et al.* 1985, Navarrete & Manzur 2008). Together with its ferocious, generalist predatory nature (Navarrete & Manzur 2008, Peters & Robinson 2018), this species is expected to greatly impact native biodiversity. In light of these facts, it is imperative that Saldanha Bay and the adjacent coastline be routinely monitored as reintroduction of this species is probable.

13.3.18 Chilean stone crab *Homalaspis plana*

The Chilean stone crab *Homalaspis plana* (H. Milne Edwards, 1834) is native to sheltered habitats along the Chilean coast (Morales & Antezana 1983). It is an important fishery species in the region (Fernández & Castilla 2000). Juveniles occur intertidally on boulder shores in shell fragments, sand and rock platforms and are polychromatic (multicoloured), a trait that might protect them from predation (Fernández and Castilla 2000).

This crab is a generalist predator, feeding predominantly on the barnacle Balanus laevis, mussel S. algosus, porcelain crab Petrolisthes tuberculatus, gastropod Tegula atra as well as numerous other crustaceans (Morales & Antezana 1983). Not much is known about the habitat preference or life history of this species (Fernández & Castilla 2000), although it is known to have no invasion history. H. plana was first discovered in Saldanha Bay in 2017 in the same area as H. helianthus, under a pier within Small Bay (Peters & Robinson 2018). The specimen was a purple, adult male with distinctive

Homalaspis plana (H. Milne Edwards, 1834) (Photo: Dr Koebraa Peters).

markings on its carapace. Only a single individual was found and subsequent subtidal and intertidal surveys in the surrounding rocky shore habitats in 2018, revealed no other individuals (Peters & Robinson 2018). This species is not anticipated to survive along the open coast. In light of the fact that Saldanha Bay offers a suitable sheltered habitat with abundant prey species (i.e., S. algosus), it is important that the area be routinely monitored, as reintroduction of this species is probable.

13.3.19 Hydrozoan Coryne eximia

The hydrozoan *Coryne eximia* was first discovered in South Africa in 1946 and occurs mainly along the West Coast where it has been found from Cape Town docks to Llandudno and also in Langebaan Lagoon. It is a fouling organism which commonly occurs in shallow water up to a depth of 25 m on anchoring chains of buoys, rafts, mussels, rocks and seaweed (Millard 1975, Schuchert 2005). The native region of *Coryne eximia* is assumed to be the North Atlantic or North Pacific region (Millard 1975).

It has also been recorded as alien in the Pacific Ocean from California to Alaska, Chile, Brazil, Papua New Guinea, Western Australia and New Zealand; in the Atlantic Ocean from Norway to Galicia, the east coast of North America and Canada as well as in the Mediterranean (Schuchert 2001, Puce *et al.* 2003).

Hydrozoan *Coryne eximia* (Photo: Peter Schuchert. http://www.ville-ge.ch/musinfo/mhng/ hydrozoan/hydrozoa-directory.htm).

13.3.20 Tubeworm Neodexiospira brasiliensis

Neodexiospira brasiliensis is a small epifaunal tubeworm that forms a coil with a diameter of 2 mm. It is native to the Indo-Pacific, although its exact distribution is unknown (Knight-Jones et al. 1975). This polychaete is a filter feeder, and feeds mainly phytoplankton (Fofonoff et al. 2019). They are hermaphroditic and selffertilization can occur on rare occasions (Benkwitt 1982). Larvae tend to settle on algae and seagrass (Critchley et al. 1997) and these worms have been found to occur on boats, hulls of ships, floats, pilings, mussels, floating seaweeds, driftwood and snail shells (Critchley et al.

Tubeworm *Neodexiospira brasiliensis* (Photo: CBG Photography Group, Centre for Biodiversity Genomics and Boldsystems.org).

1997) and commonly settle in areas containing bacterial films (Kirchman *et al.* 1982). Due to their nature of settling on floating objects, there is potential for this species to spread once introduced.

This polychaete was first recorded in South Africa in 1953, but misidentified as *Spirorbis foraminosus*. It has been recorded as occurring in tide pools on the algae, *Ceramium planum* from Cape Town to Port Elizabeth in the past (Fofonoff *et al.* 2019), although an updated survey of its distribution is required. It is also alien to the East and West coasts of North America and Europe. Observations suggest that this species has the potential to impact eelgrass (Fofonoff *et al.* 2019).

13.3.21 Shell-boring spionid *Polydora hoplura*

Polydora hoplura is a shell-boring spionid polychaete native to Europe where it occurs from the Mediterranean to England. It bores into calcareous materials including mollusc shells, barnacles, sponges, coralline algae, and limestone (Fofonoff *et al.* 2019). It is commonly found on cultivated oyster beds and culture facilities for abalone and oysters. This polychaete has a wide alien distribution including California, Australia, New Zealand, Japan, Chile, Brazil, the Canary Islands and South Africa. It was first recorded in South Africa in 1947 in Table Bay (Millard 1952).

Shell-boring spionid Polydora hoplura (Photo: Prof. C.A. Simon).

Subsequently, Day (1967) reported it in the intertidal and shallow waters from Saldanha Bay to Plettenberg Bay. This polychaete commonly infests the commercially cultured oysters (Nel *et al.* 1996) and abalone *Haliotis midae* in Saldanha Bay (Simon *et al.* 2006, Boonzaaier *et al.* 2014). This can have negative economic implications as it decreases the survival and condition of cultured oysters and abalone (Fofonoff *et al.* 2019).

13.3.22 Tube-dwelling amphipod Cerapus tubularis

Cerapus tubularis is an intertidal, tube dwelling amphipod native to North America. It occurs on sandy substrates with shell fragments, large sand grains and among algae. Its alien range includes areas within the tropical and temperate oceans. This species was first recorded from South Africa, off the coast of KwaZulu-Natal, in 1901, but was incorrectly reported as Cerapus abditus (in Barnard 1916). It was most likely introduced via ballast water or ship fouling. The most recent publication reports this species' range as extending from Saldanha Bay to the east coast of South Africa (Mead et al. 2011).

Note: No photo available at this stage.

13.3.23 Wood-boring amphipod Chelura terebrans

Chelura terebrans is a wood-boring amphipod, easily distinguishable due to its enlarged third uropod, fused urosomites and reddish appearance. It is thought to be native to Europe and, in addition to South Africa, has a very broad alien distribution which includes New Zealand, the West and East coasts of North America and Hong Kong (Fofonoff *et al.* 2019). The most likely mode of introduction is hull fouling of the wooden ships used in the past (Kuhne & Becker 1964).

Wood-boring amphipod *Chelura terebrans* (Photo: Eric A. Lazo-Wasem).

C. terebrans is dependent upon wood-boring isopods of the genus Limnoria for shelter and food as it inhabits the burrows of these isopods and feeds on their faecal matter (Kuhne & Becker 1964, Borges 2010). Its diet also includes bacteria, protists and decaying wood. It is believed that this amphipod will, under certain circumstances, be able to create its own burrows (Green Extabe 2013). Some of the first specimens in South Africa were collected in 1888 and reported by Stebbing (1910). More recently, it has been reported as occurring in all harbours between Langebaan and Port Elizabeth, although further surveys are required to determine if it has spread to the open coast (Mead et al. 2011). Due to its wood-boring nature, it is considered a pest, but only in the presence of Limnoria. Damage by this species includes expanding the burrows and increasing the damage by Limnoria (Kuhne and Becker 1964). This species thus has the potential to negatively impact the economy by destroying wooden structures.

13.3.24 Sand-hopper Orchestia gammarella

Orchestia gammarella, or the sand-hopper, is a semi-terrestrial amphipod. Its native range includes Norway to the Mediterranean, as well as Madeira, Canary Islands and the Azores (Henzler & Ingolfsson 2008). It occurs in the upper intertidal of rocky shores, primarily in the drift-line, under, rocks, debris and vegetation (Mead et al. 2011, Fofonoff et al. 2019). O. gammarella is mainly herbivorous, but also known for its scavenging behaviour. It feeds on detritus, algae, seaweed, seagrasses and microorganisms (Persson 1999). It was first discovered in South Africa in Langebaan Lagoon during a UCT ecological survey, but incorrectly described as a new endemic

The sand-hopper *Orchestia gammarella* (Photo: Auguste Le Roux [CC BY-SA 3.0 (https://creative commons.org/licenses/by-sa/3.0)].

species, *Talorchestia inaequalipes* by Barnard (1951). It was later correctly identified by Griffiths (1975). Alien populations have also been described from Knysna Estuary (Griffiths 1974) and Table Bay (Milnerton Lagoon) (Mead *et al.* 2011). It was most likely introduced via solid ballast. Alien populations are also known from North America (Newfoundland to Maine), South America (Argentina and Chile) and Iceland (Fofonoff *et al.* 2019).

13.3.25 Bryozoan Conopeum seurati

The bryozoan, Conopeum seurati is a fouling organism, native to brackish water, lagoons and estuaries in Europe (Poluzzi & Sabelli 1985), although its exact distribution is unknown. It has been introduced via ship fouling to the East coast of North America, New Zealand and Australia (Gordon & Mawatari 1992, Winston 1995, Wyatt et al. 2005, Rouse 2011) and South Africa (Awad et al. 2005). Overlooked alien populations are likely to occur in estuaries all around the globe. This species is a filter

The colonial bryozoan Conopeum seurati (Photo: De Blauwe 2009).

feeder of phytoplankton and tends to form small colonies on shells, seagrasses, seaweeds, and other hard surfaces, including man-made structures. It was first recorded in South Africa in Saldanha Bay in 2001 (Awad *et al.* 2005), although it has probably been present for decades, if not centuries. This species potentially also occurs in Zandvlei Lagoon (False Bay), although proper identification is required (Mead *et al.* 2011).

13.3.26 Bryozoan Cryptosula pallasiana

The bryozoan *Cryptosula pallasiana* occurs in brackish waters, where it forms pink, white or orange encrusting colonies (Occhipinti Ambrogi & d'Hondt 1981) on eelgrass beds and hard structures including shells, oyster beds, rocks, hulls of ships and other man-made structures (Hayward & Ryland 1999, Fofonoff *et al.* 2019). It is native to Europe, specifically the Black sea and also suitable habitats ranging from the Mediterranean Sea to Norway. This species is a filter feeder, feeding mainly on phytoplankton (Barnes

The colonial bryozoan *Cryptosula pallasiana* (Photo: Cohen 2011).

1983). It has been reported from numerous harbours around the globe (Gordon & Mawatari 1992). Cryptogenic populations occur along the East coast of North America and Northwest Pacific. Alien populations are known from South Africa, the Pacific coast of North America, Argentina, New Zealand and Australia (Fofonoff *et al.* 2019). It was first recorded in South Africa in Table Bay harbour, as *Lepralia pallasiana*, based on specimens collected during 1947 – 1949 (Millard 1952). It was later also discovered in Simon's Town (Henschel *et al.* 1990) and Saldanha Bay (Awad *et al.* 2005), although it is most likely widespread throughout South African estuaries (Mead *et al.* 2011).

13.3.27 Red-rust bryozoan Watersipora subtorquata

Also known as the red-rust bryozoan, *Watersipora subtorqua*ta is a shallow water fouling organism. It forms calcareous crusts on hard surfaces such as rocks, shells, pilings, hulls of ships, floating objects, fouling plates and oil platforms and creates secondary habitat for the settlement of other marine invertebrates (Mackie *et al.* 2006, Page *et al.* 2006, Cohen & Zabin 2009, Ryland *et al.* 2009). *W. subtorquata* is a suspension feeder, feeding predominantly on phytoplankton. The exact native range of this bryozoan is unknown, primarily because of taxonomic confusion and the notion that it might be a species complex (Fofonoff *et al.* 2019).

A recent taxonomic revision of the revealed genus Watersipora unexpected changes distribution and nomenclature (Vieira et al. 2014). Until further studies and genetic analysis can resolve the confusion, this bryozoan will retain its name where it has previously been identified (Florence et al. 2007, Fofonoff et al. 2019). It was first reported in South Africa in 1935 (although it has probably been present for longer than that) as W. cucullata (O'Donoghue deWatteville 1935) later synonymised with W. subtorquata (Florence et al. 2007). Its distribution

Red-rust bryozoan *Watersipora subtorquata* (Photo: Luis A. Solórzano in Cohen 2011).

has been reported as Saldanha Bay on the west coast to False Bay on the south coast (Florence *et al.* 2007). It has been widely distributed throughout the world via hull fouling and ballast water. Introduced populations have also been recorded from New Zealand, Australia, Hawaii, Europe and possibly the West coast of North America (Mead *et al.* 2011).

13.3.28 Light bulb tunicate Clavelina lepadiformis

species of tunicate, transparent zooids with yellow, white or pink bands around the dorsal lamina and oral siphon, earning them the name the Light bulb Colonial tunicates can tunicate. reproduce both sexually asexually through budding and feeds primarily on phytoplankton and detritus (Fofonoff et al. 2019). C. lepadiformis originates from Europe, where it ranges from Mediterranean Sea to Southern Norway (Tarjuelo et al. 2001). It has most likely been introduced via ship fouling to South Africa, the east Coast



Light bulb tunicate *Clavelina lepadiformis* (Photo: Esculapio CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=4765030).

of America, Azores and South Korea. They occur in rocky, shallow water areas and is commonly found in harbours, marinas and ports where they attach to the bottom and sides of jetties and boats (Mead *et al.* 2011). It was first reported in South Africa in Port Elizabeth and Knysna (Monniot *et al.* 2001) and subsequently from numerous areas around the coast, including Saldanha Bay (Rius *et al.* 2014). More in-depth surveys inspecting artificial substrata are required to confirm if this species has spread throughout Saldanha Bay and to Langebaan Lagoon.

13.3.29 Algae Antithamnionella spirographidis

Antithamnionella spirographidis is a small algal species, most likely native to North Pacific regions (Lindstrom & Gabrielson 1989) and has been introduced, most likely via ship fouling or aquaculture activities. Introduced populations are reported from England, Wales, Ireland, Scotland, northern France, the Mediterranean and Australia (Wollaston 1968, Maggs & Hommersand 1993, Eno et al. 1997). It is commonly associated with harbours and docks (Wollaston 1986) and its success as an invader is attributed to its vegetative, rapid reproduction. It was first recorded in South Africa in sheltered areas of Saldanha Bay attached to jetties in 1989 (Stegenga et al. 1997). More indepth surveys inspecting artificial substrata are required to confirm if this species has spread throughout Saldanha Bay and to Langebaan Lagoon.

Stained slide of the algae *Antithamnionella* spirographidis (Photo: Anderson et al. 2016).

13.3.30 Fragile upright codium Codium fragile ssp. tomentosoides

The invasive strain of this algae is known as *Codium fragile* ssp. *tomentosoides*. This intertidal green alga has thick, spongy branches. There has been a lot of confusion regarding the date of first record and the presence of this species in South Africa, mostly as it can and has been confused with the native species, *C. fragile* ssp. *capense* (Mead *et al.* 2011) which is widespread in the sublittoral and intertidal areas from Namibia on the west coast to Plettenberg Bay on the east coast (Stegenga *et al.* 1997). However, it is believed that *C. fragile* sp. *tomentosoides* occurs interspersed among the native populations and as such, it remains on the list of species alien to South Africa and Saldanha Bay (Mead *et al.* 2011).

It is native to waters around Japan and introduced populations have also been recorded from North and South America, Europe, Greenland and New Zealand. It occurs in both rocky and sandy habitats, where it attaches to hard substrates including oyster and beds, seagrass shells, stones, seawalls, breakwaters, jetties, piers and docks (Ramus 1971, Gosner 1978, Bulleri & Airoldi 2005, Geraldi et al. 2014). C. fragile species also frequently invades kelp beds (Scheibling & Gagnon 2006) and Zostera marina eelgrass beds (Ramus 1971). C. fragile is considered

Codium fragile (Photo: Flyingdream and Wikipedia).

euryhaline, tolerant of a wide range of temperatures (-2 to 30°C) and tolerant to desiccation, traits that could contribute towards its introduction and invasion success (Malinowski & Ramus 1973, Hanisak 1979, Schaffelke & Deane 2005). Although impacts in Saldanha Bay have not yet been quantified, this species is known for both its positive and negative impacts in other invaded locations, such as being an important food item and habitat for many invertebrates (Cruz-Rivera & Hay 2001, Scheibling & Anthony 2001, Harris & Jones 2005). More in-depth surveys and genetic analysis are required to confirm the identity and exact distribution of this species in Saldanha Bay and Langebaan Lagoon.

14 MANAGEMENT AND MONITORING RECOMMENDATIONS

Monitoring of aquatic health and activities and discharges potentially affecting health of Saldanha Bay and Langebaan Lagoon has escalated considerably in recent years owing to increases in the rate of development in the area surrounding the Bay and Lagoon and concerns over declining health of the Bay. This section provides a summary of the state of health of Saldanha Bay and Langebaan Lagoon as reflected by the various environmental parameters reported on in this study. It also briefly describes current monitoring efforts and provides recommendations as to management actions that need to be implemented in order to mitigate some of the threats that have been detected. It also provides recommendations on how existing monitoring activities may need to be modified in the future to accommodate changes in the state of the Bay.

14.1 The management of activities and discharges affecting the health of the Bay

Continuously accelerating urban and industrial development is a major cause of fragmentation and loss of ecological integrity of remaining marine and coastal habitats in Saldanha Bay and Langebaan Lagoon. The challenge of addressing cumulative impacts in an area such as Saldanha is immense. The current and future desired state of the greater Saldanha Bay area is polarised, where industrial development (Saldanha Bay IDZ and associated industrial development) and conservation areas (Ramsar Site, MPAs and National Park) are immediately adjacent to one another. Furthermore, the Saldanha Bay environment supports conflicting uses including industry, fishery, mariculture, recreation and the natural environment itself. This situation necessitates sustainable development that is steered towards environmentally more resilient locations and away from sensitive areas.

Concerns have been raised that cumulative impacts on the marine environment in Saldanha Bay have not been adequately addressed by many recent development proposals. This applies especially to the cumulative impacts that will arise from future development within the Saldanha Bay IDZ and the Aquaculture Development Zone (ADZ). Furthermore, the impact on the Saldanha Bay marine environment from projects that are primarily land-based, such as storage facilities for crude oil and liquid petroleum gas, has often been underestimated or even ignored. It has been proposed that a more holistic management strategy is needed to deal with piece meal Environmental Impact Assessments (EIAs). Various environmental management instruments have been proposed for the Greater Saldanha Bay Area, including (1) a generic Environmental Management Programme (EMPr), (2) an Environmental Management Framework (EMF), (3) a Strategic Environmental Assessment (SEA), and (4) the declaration of a Special Management Area. An Intergovernmental Task Team (IGTT) has been established to consider these and other proposals. If these management instruments are indeed implemented, we are confident that measures for the conservation alongside rapid development of the Saldanha Bay area will be addressed more effectively.

14.1.1 Human settlements, water and wastewater

Human settlements surrounding Saldanha Bay and Langebaan Lagoon have expanded tremendously in recent years. This is brought home very strongly by population growth rates of 9.24% per annum in Langebaan and nearly 2.7% in Saldanha over the period 2001 to 2011 (Statistics South Africa 2014). Numbers of tourists visiting the Saldanha Bay and Langebaan Lagoon area are constantly rising, especially those visiting the West Coast National Park (WCNP) (Average rate of 12% per annum since 2005). This rapid population and tourism growth translate to corresponding increases in the amounts of infrastructure required to house and accommodate these people and also in the amounts of waste and wastewater that is produced and must be treated and disposed of.

In an effort to reduce potable water consumption in the area, the Saldanha Bay Municipality (SBM) has come to an agreement with various types of water users (construction, irrigation, industry) to reuse treated wastewater. This has dramatically reduced the potable water demand and has had the positive spinoff in that currently only very small volumes of wastewater from the WWTWs enter the marine environment. With the closure of Arcelor Mittal, the Saldanha WWTW no longer receives industrial wastewater from the plant, however, the plant also no longer requires treated waste for use in the Reverse Osmosis plant. Therefore, the balance of treated wastewater currently not being used by other water users for irrigation is being discharged into the Bok river. The municipality has, however, identified a future user for the treated effluent and an allocation has been made available to them.

The amount of hardened (as opposed to naturally vegetated) surfaces surrounding the Bay and Lagoon have also expanded at break-neck speed in recent years, with concomitant increases in volumes of contaminated storm water running off into the Bay. The contaminant loads in stormwater is not adequately monitored (there is no monitoring of storm water quality or quantity from Saldanha or Langebaan), nor is it adequately controlled at present. The contribution to trace metal and organic loading in the Bay from these sources is thus largely unknown, and remains of concern. Disturbance from increasing numbers of people recreating in Saldanha Bay and Langebaan Lagoon is taking its toll on sensitive habitats and species, especially seagrass, water birds and fish in Langebaan Lagoon. A collaboration between Saldanha Bay municipality and Sea Harvest has initiated a project to install litter traps on stormwater drains to minimize pollution entering the Bay via these waterways.

14.1.2 Dredging

Dredging interventions in the Bay in the past, particularly those associated with the Iron Ore Terminal have been shown to have devastating impacts on the ecology of the Bay. Effects of the most recentlarge scale dredging event are still discernible in the sediments and faunal communities in the Bay more than a decade after their occurrence. Likely ecological impacts arising from any future proposed dredging programmes need to be carefully considered and these need to be weighed up against social and economic benefits that may be derived from such programmes or projects. Where such impacts are unavoidable, mitigation measures applied must follow international best practice and seek to minimize impacts to the ecology of the Bay. Even relatively small dredging operations, such as those undertaken as part of the upgrade of the naval boatyard at Salamander Bay, can have very wide-reaching impacts on the Bay and Lagoon.

Historically, insufficient provision was made for buffers zones around the Lagoon and Bay with the result that development encroaches right up to the waters' edge and is now widely threatened by coastal erosion. Recently published research suggested that dredging operations conducted during the Port construction programme may be contributing to this problem as well. This research highlights the fact that much of the sediment used to build the causeway to Marcus Island was dredged from the historic ebb tide delta that existed at the mouth of Langebaan (an area where sediment derived from Langebaan Lagoon had been deposited over many thousands of years). Removal of sediment from this area has reduced the extent to which incoming waves are refracted and has increased in the wave energy density along the shoreline by around 50%. This in turn seems to be contributing to the observed erosion of the shoreline in this area.

14.1.3 Fish factories

The Department of Environmental Affairs is currently in the process of issuing Coastal Waters Discharge Permits to facilities discharging wastewater into Saldanha Bay. Sea Harvest was first issued a CWDP on 26 June 2017 (as amended subsequently to accommodate a change in discharge location and effluent composition) and further amended on 7 November 2019 to include discharge from the fish processing plant, the RO plant and the value added factory. This CWDP authorises Sea Harvest to dispose a maximum quantity of 2 190 000 m³ per annum at a maximum daily discharge volume of 6 000 m³. With the ongoing drought in the Western Cape, Sea Harvest reclaims potable water by means of a Reverse Osmosis plant with the intention to save municipal water and to improve effluent quality (Frank Hickley, Sea Harvest pers. comm., 2018). Sea Harvest is committed to meeting effluent quality thresholds and environmental monitoring requirements as stipulated in the CWDP. However, the effluent at the Sea Harvest Fish Processing Plant is currently not treated adequately to ensure minimum impact to the receiving environment. While a number of the parameters have improved, the fish processing facility is still failing to comply with the chemical oxygen demand and oil and grease concentrations prescribed in the CWDP, although both of these have improved in 2019/20 relative to the two preceding years they still exceed the allowable limits. The effluent produced by the RO plant has increased the salinity of the overall effluent dramatically and CWDP requirements were exceeded 50% of the time until the limit was increased in the amended CWDP, subsequently salinity readings are compliant 91% of the time. Additionally, significant improvements have, however, been observed in terms of the ammonia nitrogen and total suspended solids concentration and the current CWDP limits are being met. Sea Harvest has been meeting the pH range prescribed in the CWDP.

14.1.4 Marine Aquaculture

Saldanha Bay is a highly productive marine environment and constitutes the only natural sheltered embayment in South Africa (Stenton-Dozey et al. 2001). These favourable conditions have facilitated the establishment of an aquaculture industry in the Bay. In January 2018, the then Department of Agriculture, Forestry and Fisheries was granted Environmental Authorisation to establish a sea-based Aquaculture Development Zone (ADZ) in Saldanha Bay and expand the total area available for aquaculture to 884 ha, located within four precincts (Small Bay, Big Bay North, Outer Bay North and South). By the end of December 2019, approximately 36% of the ADZ had been leased, but less than

60% of the actively leased area was being utilised, and this is a very dynamic value that changes constantly as new leases and rights are granted or as the economic climate changes. As of March 2020, 28 companies within the Saldanha Bay ADZ were registered on the Marine Aquaculture Right Register, of which only 15 companies were actively operational. As at September 2021, 27 aquaculture farms were registered, with 24 being actively operational. Historic studies, as well as the State of the Bay surveys have shown that these culture operations can lead to organic enrichment and anoxia in sediments under the culture rafts and ropes. The source of the contamination is believed to be mainly faeces, decaying mussels and fouling species. DFFE specialist scientists are, however, conducting environmental monitoring (which includes a rapid synoptic survey of oxygen and nutrient levels in the Bay) and long-term monitoring undertaken by an independent service provider. This is to ensure that the effects of aquaculture operations are well monitored and that should any thresholds be exceeded the appropriate action is taken and mitigation measures can be implemented to prevent negative impacts. International monitoring standards recommend that full macrobenthic surveys should be conducted every 3 – 5 years, however, the scale of the expanded ADZ is significant and the macrofaunal communities within Saldanha Bay show an inherently high level of variation. Therefore, the frequency of these monitoring surveys may need to be intensified to prevent significant ecological impacts, as well as loss to the mariculture sector itself.

14.1.5 Shipping, ballast water discharges and oil spills

Shipping traffic and ballast water discharges to the Bay are currently monitored by the Port of Saldanha. Data indicate a steady growth in the numbers of vessels visiting the Bay and a concomitant increase in the volume of ballast water discharged to the Bay. As a result, environmental impacts are increasing, including but not limited to oil spills, introduction of alien species, trace metal pollution as well as direct disturbance of marine life and sediment in the Bay. Trace metal concentrations in ballast water discharged to Saldanha Bay have in the past (1996), been shown to exceed South Africa Water Guidelines. Whether this is still the case is unknown, given that the concentrations of these contaminants in ballast water discharges has not been assessed in recent years.

To address environmental impacts and risks from the discharge of ballast water, the International Convention for the Control and Management of Ship's Ballast Water and Sediments of 2004 (BWM Convention) was ratified by 30 states, including South Africa. It took almost a decade until the first Draft Ballast Water Management Bill was published in the *Government Gazette* in April 2013 (Notice 340 of 2013), aimed at giving effect to the provisions of the BWM Convention. The Draft Bill was published in the Government Gazette for comment again in 2017 but it is unknown when it will be finalised. The Bill sets out how ballast water is to be discharged, all ships are expected to have a ballast water management plan, and to keep an up to date ballast water record book. Vessels constructed after 2009 are required to be designed such that accumulation of sediments is prevented and removal is facilitated. Although no domestic legislation is currently in place to regulate ballast water discharge, the Transnet National Port Authority in Saldanha Bay has implemented a number of mechanisms to track and control the release of ballast water into the harbour.

14.1.6 Recommendations

Urgent management interventions are required to limit further degradation of the environment from the growing pressures and should focus on the following issues:

- Ensure that all discharges to the Bay, including discharges into rivers entering the marine
 environment, are properly licensed and monitored (both effluent volume and quality) to
 confirm that conditions at the edge of the mixing zone are compliant with South African Water
 Quality Guidelines for the Coast Zone and any other legislative requirements;
- Existing and any future increases in use of groundwater from the Langebaan Road and Elandsfontein Aquifers need to be considered very carefully, especially in the light of effects that this may have on Saldanha Bay and Langebaan Lagoon.
- Wastewater recycling should continue as wastewater production increases in the area.
- The Saldanha Bay Municipality should re-evaluate the effectiveness of shoreline erosion mitigation measures implemented in Saldanha and Langebaan taking into account possible impacts associated with dredging that was undertaken as part of the port construction operations in the 1970s and how this can be reversed.
- Coastal management (development setback) lines also need to be established around the
 perimeter of the Bay and Lagoon and these must allow for adequate protection of the
 environment and infrastructure from current and future (i.e., climate change) pressures.
- The Draft Ballast Water Management Bill (2017) needs to be finalised, promulgated and implemented as a matter of urgency; and
- Declaration of Saldanha Bay and Langebaan Lagoon as a Special Management Area in terms of ICMA should continue to be pursued.

14.2 Groundwater

While Saldanha Bay and Langebaan Lagoon receives little freshwater input via rivers or streams (surface water), groundwater input is significant and plays an important role in sustaining marsh ecosystems around the periphery of the Bay, and especially the Lagoon, and also in preventing widespread hypersaline conditions from developing in the summer months. It is also a backup resource (and possible future primary resource in times of drought) of water supply to the municipality and other sectors. The main users of groundwater resources surrounding Saldanha Bay and Langebaan Lagoon include the agricultural (1 529 744 m3/a as at 2016, although this has probably increased significantly during the drought of 2015 to 2018), industrial, conservation and the mining sectors. The use of groundwater for agriculture has, however, been found to be quite limited within the study area.

There are two main aquifer systems from which groundwater discharges into the Bay — the Langebaan Road Aquifer (LRA) System and the Elandsfontein Aquifer System (EAS). The Hopefield wellfield occurs to the south-east of the LRA and is considered to be part of the EAS. The licence for the Hopefield wellfield has not yet been finalised, however an abstraction of 4 to 5 ML/d (1.46 to 1.83 Mm3/a) has been applied for. A comprehensive groundwater monitoring network is in place to monitor the groundwater in the area in terms of its use, groundwater level trends as well was water quality. In addition, there are also monitoring boreholes at the municipal Langebaan Road Aquifer, Hopefield wellfields and across the area.

The geological setting is complex and highly variable within the Greater Saldanha Bay area and for this reason, the groundwater is also highly variable across the study area in terms of flow rates, volumes and quality. In places, the aquifers are very high yielding with good groundwater quality yet in other areas, there is essentially no groundwater and, if present, it is very saline.

The LRA is located between the lower Berg River and Saldanha Bay and discharges into Saldanha Bay (Big Bay) through a northern paleo-channel. It has been operational for 20 years but only intermittently and the long-term monitoring trend shows only slight groundwater level drawdowns. The total utilisable groundwater exploitation potential (UGEP) under normal conditions is estimated at 15.2 Mm³/a from the Saldanha Bay Municipality area, so it is important to try and reduce the impact of this nett abstraction by using Managed Aquifer Recharge methodologies and it is quite possible the wellfields will only be used in times of severe drought, so they need to be kept as "full" as possible in non-drought times. If the UGEP is adhered to, available evidence suggests that is unlikely to be an impact on the outflow to the marine environment, however, the positioning of the abstraction is crucial to ensure there is no impact on these outflows.

The Elandsfontein Aquifer System is situated between Langebaan Lagoon in the west, the Darling batholith in the south, the Brak and Groen Rivers to the south-east and east respectively and the zero-flow boundary to the north. It discharges into Langebaan Lagoon through a southern paleo-channel. Growth of the reeds *Phragmites australis* and *Typha capensis* as well as *Juncus kraussi* on the shoreline surrounding Langebaan Lagoon provide clear evidence of the significant influx of groundwater to the Lagoon, because these plants can only survive in water or damp soil, and are only able to tolerate salinity levels up to a maximum of 20–25 PSU (the salinity of the water in the lagoon is generally the same, or occasionally higher, than the 35 PSU of seawater).

The Langebaan Lagoon in the Geelbek area is one of the main groundwater discharge zones in the area. The groundwater inflow provides freshwater flow into the southern end of the Lagoon, which play a key role in causing and maintaining the biodiversity of that area. The area is a declared Ramsar site. These freshwater inflows are groundwater driven and have to be maintained. For the entire study area this is where groundwater's role is the most crucial. Ten kilometres up-gradient of this area is the Elandsfontein Exploration and Mining (Pty) Ltd/Kropz. This mine recently started mining phosphate deposits in the area of the EAS on the eastern side of the R27. Mining is being conducted using an open-pit strip mining method which requires that groundwater levels around the mining pit be lowered to prevent the mine pit from being flooded. Groundwater is being abstracted from a series of boreholes surrounding the mine pit but is reinjected downstream (towards the lagoon), in an effort to ensure that surrounding ecosystems (including the Lagoon) are not affected. Available evidence suggests that this activity is unlikely to impact on the lagoon. However, Kropz Elandsfontein in conjunction with the SBWQFT, elected to initiate monitoring a range of biological and physicochemical variables associated with Langebaan Lagoon to establish an appropriate baseline against which any potential future changes in the Lagoon can be benchmarked. This includes monitoring of temperature and salinity (see below), biota (see Chapter 9) as well as macrophytes (see Chapter 8) around the top end of the lagoon.

Monitoring of temperature and salinity at the head of the lagoon was initiated in September 2016 using a Star ODDI Salinity, Conductivity, Temperature and Depth Logger. The Star ODDI was subsequently replaced with an Aqua TROLL 200 data logger (August 2019) which has been yielding

considerably better and more useful data to date. These data records show clear diurnal/tidal and seasonal trends in water temperature and salinity. The diurnal fluctuations in temperature are similar across all seasons, with temperatures increasing over the course of the day, peaking in the early afternoon, then declining through the afternoon and night, reaching a minimum at the time of sunrise each day. The trend in salinity is more interesting though, exhibiting a similar diurnal oscillation to that for temperature, but this oscillation is linked to the state of the tide (not the time of day) and changes through the year. In winter, salinity oscillates between that of normal seawater (around 35.0 PSU) at high tide and a slightly fresher state (between 32.0 and 34.0 PSU) at low tide. Salinity appears to drop as the tide recedes and is most likely linked with outflow of freshwater from the aquifer at this time. In summer, the pattern reverses with salinity increasing from that of normal seawater (35.0 PSU) at the peak of the high tide becoming hyper-saline (39-40 PSU) as the tide recedes. It is likely that this is a function of increased evaporation at this time of year (linked to higher prevailing air temperatures), and that the water emerging from the marshes at the head of the lagoon becomes severely hypersaline as a result, and even though it is diluted by freshwater flowing out of the aquifer, this is not sufficient to bring the level below that of normal seawater. It is likely that this effect (development of hypersaline conditions) is quite localised at present (i.e. restricted to the extreme upper reaches of the lagoon only), but could become much more pervasive if freshwater outflow from the aquifer were to drop in future. There appears to be no link between rainfall and salinity levels in the lagoon which strongly suggests that variations in salinity in the lagoon are linked with groundwater inflow as opposed to surface water inflow, which is consistent with observations made by others and points to the need for continued monitoring to track any changes over time.

Monitoring suggests that groundwater in the area remain within a stable range and no significant nett abstraction is occurring within the region. However, comprehensive groundwater monitoring and an associated database within the entire region is essential for the long-term management and preservation of the aquifers and freshwater inflows into the Langebaan Lagoon. Within the Greater Saldanha Bay area, it is imperative to ensure all groundwater abstraction above the General Authorisation limit is authorised and that the associated compliance conditions are adhered to. A regional database using Aquabase is currently being set up by GEOSS that integrates all the groundwater information (from DWS and private authorised users) to provide a regional overview of the groundwater status within the area.

14.3 Water quality

From a water quality perspective, key physico-chemical changes that have resulted from anthropogenic impacts on the Bay include modification in circulation patterns and wave exposure gradients in the Bay, leading to a reduction in water movement and exchange between the Bay and the adjacent marine environment. The SBWQFT has over the last six years monitored water temperature in Small Bay and temperature and salinity in Langebaan Lagoon. These activities are yielding valuable insights into the functioning and health of the Bay but urgently ned to be expanded to other areas and need to be extended to include a range of other parameters such as dissolved oxygen, turbidity, nutrients, chlorophyll a (as measure of phytoplankton production). As part of the environmental monitoring programme for the Saldanha ADZ (DAFF 2018), DFFE initiated monitoring of dissolved oxygen at four sites, a control and ADZ site in Small Bay and Big Bay with hourly dissolved

oxygen recordings made close to the bottom (0.5 m above the seabed). DFFE have also installed a nitrate sensor at the control site within Big bay (18 m depth) that provides hourly measurements of nitrate concentration and temperature (these parameters are inversely correlated due to upwelling). DFFE have also proposed installing a fluorometer (which provides an indication of phytoplankton or at least chlorophyll concentration in the water column) in the entrance channel of Langebaan Lagoon. The ADZ monitoring programme also makes provision for collection of phytoplankton samples for calibration of the fluorometer readings. This would entail collecting discrete samples of water, sieving a portion of each sample through a $2-5 \mu m$ mesh (to extract the picoplankton component), and extracting the chlorophyll from both the screened and unscreened samples to obtain an estimate of the relative contribution from each component. DFFE are also reportedly collecting water samples on a frequent basis (a number of times a week) in the existing shellfish growing areas in the entrance to Small Bay and in North Bay as part of the South African Live Molluscan Shellfish Monitoring and Control Programme (DFFE 2021) for species identification and enumeration of phytoplankton. The ADZ monitoring programme recommends extending this sampling effort to include collection of discrete samples for size-fractionated chlorophyll analysis at least three sites that are paired as close as possible in time. The first dissolved oxygen data from this ADZ monitoring has been presented in the 2020 SOB report and have already provided some insights into the effects of bivalve mariculture on water quality. Inclusion of the nitrate and other data to the State of the Bay Monitoring Programme in the future would definitely be welcomed.

The Mussel Watch Programme (former DAFF) has been responsible for monitoring the concentrations of metals in the flesh of mussels from Saldanha Bay for the periods 1997 – 2001 and 2005 – 2007. After the programme was discontinued in 2007, sampling was continued again in 2014 as part of the State of the Bay monitoring programme by the SBWQFT and mussel samples collected from the same five sites during the annual field surveys. These samples collected from the shore and port infrastructure were analysed for the metals lead (Pb), cadmium (Cd), zinc (Zn),copper (Cu), manganese (Mn), iron (Fe), mercury (Hg) and arsenic (As). Data on trace metals concentrations in mussels and oysters from the mariculture farms in the Bay were also obtained from the DFFE (courtesy of the farm operators). In addition, data on trace metals concentrations in oysters were obtained from the Transnet Port Terminals oyster monitoring programme for June 2018 until June 2020.

Concentrations of lead have regularly exceeded the historical food safety limits in mussels and oysters collected from certain locations in Saldanha Bay since the start of the monitoring campaigns. When considering the revised regulations, only the shore-based samples occasionally exceed the guideline limit while those collected from farms mostly fall within the accepted limit. Bivalve samples collected during the latest 2021 survey show an improvement in lead concentrations when compared to those collected during previous years, all falling below the threshold. Lead concentrations in shellfish collected from the deeper water at the mariculture farms are overall lower than those recorded from shore-based samples and in nearly all cases within the food safety guideline limits as stipulated for that year. This may be linked to higher growth rates of farmed mussels, and the fact that the cultured mussels feed on phytoplankton blooms in freshly upwelled, uncontaminated water, whilst mussels along the shore are more exposed to land-based pollutants. Similar to lead, cadmium levels in mussels and oysters have regularly exceeded the guideline limit (when considering both the historical and revised limit) at various locations in the Bay since the monitoring started. Higher concentrations of cadmium were recorded in mussel samples collected from farms in Outer Bay North between 2018 and 2020 than those collected from farms in Small and Big Bay and from shore-based research

samples. Although cadmium concentrations have mostly been within guideline limits for recently collected bivalve samples, the cadmium levels border on the acceptable limit and is a concern. Historically, arsenic concentrations in shellfish have mostly been below the guideline limit, apart from a few samples collected between 2012 and 2014. When considering the revised guideline limit, however, arsenic concentrations become problematic in that it regularly exceeds food safety guidelines, even in recent samples. Mercury concentration in both mussels and oysters have remained well below the food safety limits in almost all cases throughout the monitoring campaign.

The research further suggests that concentrations of trace metals are elevated at sites along the shore within Small Bay particularly for lead at the Portnet and Saldanha Bay-North sites and arsenic at the Iron Ore Jetty and Fish factory sites) and at farms in Outer Bay North. Exceedance of food safety limits for lead, cadmium and arsenic in bivalves collected for research from the shore and the aquaculture farms throughout the Bay, points to the need for management interventions, as metal contamination poses a serious risk to the health of people harvesting mussels.

Metal contamination poses a very serious risk to the health of people harvesting mussels from the shore (large qualities of shellfish are harvested and consumed by recreational and subsistence fishers from the shore of the Bay) and concentrations above regulatory limits requires management interventions to address the issue. It is vitally important that this monitoring continues in the future and that data are made available to the public. It is also imperative that this Mussel Watch Programme be revamped and possibly extended to cover other species as well (e.g., fish). As elevated trace metal concentrations within seafood is a human health concern. Signs warning of the health risks of consuming coastal mussels in this area and discouraging their collection should be posted in areas where these bivalves are easily accessible (e.g., Hoedjiesbaai).

Water samples collected from 20 stations in Saldanha Bay and Langebaan Lagoon are collected and analysed fortnightly for faecal coliform and *E. coli* concentrations courtesy of the SBWQFT and the West Coast District Municipality (WCDM). The microbial monitoring program provides evidence that water quality, from a recreational use perspective has improved at sites near the Bok River mouth but remain a cause for concern at the Hoedtjies Bay beach. With respect to mariculture, the situation in Small Bay remains a concern, with all the sites sampled along the northern shore exceeding the guideline for safe mariculture practices. Faecal coliform counts at all four sites in Big Bay were within the 80th percentile limits for mariculture in 2020 and the Langebaan sites all met recreational water quality standards (and have done so for the at least the last decade at most sites).

The older DWAF water quality guidelines for recreational use have been revised following an international review of guidelines for coastal waters, which highlighted several shortcomings in those developed by South Africa. The revised guidelines (DEA 2012) are based on counts of intestinal *Enterococci* and *E. coli* and require that both types of bacteria be enumerated at least every two weeks. It is highly recommended that enumeration of Enterococci be included in the Saldanha water sampling programme in place of faecal coliforms as several studies have shown faecal coliforms and *E.coli* to be relatively poor indicators of health risks in marine waters. These organisms are also less resilient than Enterococci (and other pathogenic bacteria) so if analysis is focussed on coliforms, risk can be underestimated due to mortality occurring in the time taken between collection and analysis. Guidelines state that samples should be collected 15 - 30 cm below the surface, on the seaward side of a recently broken wave. Samples to be tested for *E. coli* counts should be analysed within 6 - 8

hours of collection, and those to be tested for intestinal Enterococci, within 24 hours. Analyses should be completed by an accredited laboratory, preferably one with ISO 17025 accreditation.

14.4 Sediments

Trace metal levels are mostly well within safety thresholds except for a few sites in Small Bay, where thresholds have been exceeded on a number of occasions between 2016 and 2021. In this years' survey, cadmium concentrations were noticeably high in Langebaan Lagoon of which one site even exceeded the toxicity threshold. Key areas of concern regarding trace metal pollution within Small Bay include the Yacht Club Basin, where cadmium and copper have exceeded recommended thresholds for seven years in a row and enrichment factors (EF) continue to be high, as well as adjacent to the Multi-Purpose Terminal where levels of cadmium and lead are below internationally accepted guidelines, but still remain highly enriched relative to historic levels. Recent increases in the concentration of manganese around the Iron Ore Terminal are also a little concerning. Regular monitoring of trace metal concentrations is thus strongly recommended to provide an early warning of any future changes.

Sediment monitoring (particle size, total organic carbon (TOC), total organic nitrogen (TON) and trace metals) should continue to be conducted annually at the same suite of stations that have been monitored since 1999 along with additional stations added since this time (e.g., those in Langebaan Lagoon) when budget allows. When budgetary constraints are in place, as in 2016, a sub-set of sites in Small Bay and Big Bay should continue to be monitored so that continuity in monitoring high impact areas is maintained. Dredging in the Bay should be avoided, if possible, and appropriate precautions need to be taken when dredging becomes necessary to ensure that suspended trace metals do not contaminate cultured and wild seafood in the Bay.

Sediment samples collected in 2021 had low Poly-aromatic hydrocarbons (PAH) levels across all sites. While the Total Petroleum Hydrocarbon (TPH) and PAH findings present no major concern, it is recommended that TPH monitoring within the vicinity of the Iron Ore Terminal is continued annually in order to identify the frequency of occurrence of pollution incidents; like that recorded in 2014, and assess the ecological implications to the Bay.

14.5 Macrophytes

Three distinct intertidal habitats exist within Langebaan Lagoon: seagrass beds, such as those of the eelgrass *Zostera capensis*; salt marsh dominated by cordgrass *Spartina maritima* and *Sarcocornia perennis* and the dune slack rush *Juncus kraussi*, and unvegetated sandflats dominated by the sand prawn, *Callianassa krausii* and the mudprawn *Upogebia capensis* (Siebert & Branch 2005). The other major vegetation type present in the upper lagoon area, particularly where groundwater inflow occurs, are reed beds dominated by *Phragmites australis*.

The loss of seagrass beds from Langebaan Lagoon is a strong indicator that the ecosystem is undergoing a shift, most likely due to anthropogenic disturbances. Additionally, several studies have highlighted the potential for climate driven changes in water temperature and pH to alter seagrass

physiology and possibly their distribution and abundance (Duarte 2002, Mead *et al.* 2013). However, information on the temperature and pH tolerance of South African seagrasses is currently lacking and warrants investigation. It is critical that this habitat and the communities associated with it be monitored in future as further reductions are certain to have long-term implications, not only for the invertebrate fauna but also for species of higher trophic levels.

Salt marshes in Langebaan are an important habitat and breeding ground for a range of fish, bird and invertebrate species (Christie 1981, Day 1981, Gericke 2008). Langebaan Lagoon incorporates the second largest salt marsh area in South Africa, accounting for approximately 30% of this habitat type in the country, being second only to that in the Knysna estuary (Adams *et al.* 1999). Long-term changes in salt marshes in Langebaan Lagoon were investigated by Gericke (2008) using aerial photographs taken in 1960, 1968, 1977, 1988 and 2000. He found that overall salt marsh area had shrunk by only a small amount between 1960 and 2000, losing on average 8 000 m² per annum.

The common reed dominates the flora of the reedbeds where groundwater inflow occurs. Results of our analysis suggests that variation in reed cover over time is relatively modest and that this has remained more or less constant over the last 31 years (1989 – 2020, See Chapter 8). The biggest perturbations in reed cover correspond with the two largest droughts that have been experienced in the region in this period (a 1:20 year event that occurred in the period 2002 – 2003) and an even bigger drought that occurred recently (a 1:100 year event in the period 2015 – 2017). Within the last 6 years, seagrass beds to the north of the lagoon have been either shrinking or almost entirely lost as of June 2021. New growth of seagrass beds at the south of the lagoon near Geelbek and the rapid loss to the north are indicative of a coastal community shift driven by eutrophication. Salt marsh has remained fairly consistent in extent for the last 5 years but increased in coverage as of June 2021 by more than 10% with respect to previous years.

Future efforts in this field will entail expanding ground-truthing tasks to other macrophyte classes (specifically seagrass and salt marsh), and expanding the assessment of variability in each vegetation class over time.

14.6 Benthic macrofauna

Monitoring of benthic macrofaunal communities over the period 1999 – 2021 has revealed a relatively stable situation in most parts of the Bay and Lagoon with the exception of 2008 when a dramatic shift in benthic community composition occurred at all sites. This shift involved a decrease in the abundance and biomass of filter feeders and an increase in shorter lived opportunistic detritivores. This was attributed to the extensive dredging that took place during 2007 – 2008. Aside from this Baywide phenomenon, localised improvements in health have been detected in the Yacht Club Basin and at Salamander Bay following construction of the boat dock. However, disturbance at the LPG site in Big Bay has resulted in reduced indices of abundance, biomass and diversity since the installation of the SPM at this site. Although highly localised, the negative impact of this development on the benthic macrofaunal community is clearly significant. Future monitoring of these indices at this site is important in order to gauge recovery in the benthos. Notable improvements in the health of benthic communities include the return of the suspension feeding sea-pen *Virgularia schultzei* to Big Bay and Langebaan Lagoon since 2004, as well as an increase in the percentage biomass of large, long-lived

species such as the tongue worm *Listriolobus capensis*, previously *Ochaetostoma capense*, and several gastropods. Certain areas of Small Bay that experience reduced water circulation patterns in (e.g., near the Small Craft Harbour and near mussel rafts) which results in the accumulation of fine sediment, organic material and trace metals (aggravated by anthropogenic inputs) still have impoverished macrofaunal communities. Results from samples collected in the vicinity of the Sea Harvest discharge pipe indicate a marked improvement on those from 2017. This would suggest that the relocation of the discharge outfall was justified and has resulted in a notable improvement in benthic ecosystem health. In order to ensure the continued improvement in the health of the Small Bay marine environment it is recommended that stringent controls are placed on the discharge of effluents into Small Bay to facilitate recovery of benthic communities and ecosystem health. The regularity (annually) and intensity of benthic macrofauna monitoring should continue at all the current stations.

The presence of low-lying reef was noted during the baseline surveys and deployment of monitoring instruments in the Saldanha Bay sea-based Aquaculture Development Zone finfish area. The potential effects of aquaculture on patches of this habitat type and its associated epifaunal communities has not previously been assessed in the Big Bay precinct beyond Lynch Blinder. The reef has been described as low-profile reef, roughly < 1 m in height from the sea floor, which may be subject to periodic, natural sand inundation. Additionally, substantial outcrops > 1 m in height are present in places and may form habitat for a well-established epifaunal community. Given this information, the 2021 monitoring survey included the collection of video footage of the reef at any sampling site where hard substrate was encountered. Footage was collected at two sites in Big bay where reef was encountered and this was used to provide a qualitative description of the epifaunal species present at each site. A total of 21 species were recorded with common species including: the West Coast rock lobster Jasus lalandii, red starfish Callopatiria granifera and reticulated starfish Henricia ornata, cape urchins Parechinus angulosus, and beds of the common feather star Comanthus wahlbergii. Given the identification of reef in the Big Bay precinct it is recommended that further studies be conducted to provide a quantitative assessment of the epifaunal reef communities present. In addition, the extent of the reef in Big Bay is yet to be determined and a detailed bathymetry survey should be undertaken.

14.7 Rocky intertidal

A total of 114 taxa were recorded from the eight study sites, most of which had been found in previous survey years. The faunal component was represented by 20 species of filter-feeders, 23 species of grazers, and 24 species of predators and scavengers combined. The algal component comprised 33 corticated (foliose) seaweeds, seven ephemerals, five species of encrusting algae and two species of kelp. In general, rocky shore communities have remained relatively stable with only minor changes over the years.

One of the greatest threats to rocky shore communities in Saldanha Bay is the introduction of alien species via shipping and mariculture, and their potential to become invasive. Key changes in the rocky intertidal ecosystem reflect the regional invasion by the Mediterranean mussel *Mytilus galloprovincialis* and the North American barnacle *Balanus glandula* which compete for space on most of the rocky intertidal substrata in the Bay at the expense of native species. Their spread throughout the Bay has significantly altered natural community structure in the mid and lower intertidal,

particularly in wave exposed areas. The abundance of *B. glandula* on the rocky shore has tended to fluctuate over the years. In 2019 abundance was lower than in previous years with only empty shells and base plate scars left on rocks at some sites. However, abundance increased somewhat in 2020 but slightly declined once again in this year's survey which suggests that there may have been a fluctuation in larval supply, but it is still unclear. *Porcellana africana*, the introduced porcelain crab, was recorded for the first time during this year's survey. A relatively recent introduction, most likely via shipping, this alien crab appears to be restricted to Saldanaha Bay, but its ecological impacts are still unknown. The establishment of new alien species can potentially have negative impacts on native rocky shore species, and it is important that this is monitored closely through continued rocky shore surveys.

14.8 Fish

Long-term monitoring of juvenile fish assemblages by means of experimental seine-netting in the surf zone has revealed some concerning trends. A significant decline in white stumpnose throughout the system over the period 2008 – 2020 suggested that the protection afforded by the Langebaan MPA was not enough to sustain the fishery at the high effort levels. A recent analysis of commercial and recreational linefish catch data and the net survey data by a team of fisheries scientists strongly recommends the implementation of additional harvest control measures, namely a reduction in the bag limit to 5 fish person⁻¹ day⁻¹ and an increase in the minimum size (to 30 cm TL). Similarly, an analysis of commercial harder catch return data indicated that the stock was overexploited and recommended a reduction in fishing effort to rebuild biomass. It is also recommended that monitoring of fish stocks, catch and effort in the Bay be expanded to include regular catch and effort monitoring of the Bay's fisheries which would provide complementary data to the recruitment strength estimates emanating from the seine net surveys. An economic study should be undertaken to assess the value of the recreational fishery and the impacts of different management options.

Historically, the average density of commercially important fish, such as white stumpnose and harders, was much higher at Small Bay sites compared to Big Bay and Lagoon sites. Since 2011, however, estimated densities of these species in Small Bay were similar to, or lower than that recorded in both Big Bay and Langebaan Lagoon. The juveniles of other species were historically also more abundant in Small Bay. This gives an indication of the importance of Small Bay as a nursery habitat for the fish species that support the large fisheries throughout the Bay. Small Bay is often viewed as the more developed or industrialized portion of the Bay, with further port and industrial development planned for the near future (including ship repair facilities), and is considered by many as a 'lost cause'. These data provide a strong argument to stamp out such negative thinking and to continue lobbying strongly for ecologically sound management of this portion of the Bay. The collapse of the white stumpnose stock and continued poor recruitment throughout the Bay makes it even more critical that the quality of what was demonstrably the most important white stumpnose nursery habitat is improved.

The 2018 discovery of alien rainbow trout in Kraalbaai (almost certainly escapees from the pilot fish cage farming in Big Bay) is another threat to the indigenous fish fauna in the region. These predatory fish will prey on indigenous invertebrates and fish and ongoing introductions could cause ecosystem level impacts. These alien fish are highly unlikely to establish self-sustaining populations in the Bay and lagoon due to the lack of suitable spawning habitat (cool, clear freshwater rivers) in the region.

At the current experimental scale of fish farming, the number of escapees is not expected to be having significant impacts on indigenous fauna. However, at the proposed commercial scale finfish cage farming, the number of alien salmonids introduced into the Bay and the Lagoon via ongoing escapes could have significant negative effects on indigenous fauna. Given the importance of the nearshore waters of Saldanha Bay and Langebaan lagoon as nursery areas for a number of vulnerable indigenous fishery species, finfish cage farming should be restricted to the outer Bay, and mitigation measures to minimise escapes from cages should be strictly enforced.

Fish sampling surveys should be conducted annually at the same sites selected during the 2021 study for as long as possible. This sampling should be confined to the same seasonal period each year for comparative purposes.

14.9 Birds and seals

Together with the five islands within the Bay and Vondeling Island slightly to the South, Saldanha Bay and Langebaan Lagoon provide extensive and varied habitat for waterbirds. This includes sheltered deepwater marine habitats associated with Saldanha Bay itself, sheltered beaches in the Bay, islands that serve as breeding refuges for seabirds, rocky shoreline surrounding the islands and at the mouth of the Bay, and the extensive intertidal salt marshes, mud- and sandflats of the sheltered Langebaan Lagoon.

Saldanha Bay and particularly Langebaan Lagoon are of tremendous importance in terms of the diversity and abundance of waterbird populations supported. At least 56 non-passerine waterbird species commonly use the area for feeding or breeding; eleven species breed on the islands of Malgas, Marcus, Jutten, Schaapen and Vondeling alone. These islands support nationally important populations of African Penguin, Cape Gannet, Swift Tern, Kelp and Hartlaub's Gull, and four species of marine cormorant, as well as important populations of the endemic African Oystercatcher. The lagoon is an important area for migratory waders and terns, as well as for numerous resident waterbird species. Waterbirds are counted annually on all the islands (Department of Environmental Affairs: Oceans and Coasts), and bi-annually in Langebaan Lagoon (Avian Demography Unit of the University of Cape Town).

Declines in the numbers of seabirds breeding on the Saldanha Bay Islands can be attributed to a number of causes. These include (1) emigration of birds to colonies further south and east along the South African coast in response to changes in the distribution and biomass of small pelagic fish stocks, (2) starvation as a result of a decline in the biomass of sardines nationally, and particularly along the west coast over the last decade, (3) competition for food with the small pelagic fisheries within the foraging range of affected bird species, (4) predation of eggs, young and fledglings by Great White Pelicans, Kelp Gulls and Cape Fur Seals, and (5) collapse of the West Coast Rock Lobster stock upon which Bank Cormorants feed. However, because populations are so depressed, conditions at the islands in Saldanha, particularly predation by Cape Fur Seals and Kelp Gulls, have now become the major factors in driving current population decreases for many seabird species. Direct amelioration actions (*Pelican Watch*, problem seal culling) to decrease these impacts at the islands have had mixed results, with the former proving more effective than the latter. Cape Fur Seal and Kelp Gull predation

continue to pose a major threat to seabird survival at the Saldanha Bay Island colonies. Current conservation initiatives must continue to protect seabird populations in Saldanha Bay.

Decreasing numbers of migrant waders utilising Langebaan Lagoon reflects a global trend, which can be attributed to loss of breeding habitat and hunting along their migration routes as well as human disturbance and habitat loss on their wintering grounds. In Langebaan Lagoon, drastic population declines in four species, including the Ruddy Turnstone, Red Knot, Grey Plover, and Curlew Sandpiper signified this downward trend in summer migratory bird numbers. Most importantly, Curlew Sandpiper numbers had dropped from a pre-1990 average of just over 20 000 birds to just 702 birds in 2020. A significant recovery in Curlew Sandpipers to 6 511 birds was, however, recorded in 2021, along with similar proportional recoveries in Grey Plovers and Ruddy Turnstones. Ongoing seasonal counts will ascertain if this recovery is sustained or if it was only a once-off anomaly associated with the extraordinary global COVID-19 pandemic. It is highly recommended that the status of coastal and wading bird species continues to be monitored and that these data are used to inform and assesses the efficacy of management interventions aimed at halting the observed declines and supporting recovery of the region's birds. Conservation research and efforts should be prioritised for migratory wader species and conducted on international scale. Locally, unfavourable conditions persisting in Langebaan Lagoon as a result of anthropogenic impacts should also be managed more effectively to protect resident and migratory waders that do arrive in the lagoon.

Cape Fur Seals are amongst the largest marine top predators found in and around Saldanha Bay. They are opportunistic, generalist feeders that have been shown to benefit from human activities including utilisation of discards from fishing boats, or taking fish directly from fisherman. In addition, seals compete with seabirds, such as penguins and gannets, as well as with commercial fisheries, for small pelagic fish which form a key part of their diets. It has been suggested that the increasing numbers of seals on Vondeling island may lead to increased pressure to cull seals both from a fisheries perspective as well as to protect important seabird species on which seals are known to prey. Concerns have also been raised that, with the increased number of seals along the shores surrounding Saldanha Bay and with the addition of finfish aquaculture in the Bay, seal numbers within the Bay will likely increase, along with the occurrence of problem seals.

Although seals are likely attracted to the aquaculture sites within Saldanha Bay, chances are that their numbers will not continue to increase significantly as they are restricted to sub-adult males. Additionally, the carrying capacity of Vondeling Island appears to have been reached and the overall population within Southern Africa has remained stable over the last 30 years.

14.10 Alien invasive species

A recent update on the number of alien marine species present in South Africa lists 95 species, of which 56 are considered invasive i.e., populations that are expanding and consequently displacing indigenous species (Robinson *et al.* 2016). With the recent addition of five new species – the barnacle *Perforatus perforatus* (*Biccard & Griffiths pers. comm. 2017*), the Japanese skeleton shrimp *Caprella mutica* (Peters & Robinson 2017), the South West African porcelain crab, *Porcellana africana* (Griffiths *et al.* 2018), the South American sunstar *Heliaster helianthus*, and the Chilean stone crab *Homalaspis plana* (Peters & Robinson 2018) — 29 species are currently confirmed from Saldanha Bay and/or

Langebaan Lagoon. All of these, except *H. helianthus*, *H. plana*, *P. perforatus* and the previously reported anemone *Sagartia ornata*, are considered invasive.

Other noteworthy invasive alien species that are present in Saldanha Bay include the Mediterranean mussel *M. galloprovincialis*, the barnacle *Balanus glandula*, the Pacific mussel *Semimytilus algosus* and the Western pea crab *Rathbunixa occidentalis*. The abundance of *M. galloprovincialis* on rocky shores in Saldanha Bay has been decreasing over the last few years, even to such an extent that no mussels were detected at certain sites. The reason behind this decline is, however, still not clear although numerous factors might be at play. No trend in the abundance of *B. glandula* over time is evident, although this species has shown a decrease in percentage cover at almost all sites, with an absence of this species reported from some intertidal monitoring sites in recent years. Furthermore, no conclusive trend in the spread and site preference of the Western pea crab *R. occidentalis* could be established, although it does seem to flourish in deeper water and occurs at lower densities close to the iron ore and multi-purpose terminals. Despite abundance and dominance of the alien crab fluctuating quite substantially at certain sites in Big and Small Bay over time, data suggest that *R. occidentalis* is well established in the Bay. The population of this species has also shown an increase in Langebaan Lagoon, although this is restricted to a single site. The status of this crab within Danger Bay is currently not confirmed and more sampling efforts are needed at this site.

The discovery of five new alien species over the past six years raises concern and highlights the need for management action. An additional 19 species are currently regarded as cryptogenic in Saldanha Bay and/or Langebaan Lagoon and comprehensive genetic analyses are urgently required to determine the definite status of these species.

Managing alien species within the marine environment is challenging, costly and time consuming. To ensure the efficient use of resources and desirable outcomes, management actions should be focused firstly, on managing invasive species already present in Saldanha Bay and secondly, on preventing further invasions. Both strategies present their own advantages and limitations. Research is very important for understanding biological invasions and the best way to approach their management. However, the knowledge gained needs to be shared with stakeholders and policy makers to implement appropriate management strategies and inform action (Foxcroft *et al.* 2020). Von der Heyden *et al.* (2016) proposed an evidence-based co-creation approach, where scientists and policy makers work together and share knowledge to inform appropriate management actions.

To ensure that resources are used efficiently, and alien species are managed effectively, all alien species should be prioritised for management. One approach that has been proposed to determine this, is ranking, and managing alien species based on their impacts. Alien species are considered to represent one of the greatest threats to rocky shore communities in Saldanha Bay, owing to their potential to become invasive, and displace naturally occurring indigenous species. The Environmental Impact Classification for Alien Taxa (EICAT) ranks species based on their impacts (Blackburn *et al.* 2014), allowing management to be prioritised towards those posing the highest risk. Although it has been suggested that the EICAT be used to prioritise species of concern in Saldanha Bay, the use of this approach within the marine context is limited. This is because it depends upon knowledge of species-specific impacts in a particular area, information which is not always readily available for most marine species. In South Africa, for example, impacts have only been quantified for only 16% of taxa known to be alien (Alexander *et al.* 2015, Robinson *et al.* 2016). In addition, impacts are context dependent

and as such, impacts in one area cannot be used to infer impacts in another (Kumschick *et al.* 2015, Robinson *et al.* 2016). Studies investigating the impacts of these species in Saldanha Bay are desperately needed to prioritise management actions.

A pre-cautionary approach to prevent biological invasions is often considered the most efficient method of management. Watchlists have been identified as a useful preventative measure in the management of alien species (Faulkner *et al.* 2017). They identify species of concern that are not yet found in an area but have the potential to arrive and establish. Watchlists are created based on a variety of factors, which include selecting species with an invasion history, pathways to the area of concern, occurring in similar climatic regions or those with biological traits that could predispose them to becoming successful invaders. Watchlists should be used together with routine monitoring, as this will increase the chances of early detection and successful eradication. Unfortunately, the lack of basic biological knowledge of species, even for large, conspicuous invaders, pose an impediment to creating such watchlists based on species traits (Swart *et al.* 2018). This further highlights the need for studies investigating the traits of alien species. In the absence of such information, invasion history, in combination with climatic matching and available pathways should be used to create watchlists.

Another pre-cautionary approach includes identifying and managing important pathways of introduction. A notable 91% of marine introductions to South Africa have been associated with shipping activities such as ballast water discharge and hull fouling. In addition, 50 of the reported 95 alien species are confined to sheltered areas such as harbours. These findings emphasise the importance of shipping as a pathway of introduction (Robinson et al. 2020) and further highlight the need for implementing more efficient protocols of port control to monitor vessels entering South African harbours and the treatment of hull fouling and ballast water before port entry and regular monitoring of harbours for alien species. This approach should be improved upon in Saldanha Bay, especially since it is such an important international port with high shipping traffic from around the globe. The presence of numerous alien species in Saldanha Bay with the same native range, highlights the risk of introduction from specific areas and pathways linked to Saldanha Bay. Furthermore, recreational yachts have been recognised as an important vector for the introduction of alien species in South Africa (Peters et al. 2019), although this vector has been overlooked in the past. International yachts frequent Saldanha Bay, thereby posing a high risk of introducing marine alien species. Unfortunately, there is currently no regulatory measures to manage alien species fouling on and potential introduction into South Africa by yachts. A recent study by Keanly and Robinson (2020) explored encapsulation as a tool to minimise and manage fouling on such vessels. This study showed promising results and similar experiments are encouraged for Saldanha Bay.

In conclusion, management actions should be focused on managing invasive species already present in Saldanha Bay by rating species based on their impacts. Secondly, efforts should also be focused on preventing further invasions. Watchlists have been identified as a useful preventative measure and are created based on selecting species with an invasion history, pathways to the area of concern, occurring in similar climatic regions or those with biological traits that could predispose them to becoming successful invaders. Another vital aspect includes identifying and managing important pathways of introduction. This should be done in combination with port control to monitor vessels entering harbours, treatment of hull fouling and ballast water before entrance and the regular monitoring of harbours. All these efforts require in depth research. This will not only contribute

towards our understanding of the drivers and traits governing successful invasions, but also give insight into associated impacts and so support directed management actions to successfully control invasions and mitigate impacts.

14.11 Summary of environmental monitoring results

In summary, the environmental monitoring currently implemented in Saldanha Bay and Langebaan Lagoon (e.g. groundwater, sediment, benthic macrofauna, birds, rocky intertidal, fish populations) should continue with some small adjustments or additions, however, monitoring of other environmental parameters that are not currently assessed on a regular basis (e.g. temperature, oxygen, salinity, stormwater quality) require structured, maintained monitoring to be implemented.

Table 11.1 Tabulated summary of Environmental parameters reported on in the State of the Bay: Saldanha Bay and Langebaan Lagoon.

Parameter monitored	Time period	Anthropogenic induced impact	Rating
GROUNDWATER			
Aquifer and Lagoon: Physical aspects (extraction rates, volumes, recharge rates, conductivity)	1984 – 2021	The potential bigger impacts on groundwater resources surrounding Saldanha Bay and Langebaan Lagoon have been identified as (1) the agricultural sector (1 529 744 m³/a), (2) abstraction from the Langebaan Road Aquifer wellfield (intermittently operational since 1999, however, frequently non-operational due to regular and persistent vandalism); and (3) the Hopefield wellfield (not yet operational) where it is planned to abstract 5.1 Mm³/a and 1.8 Mm³/a, respectively. The total utilisable groundwater exploitation potential (UGEP) under normal conditions is estimated at 15.2 Mm³/a from the SBM area, so it is important to try and reduce the impact of this nett abstraction by using Managed Aquifer Recharge methodologies and it is quite possible the wellfields will only be used in times of severe drought, so they need to be kept as "full" as possible in nondrought times. If the UGEP is adhered to, available evidence suggests that is unlikely to be an impact on the outflow to the marine environment, however, the positioning of the abstraction is crucial to ensure there is no impact on these outflows. Comprehensive groundwater monitoring and associated database within the entire region is also essential for the long-term management and preservation of the aquifers and freshwater inflows into the Langebaan Lagoon.	
WATER QUALITY			
Physical aspects (temperature, salinity, dissolved oxygen, nutrients and chlorophyll)	1974 – 2000, 2010 – 2011, 2014 – 2021	Dissolved oxygen levels in bottom water in Small Bay are very much lower than they were historically or at least prior to port development. Dissolved oxygen concentration is lower in Small Bay than in Big Bay and measurements below bivalve farms are consistently lower than at control sites. This is attributed to organic loading in Small Bay and reduced flushing time. No consistent changes are evident with any other physicochemical parameters. Anomalous water column temperature profiles (cooler water) were recorded during 2017 and 2018, corresponding with the dominance of the South Atlantic High-Pressure system during the prolonged drought.	
Current circulation patterns and current strengths	1975 vs. 2021	Reduced wave energy, and impaired circulation and rate of exchange in Small Bay. Increased wave action in parts of Big Bay and at Langebaan Beach causing coastal	

Parameter monitored	Time period	Anthropogenic induced impact	Rating
		erosion. Increased current strength alongside obstructions (e.g., ore terminal).	
Microbiological (faecal coliform)	1999 – 2021	Faecal coliform counts in Small Bay frequently exceed guideline levels and although there have been improvements at some sites, others remain a concern. Big Bay and Langebaan Lagoon mostly remain within safety levels for faecal coliform pollution. However, faecal coliform may underestimate actual harmful microbiological concentrations. There is a need to monitor intestinal <i>Enterococci</i> as well.	
Trace metal contaminants in water	1997 – 2008, 2014 – 2021	Concentrations of lead, arsenic and cadmium in bivalves collected along the shore and at farms in the Bay regularly exceed the food safety limits. Lead in farmed bivalves are lower than in shore samples and mostly meet the guideline limits, while the 2021 samples show an improvement in lead when compared to previous years. High concentrations of cadmium were recently recorded in mussels from farms in Outer Bay North. Despite recent samples from Small Bay meeting the guideline limits, concentrations still border on the acceptable limit. Mercury concentration in bivalves have remained well below the food safety limits in almost all cases. The high concentrations of metals in bivalves throughout the Bay points to the need for management interventions to address this issue, as metal contamination poses a serious risk to the health of people consuming bivalves. It is vitally important that this monitoring continues in the future and that data are made available to the public for their own safety. The source of metal contamination should be investigated and addressed, and any future dredging events should be limited as far as possible owing to the likely mobilization of trace metals from sediments.	
SEDIMENTS			
Particle size (mud/sand/gravel)	1974 – 2021	The mud fraction in the sediments in the Bay was highly elevated when the State of the Bay surveys commenced in 1999 relative to the period prior to port construction. The situation has improved considerably since this time at most sites.	
Total organic carbon (TOC)	1974 – 2021	Elevated levels of TOC at the Yacht Club basin and near the mariculture rafts (negative impacts) are of particular concern, although levels have declined in 2021.	
Total organic nitrogen (TON)	1974 – 2021	Similar trends as for TOC. Elevated levels of TON at the Yacht Club basin and near the mariculture rafts (negative impacts) are of particular concern, although levels have declined in 2021.	
Trace metal contaminants in sediments	1980 – 2021	Cadmium, lead, and copper are currently elevated considerably above historic levels. Concentrations were highest in 1999 following major dredge event. Lead, copper and nickel elevated in 2008 – 2016, whereas cadmium and copper increased in 2019 at Yacht Club and multi-purpose terminal, which may be related to shipping activities and maintenance dredging. These concentrations have increased in the current 2021 survey.	

Parameter monitored	Time period	Anthropogenic induced impact	Rating
MACROPHYTES			
Seagrasses, salt marsh, reeds and sedges	Seagrass beds: 2016 – 2021 Salt marsh: 2016 – 2021 Reeds and sedges: 1988 – 2020 P. australis: 2016 – 2021	Seagrass (<i>Zostera capensis</i>) beds have experienced a radical reduction in size with associated fragmentation of large beds. This phenomenon has been attributed to direct and indirect anthropogenic changes such as physical disturbance, pollution, specifically eutrophication and most recently, seagrass biomass was found to be further south in the lagoon in warmer waters. Analyses of changes in salt marsh cover indicate a modest (~10%) increase in cover for this vegetation type for 2021. Reeds and sedge cover, by contrast, appears to have remained more or less constant over the last 30 years whereas common reed (<i>Phragmites australis</i> has shown a slight decrease in external perimeter extent over the last 3 years.	
BENTHIC MACROFAUNA			
Species abundance, biomass, and diversity	1999 – 2021	Benthic macrofaunal communities in Saldanha Bay and Langebaan Lagoon Bay are highly sensitive to dredging activities and drop dramatically immediately after each major dredging event. Macrofaunal communities are currently increasing in abundance and biomass since the last major event in 2008.	
ROCKY INTERTIDAL AND INTRO	DUCED SPECIES		
Impact of alien mussel, barnacle, and crab introductions	1980 – 2021	Alien mussel and barnacle have displaced the local mussel and other native species from much of the shore leading to decreased species diversity (negative). One new alien barnacle species found in 2014. The establishment of this species must be closely monitored. Newly recorded alien porcelain crab introduced to the Bay in 2012 whose ecological impacts are unknown. Populations should be closely monitored as it could potentially have negative impacts on the existing communities.	
FISH			
Community composition and abundance	1986 – 2021	White stumpnose abundance and fishery landings declined dramatically over the last decade, but some recovery was evident with strong recruitment seen in Big Bay and Langebaan Lagoon during the 2021 survey. Elf recruitment, however, has been poor for four years, with no juveniles caught during the last two surveys. Abundance and diversity of fish in Small Bay have been declining in recent years, and this is of some concern given the ongoing industrial development in this area. The fish communities in Big bay and Langebaan Lagoon remain healthy.	
BIRDS			
Population numbers of key species in Saldanha Bay and islands	1977 – 2020	Populations of many seabirds breeding on the Saldanha Bay Islands are declining rapidly. This trend is attributed to: (1) emigration of birds to colonies further south and east along the South African coast in response to changes in the distribution and biomass of small pelagic fish stocks, (2) predation of eggs, young and fledglings by Great White Pelicans, Kelp Gulls and Cape Fur Seals; (3) starvation as a result of a decline in the biomass of sardines nationally, and particularly along the west	. <u></u> .

Parameter monitored	Time period	Anthropogenic induced impact	Rating
		coast over the last decade, (4) competition for food with the small pelagic fisheries within the foraging range of affected bird species, and (5) collapse of the West Coast Rock Lobster stock upon which Bank Cormorants feed	
Population numbers of key species in Langebaan Lagoon	1976 – 2021	Populations of migrant waders utilising Langebaan Lagoon have decreased dramatically over the last 30 years, attributed to offsite impacts on breeding grounds and local impacts (habitat changes) and disturbance in the lagoon. Although still well below historical levels, there was a notable recovery in migratory wader numbers in Langebaan lagoon recorded during 2021. This is possibly attributed to reduced anthropogenic impacts during the COVID-19 pandemic, but this hypothesis requires further research. Numbers of resident waders have also declined and is likely due to changes in the lagoon itself, particularly increased disturbance at historically important, feeding sandflats.	
SEALS	1970 – 2020	Cape Fur seal population stable over the past 30 years.	
ALIEN AND INVASIVES			
Total number of alien and invasive species in Saldanha Bay and Langebaan Lagoon	Current 2021	Twenty-nine species have been confirmed from Saldanha Bay and/or Langebaan Lagoon, of which all but four are considered invasive.	
Acorn barnacle <i>Balanus</i> glandula	2010 – 2021	No trend in the abundance of <i>B. glandula</i> over time, although it has shown a decrease at almost all sites, with no barnacles reported from certain sites during recent years. However, it remains one of the most abundant species on the mid-shore in Saldanha Bay and is still of significant concern.	
European mussel Mytilus galloprovincialis	2005 – 2021	Has shown a decreasing trend in abundance at some sites over the last years. Nevertheless, it remains one of the most abundant species on the mid and low-shore at exposed sites in Saldanha Bay and is still of significant concern.	
Western pea crab Rathbunixa occidentalis	2004 – 2021	No conclusive trend in the spread and site preference of this crab, although it has shown a decrease at certain sites during the 2021 survey. This crab is well established in the Bay and has expanded its distribution to Langebaan Lagoon.	

15 REFERENCES

- Aalbers SA. 2008. Seasonal, diel, and lunar spawning periodicities and associated sound production of white seabass (*Atractoscion nobilis*). Fishery Bulletin 106: 143–151.
- Abbott R & E Bing-Sawyer. 2002. Assessment of pile driving impacts on the Sacramento blackfish (*Orthodon microlepidotus*). Draft report prepared for Caltrans District 4. San Francisco, CA, Caltrans.
- Abbott R, Reyff J & G Marty. 2005. Final Report: Monitoring the Effects of Conventional Pile Driving on Three Species of Fish. Richmond, CA, Manson Construction Company.
- Acuña FH, Excoffon & CL Griffiths. 2004. First record and re-description of the introduced sea anemone Sagartia ornate (Holdsworth 1855) (Cnidaria: Actinaria: Sargartiidae) from South Africa. African Zoology 39: 314–318.
- Adams J & N Ngesi. 2002. An assessment of the salt marsh of the Great Brak Estuary. University of Port Elizabeth, Department of Botany. Report prepared for Petro SA (Pty) Ltd. November 2002.
- Adams JB. 2016. Distribution and status of *Zostera capensis* in South African estuaries A review. South African Journal of Botany 107: 63–73.
- Adams JB & GC Bate. 1994. The effect of salinity and inundation on the estuarine macrophyte *Sarcocornia perennis* (Mill.) A.J. Scott. Aquatic Botany 47: 341–348.
- Adams JB, Bate GC & M O'Callaghan. 1999. Primary producers. In: Allanson BR & Baird D (ed) Estuaries of South Africa. Cambridge: University Press, 91–117 pp.
- Adams NJ & RA Navarro. 2005. Foraging of a coastal seabird: Flight patterns and movements of breeding Cape gannets *Morus capensis*. *African Journal of Marine Science* 27(1): 239–248.
- Alexander EM, Adams R, Dick JTA & TB Robinson. 2015. Forecasting invasions: resource use by mussels informs invasion patterns along the South African coast. Invasive Species, 162(12): 2493–2500.
- Anchor Environmental Consultants (AEC). 2006. State of the Bay 2006: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 93 pp. + Appendices.
- Anchor Environmental Consultants (AEC). 2009. State of the Bay 2008: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 174 pp.
- Anchor Environmental Consultants (AEC). 2010. State of the Bay 2009: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 213 pp.
- Anchor Environmental Consultants (AEC). 2011. State of the Bay 2010: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 280 pp.

- Anchor Environmental Consultants (AEC). 2012b. State of the Bay 2011: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 271 pp.
- Anchor Environmental Consultants (AEC). 2012c. The impact of Fe ₂O₃ on the marine environment in Saldanha Bay. Report prepared for Transnet Port Terminal Saldanha, October 2012.
- Anchor Environmental Consultants (AEC). 2013b. State of the Bay 2012: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Forum Trust. Cape Town, 314 pp.
- Anchor Environmental Consultants (AEC). 2014. The State of Saldanha Bay and Langebaan Lagoon 2013/2014. Technical Report September 201. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anchor Environmental Consultants (AEC). 2015a. Assessment Framework for the Management of Effluent from Land Based Sources Discharged to the Marine Environment. Anchor Environmental Consultants (Pty) Ltd, Report to the Department of Environmental Affairs.
- Anchor Environmental Consultants (AEC). 2015b. The State of Saldanha Bay and Langebaan Lagoon 2014/2015. Technical Report September 2015. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anchor Environmental Consultants (AEC). 2016. The State of Saldanha Bay and Langebaan Lagoon 2015/2016. Technical Report September 2016. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anchor Environmental Consultants (AEC). 2017. The State of Saldanha Bay and Langebaan Lagoon 2017. Technical Report September 2017. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anchor Environmental Consultants (AEC). 2018. The State of Saldanha Bay and Langebaan Lagoon 2017. Technical Report September 2018. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anchor Environmental Consultants (AEC). 2019. The State of Saldanha Bay and Langebaan Lagoon 2017. Technical Report September 2019. Prepared for the Saldanha Bay Water Quality Forum Trust. Cape Town.
- Anderson MJ, Gorley RN & KR Clarke. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E: Plymouth, UK, 214 pp.
- Anderson RJ, Stegenga H & JJ Bolton. 2016. Seaweeds of the South African South Coast. World Wide Web electronic publication, University of Cape Town, http://southafrseaweeds.uct.ac.za; Accessed on 20/9/ 2019.
- Angel A, Branch GM, Wanless RM & T Siebert. 2006. Causes of rarity and range restriction of an endangered, endemic limpet, *Siphonaria compressa*. Journal of Experimental Marine Biology and Ecology 330: 245–260.
- Aquaculture Stewardship Council. 2017. ASC Salmon Standard, v 1.1 103pp.

- Archambault P & E Bourget. 1996. Scales of coastal heterogeneity and benthic intertidal species richness, diversity and abundance. Marine Ecology Progress Series 136: 111–121.
- Arendse CJ. 2011. Aspects of the early life history and a per-recruit assessment of white stumpnose *Rhabdosargus globiceps* (Pisces: Sparidae) in Saldanha Bay with recommendations for future research and monitoring. MSc. Thesis, University of Cape Town, 120 pp.
- ARUP. 2014. Transnet National Ports Authority Saldanha Location Study for Rig or Ship Repair Facilities in the Port of Saldanha Prefeasibility (FEL2) Report. Report prepared by ARUP. Quay Oil and Gas Jetty. FEL2 Prefeasibility Report. Prepared by ARUP for Transnet. 25 pp.
- ARUP. 2016. Transnet National Ports Authority Saldanha Mossgas Quay Oil and Gas Jetty FEL2 Prefeasibility Report. Report number PDR\04\05 prepared by ARUP.
- Atkinson L, Hutchings K, Clark B, Turpie J, Steffani N, Robinson T & A Duffell-Canham. 2006. State of the Bay 2006: Saldanha Bay and Langebaan Lagoon. Technical Report. Prepared for Saldanha Bay Water Quality Trust.
- Attwood CG, Næsje TF, Fairhurst L & SE Kerwath. 2010. Life History parameters of white stumpnose *Rhabdosargus globiceps* (Pisces: Sparidae) in Saldanha Bay, South Africa, with evidence for stock separation. African Journal of Marine Science 32: 23–36.
- Awad AA, Clarke C, Greyling L, Hillard R, Polglaze J & S Raaymakers. 2003. Ballast water risk assessment, Port of Saldanha Bay, Republic of South Africa, Final Report November 2003. Global Ballast Water Management Programme. Globallast Monograph Series 13, 64 pp.
- Awad A, Greyling L, Kirkman S, Botes L, Clark B, Prochazka K, Robinson T, Kruger L & L Joyce. 2005.

 Port Biological Baseline Survey. Draft Report. Port of Saldanha, South Africa. 41 pp.
- Baldwin JR & JR Lovvorn. 1994. Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Marine Ecology Progress Series 103: 119–127.
- Baptista NJA, Smith BJ & JJ Mcalliste. 2000. Heavy metal concentrations insurface sediments in a nearshore environment, Jurujuba Sound, SE Brazil. Environmental Pollution 109(1): 1–9.
- Barahona M & SA Navarette. 2010. Movement patterns of the seastar *Heliaster helianthus* in central Chile: relationship with environmental conditions and prey availability. Marine Biology 157: 647–661.
- Barnard KH. 1916. Contributions to the Crustacean Fauna of South Africa. Annals of the South African Museum 15(3): 1–302.
- Barnard KH. 1932. Contributions to the crustacean fauna of South Africa. No. 11–388. Terrestrial isopods. Annals of the South African Museum 30:179–388.
- Barnard KH. 1951. New records and descriptions of new species of isopods and amphipods from South Africa. Annals of Natural History 12(5): 698–709.
- Barnes RD. 1983. Invertebrate Zoology. Saunders, Philadelphia.
- Bay S, Jones BH, Schiff K & L Washburn. 2003. Water quality impacts of storm water discharges to Santa Monica Bay. Marine Environmental Research 56 (1-2): 205–223.

- BCLME. 2006. The development of a common set of water and sediment quality guidelines for the coastal zone of the BCLME. Project BEHP/LBMP/03/04.
- Becker BH, Press DT & SG Allen. 2011. Evidence for long-term spatial displacement of breeding and pupping harbour seals by shellfish aquaculture over three decades. Aquatic Conservation 21: 247–260.
- Beckley LE. 1981. Marine benthos near the Saldanha Bay iron-ore loading terminal. South African Journal of Zoology 16(4): 269–271.
- Bellmann MA & P Remmers. 2013. Noise mitigation systems (NMS) for reducing pile driving noise: Experiences with the "big bubble curtain" relating to noise reduction. The Journal of Acoustical Society of America 134(5): 4059.
- Berkman PA, Garton DW, Haltuch MA, Kennedy GW & LR Febo. 2000. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biological Invasions 2: 1–6.
- Benkwitt R. 1982. Electrophoretic evidence for self-fertilization in tow species of spirorbid polychaetes. Bulletin of the Southern California Academy of Sciences 81: 61–68.
- Bennett CB 1904. Earwigs (Anisolabia maritima Bon.). Psyche 11: 47–53.
- Bennett R & SJ Lamberth. 2013. White steenbras Lithognathus lithognathus. In: Mann BQ (Ed) Southern African Marine Linefish Species Profiles. Special Publication Oceanographic Research Institute, Durban 9: 239-241.
- Bezuidenhout J, Dames N, Botha A, Frontasyeva MV, Goryainova ZI & D Pavlov. 2015. Trace Elements in Mediterranean mussels *Mytilus galloprovincialis* from the South African West *Coast.* Ecological Chemistry and Engineering 22(4): 489–498.
- Biccard A. 2012. Taxonomy, Systematics and Biogeography of South African Cirripedia (Thoracica). MSc. Thesis, University of Cape Town, 172 pp.
- Bickerton IB. 1999. Saldanha Bay Water Quality Programme: Benthic Macrofaunal Monitoring. Council for Scientific and Industrial Research (CSIR), Cape Town, 18 pp.
- Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, Kühn I, Kumschick S, Marková Z, Mrugała A, Nentwig W, Pergl J, Pyšek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vilà M, Wilson JRU, Winter M, Genovesi P & S Bacher. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12: e1001850
- Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP & V Jarošík *et al.* 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333–339.
- Bolton JJ, Andreakis N & RJ Anderson. 2011. Molecular evidence for three separate cryptic introductions of the red seaweed *Asparagopsis* (Bonnemaisoniales, Rhodophyta) in South Africa. African Journal of Marine Science 33: 263–271.
- Bonvicini Pagliai AM, Cognetti Varriale AM, Crema R, Curini Galletti M & R Vandini Zunarelli. 1985. Environmental impact of extensive dredging in a coastal marine area. Marine Pollution Bulletin 16(12): 483–488.

- Boonzaaier MK, Neethling S, Mouton A & CA Simon. 2014. Polydorid polychaetes (Spionidae) on farmed and wild abalone (*Haliotis midae*) in South Africa: an epidemiological survey. African Journal of Marine Science 36(3): 369–376.
- Booth DB & CR Jackson. 1997. Urbanization of aquatic systems: degradation thresholds, storm water detection, and the limits of mitigation. Journal of the American Water Resources Association 33(5): 1077–1090.
- Booth AJ & T Hecht. 2013. Panga *Pterogymnus laniarius*. In: Mann BQ (Ed) Southern African Marine Linefish Species Profiles. Special Publication Oceanographic Research Institute, Durban 9: 264-265.
- Borges LMS, Valente AA, Palma P &L Nunes. 2010. Changes in the wood boring community in the Tagus Estuary: a case study. Marine Biodiversity Records 3: e41
- Bornman TG, Adams JB & GC Bate. 2008. Environmental factors controlling the vegetation zonation patterns and distribution of vegetation types in the Olifants Estuary, South Africa. South African Journal of Botany 74: 685–695.
- Bosch AC, O'Neill B, Sigge GO, Kerwath SE & LC Hoffman. 2016 Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa. Food Chem. 190 (1): 871–878.
- Boucher C & ML Jarman. 1977. The vegetation of the Langebaan area, South Africa. Transaction of the royal Society of South Africa 42: 241–272.
- Boussard A. 1981. The reactions of roach (*Rutilus rutilus*) and rudd (*Scardinius erythrophthalmus*) to noises produced by high-speed boating. In: Proceedings of the 2nd British Freshwater Fisheries Conference 188–200 pp.
- Braaf O. 2014. Revised Scoping Report for a Proposed Phosphate Mine on Farm Elandsfontein No. 349, Portion 4 and a Portion of Portion 2, Malmesbury. Report prepared by Billet Trade (Pty) Ltd T/A Braaf Environmental Practitioners.
- Branch GM, Griffiths CL, Branch ML & LE Beckley. 2010a. Two Oceans. David Philip Publishers, Cape Town, South Africa.
- Branch GM, Odendaal F & TB Robinson. 2010b. Competition and facilitation between the alien mussel *Mytilus galloprovincialis* and indigenous species: Moderation by wave action. Journal of Experimental Marine Biology and Ecology 383: 65–78.
- Brand LE, Sunda, WG & RRL Guillard. 1983. Limitation of marine phytoplankton reproductive rates by zinc, manganese, and iron. Limnology and Oceanography Inc. 28(6): 1182–1198.
- Bregman AS. 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA, MIT Press.
- Bregnballe T, Noer H, Christensen TK, Clausen P, Asferg T, Fox AD & S Delany S. 2006. Sustainable hunting of migratory waterbirds: the Danish approach. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 854–860
- BirdLife International 2011. IUCN Red List for birds. Downloaded from http://www.birdlife.org

- BirdLife International 2017. *Haematopus moquini*. The IUCN Red List of Threatened Species 2017: e.T22693627A118385157. http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22693627A118385157.en. Downloaded on 15 August 2019.
- BirdLife International 2018. *Morus capensis*. The IUCN Red List of Threatened Species 2018: e.T22696668A132587992. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22696668A132587992.en. Downloaded on 15 August 2019.
- Brown AL & RC Hill. 1995. Decision-scoping: Making environmental assessment learn how the design process works. Project Appraisal 10(4): 223–232.
- Bulleri F & L Airoldi. 2005. Artificial marine structures facilitate the spread of a non-indigenous green alga, *Codium fragile* ssp. *tomentosoides* in the north Adriatic Sea. Journal of Applied Ecology 42: 1063–1072.
- Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F & L Manni. 2015. Morphological evidence that the molecularly determined *Ciona intestinalis* type A and type B are different species: *Ciona robusta* and *Ciona intestinalis*. Journal of Zoological Systematics and Evolutionary Research 53: 186–193.
- Buchman MF. 1999. NOAA screening quick reference tables. 99-1, 1–12. Seattle WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration. NOAA HAZMAT Report.
- Burnett WC, Taniguchi M & J Oberdorfer. 2001. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research 46: 109–116.
- Bustamante RH & GM Branch. 1996. Large scale patterns and trophic structure of southern African rocky shores: the roles of geographic variation and wave exposure. Journal of Biogeography 23: 339–351.
- Bustamante RH, Branch GM & S Eekhout. 1997. The influences of physical factors on the distribution and zonation patterns of South African rocky-shore communities. South African Journal of Marine Science 18: 119–136.
- Bustamante RH, Branch GM, Eekhout S, Robertson B, Zoutendyk P, Schleyer M, Dye A, Hanekom N, Keats D, Jurd M & C McQuaid. 1995. Gradients of intertidal primary productivity around the coast of South Africa and their relationships with consumer biomass. Oecologia 102: 189–201.
- Butterworth DS, Punt AE, Oosthuizen WH & PA Wickens. 1995. The effects of future consumption by the Cape fur seal on catches and catch rates of the Cape hakes. 3. Modelling the dynamics of the Cape fur seal *Arctocephalus pusillus pusillus*. South African Journal of Marine Science. 16: 100–112
- Calitz F. 2012. The Status of Ballast Water Management in the Ports of South Africa. MSc Thesis University of Kwa-Zulu Natal.
- Callier MD, Byron CJ, Bengtson DA, Cranford, PJ, Cross SF *et al.* 2018. Attraction and repulsion of mobile wild organisms to finfish and shellfish aquaculture: a review. Reviews in Aquaculture 10: 924–949.

- Caltrans. 2001. Pile installation demonstration project, fisheries impact assessment. PIDP EA 012081.

 San Francisco–Oakland Bay Bridge East Span Seismic Safety Project. Caltrans Contract 04A0148. San Francisco, CA.
- Capricorn Fisheries Monitoring (Capfish). 2019. Report on the baseline sample collection for the Saldanha Bay Aquaculture Development Zone, South Africa.
- Carlton JT & AN Cohen. 2003. Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs *Carcinus maenas* and *Carcinus aestuarii*. Journal of Biogeography 30: 1809–1820.
- Carlton JT & JB Geller. 1993. Ecological roulette: the global transport and invasion of non-indigenous marine organisms. Science 261: 78–82.
- Carr GM & CJ Rickwood. 2008. Water Quality Index for Biodiversity Technical Development Document.

 Report prepared for Biodiversity Indicators Partnership, World Conservation Monitoring
 Centre, 219 Huntingdon Road, Cambridge CB3 ODL, United Kingdom, 64 pp.
- Castilla JC, Navarrete SA, Manzur T & M Barahona. 2013. *Heliaster helianthus*. In: Lawrence JM (ed), Starfish Biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, Maryland 153–160 pp.
- Castilla JC. 1981. Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile central. II. Depredadores de alto nivel trófico. *Medio Ambiente* (Chile) 5: 190–215.
- Castilla JC & RT Paine. 1987. Predation and community organization on Eastern Pacific, temperate zone, rocky intertidal shores. Revista Chilena de Historia Natural 60: 131–151.
- Carter R & S Coles. 1998. Saldanha Bay General Cargo Quay Construction: Monitoring of suspended sediment distributions generated by dredging in Small Bay. CSIR Report ENVS98100, 26 pp.
- Carter RA. 1996. Environmental impact assessment SSF Saldanha: the potential ecological impacts of ballast water discharge by oil tankers in the Saldanha Bay Langebaan lagoon System. CSIR report EMAS-C 96005D, Stellenbosch.
- Ceccherelli VU & R Rossi. 1984. Settlement, growth and production of the mussel *Mytilus* galloprovincialis. Marine Ecology Progress Series 16: 173–184.
- CEF. 2008. Central Energy Fund –Newsroom: A state of the art oil spill protection, Tuesday, 22 April 2008. www.cef.org.za. Accessed 10 April 2009.
- Cempel M & G Nikel. 2006. Nickel: A Review of Its Sources and Environmental Toxicology. Polish Journal of Environmental Studies 15(3): 375–382.
- Chamber of Mines. 2017. Facts and Figures. 2016. Published by Chamber of Mines of South Africa in June 2017. Available [Online] at file:///C:/Users/vera.massie/Downloads/chamber-facts-figures-2016.pdf. Accessed on 18 August 2017.
- Chace FA. 1956. Expédition océanographique Belge dans les eaux côtiéres africaines de l'Atlantique Sud (1948–1949). Résultats scientifiques 3(5): 17–43.
- Christie ND & A Moldan. 1977. Effects of fish factory effluent on the benthic macrofauna of Saldanha Bay. Marine Pollution Bulletin 8: 41–45.

- Christie ND. 1981. Primary production in Langebaan Lagoon. In: Day JH (ed) Estuarine Ecology with Particular reference to Southern Africa. Cape Town: Balkema, pp 101–115.
- Çinar ME. 2013. Polychaetes (Annelida: Polychaeta) associated with *Posidonia oceanica* along the coasts of Turkey and northern Cyprus. In: Aktan Y, Aysel V (eds), First national workshop on *Posidonia oceanica* (L.) Delile on the coasts of Turkey, 19–20 September, Gökçeada, Turkey. Publication No. 39. Istanbul: Turkish Marine Research Foundation, pp 77–95.
- Clark BM & CL Griffiths. 2012. Western pea crabs *Pinnixa occidentalis* Rathbun 1894 (Brachyura: Thoracotremata: Pinnotheroidea) invade Saldanha Bay, South Africa. African Journal of Marine Science 34: 153–156.
- Clark BM. 1997. Variation in surf-zone fish community structure across a wave-exposure gradient. Estuarine and Coastal Shelf Science 44(6): 659–674.
- Clark RB. 1986. Marine Pollution. Claredon Press, Oxford, 215 pp.
- Cloern JE. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.
- Cockcroft AC, van Zyl D & L Hutchings. 2008. Large-scale changes in the spatial distribution of South African West Coast rock lobsters: An overview. African Journal of Marine Science 30: 149–159.
- Cohen A. 2011. The Exotics Guide: Non-native Marine Species of the North American Pacific Coast. Center for Research on Aquatic Bioinvasions, Richmond, CA, and San Francisco Estuary Institute, Oakland, CA. Revised September 2011. http://www.exoticsguide.org. Accessed 20/9/2019.
- Cohen AN & CJ Zabin. 2009. Oyster shells as vectors for exotic organisms. Journal of Shellfish Research 28: 163-167.
- Colan KE. 1990. Revision of the crustacean amphipod genus *Jass* Leach (Coroohioidea: Ischyroceridae). Canadian Journal of Zoology 68: 2031–2075.
- Conlan KE. 1990. Revision of the crustacean amphipod genus *Jassa* Leach (Corophioidea: Ischyroceridae). Canadian Journal of Zoology 68: 2031–2075.
- Conrad J. 2014. Geohydrological Assessment Updated Scoping Report Elandsfontein, West Coast iii GEOSS Report No. 2014/08-08 02 September.
- Cranford PJ, Brager L, Elvines D, Wong D & B Law. 2020. A revised classification system describing the ecological quality status of organically enriched marine sediments based on total dissolved sulfides. Marine Pollution Bulletin. 154.
- Council for Geoscience 1990. 1:250 000 Geological series. 3318 Cape Town.
- Crawford RJM. 2007. Trends in the numbers of three cormorants *Phalacrocorax* spp. breeding in South Africa's Western Cape Province. In: Kirkman SP (ed.) Final Report of the BCLME (Benguela Current Large Marine Ecosystem). Project on Top Predators as Biological Indicators of Ecosystem Change in the BCLME: 173–178. Avian Demography Unit, Cape Town.

- Crawford RJM. 2009. A recent increase of swift terns *Thalasseus bergii* off South Africa The possible influence of an altered abundance and distribution of prey. Progress in Oceanography 83: 398–403.
- Crawford RJM, Cooper J & PA Shelton. 1982. Distribution, population size, breeding and conservation of the Kelp Gull in southern Africa. Ostrich 53: 164 –177.
- Crawford RJM & LG Underhill. 2003. Aspects of breeding, molt, measurements and population trend of Hartlaub's gull *Larus hartlaubii* in Western Cape, South Africa. Waterbirds 26: 139–149.
- Crawford RJM, Altwegg R, Barham BJ, Barham PJ, Durant JM, Dyer BM, Makhado AB, Pichegru L, Ryan PG, Underhill LG, Upfold L, Visagie J, Waller LJ & PA Whittington. 2011. Collapse of South Africa's penguins in the early 21st century: a consideration of food availability. African Journal of Marine Science 33: 139–156.
- Crawford RJM, Azwianewi M, Makhado B, Whittington PA, Randall RM, Oosthuizen WH & LJ Waller 2015. A changing distribution of seabirds in South Africa—the possible impact of climate and its consequences. Frontiers in Ecology and Evolution 3: 1–11.
- Crawford RJM, Barham PJ, Underhill LG, Shannon LJ, Coetzee JC, Dyer BM, Mario Leshoro T & L Upfold. 2006. The influence of food availability on breeding success of African penguins *Spheniscus demersus* at Robben Island, South Africa. Biological Conservation 132: 119–125.
- Crawford RJM, Cockcroft AC, Dyer BM & L Upfold. 2008c. Divergent trends in bank cormorants *Phalacrocorax neglectus* breeding in South Africa's Western Cape consistent with a distributional shift of rock lobsters *Jasus Ialandii*. African Journal of Marine Science 30: 161–166.
- Crawford RJM, Dyer BM & RK Brooke. 1994. Breeding nomadism in southern African seabirds constraints, causes and conservation. Ostrich 65: 231–246.
- Crawford RJM, Dyer BM, Kemper J, Simmons RE & L Upfold. 2007. Trends in numbers of Cape Cormorants (*Phalacrocorax capensis*) over a 50-year period, 1956-57 to 2006-07. Emu 107: 253–261.
- Crawford RJM, Makhado AB, Waller LJ & PA Whittington. 2014. Winners and losers response to recent environmental change by South African seabirds that compete with purse-seine fisheries for food. Ostrich 85: 111–117.
- Crawford RJM, Nel DC, Williams AJ & A Scott. 1997. Seasonal patterns of abundance of Kelp Gulls *Larus dominicanus* at breeding and non-breeding localities in southern Africa. Ostrich 68: 37–41.
- Crawford RJM, Randall RM, Whittington PA, Waller L, Dyer BM, Allan DG, Fox C, Martin AP, Upfold L, Visagie J, Bachoo S, Bowker M, Downs CT, Fox R, Huisamen J, Makhado AB, Oosthuizen WH, Ryan PG, Taylor RH & JK Turpie. 2013. South Africa's coastal white-breasted cormorants: population trends, breeding season and movements, and diet. African Journal of Marine Science 35(4): 473–490.
- Crawford RJM, Sabarros PS, Fairweather T, Underhill LG & AC Wolfaardt. 2008a. Implications for seabirds off South Africa of a long-term change in the distribution of sardine. African Journal of Marine Science 30: 177–184.

- Crawford RJM, Underhill LG, Coetzee JC, Fairweather T, Shannon LJ & AC Wolfaardt. 2008b. Influences of the abundance and distribution of prey on African penguins *Spheniscus demersus* off western South Africa. African Journal of Marine Science 30: 167–175.
- Critchley AT, Farnham WF & CH Thorp. 1997. On the co-occurrence of two exotic, invasive marine organisms: the brown seaweed *Sargassum muticum* (Yendo) Fensholt and the Spirobid tube worm *Janua* (*Neodexiospira*) *brasiliensis* (Grube), in association with the indigenous eelgrass, *Zostera marina* L. and Wrack, *Fucus serratus* L. in the south-west Netherlands and the Channel Islands, Europe, *Zoster*. South African Journal of Botany 63: 474–479.
- Cruz-Rivera E & ME Hay. 2001. Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Marine Ecology Progress Series 218: 249–266.
- Cruz-Motta JJ, Underwood AJ, Chapman MG & F Rossi. 2003. Benthic assemblages in sediments associated with intertidal boulder-fields. Journal of Experimental Marine Biology and Ecology 285-286: 383–401.
- CSIR. 1996. Environmental Impact Assessment: Proposed changes to oil transfer operations, SFF, Saldanha Bay: Specialist Study (S3(i): Effects of dredging activities on turbidity levels and shoreline stability in Saldanha Bay, prepared by Mocke G, Luger S, Schoonees KS, Smit F & Theron AK, 102pp.
- CSIR. 2002. Saldanha Bay marine water quality management plan. Phase I: Situation Assessment. Report to the Saldanha Bay Water Quality Forum Trust. CSIR Report ENV-S-C, Stellenbosch.
- CSIR. 2006. The development of a common set of water and sediment quality guidelines for the coastal zone of BCLME, South Africa. Prepared for Benguela Current Large Marine Ecosystem Programme. CSIR Report No. CSIR/NRE/ECO/2006/0011/C. Stellenbosch, 164 pp.
- CSIR 2012a. Final Environmental Impacts Assessment Report for the Proposed Construction,
 Operation and Decommissioning of a Seawater Reverse Osmosis Plant and Associated
 Infrastructure in the Saldanha Bay Region, Western Cape.
- Cubit JD. 1984. Herbivory and the seasonal abundance of algae on a high intertidal rocky shore. Ecology 66: 1904–1917.
- da Silva C, Kerwath SE, Attwood CG, Thorstad EB, Cowley PD, Økland F, Wilke CG, & TF Næsje. 2013. Quantifying the degree of protection afforded by a no-take marine reserve on an exploited shark. African Journal of Marine Science 35(1): 57–66.
- da Silva C, Attwood CG, Wintner SP, Wilke CG, Winker H, Smale MJ & SE Kerwath. 2021. Life history of *Mustelus mustelus* in the Langebaan Lagoon marine protected area. Marine and Freshwater Research https://doi.org/10.1071/MF20277
- Dalal-Clayton B & B Sadler. 2005. Strategic Environmental Assessment: A Sourcebook and Reference Guide to International Experience. Earthscan, London.
- David AA & CA Simon. 2014. The effect of temperature on larval development of two non-indigenous poecilogonous polychaetes (Annelida: Spionidae) with implications for life history theory, establishment and range expansion. Journal of Experimental Marine Biology and Ecology 461: 20–30.

- David AA, Matthee CA, Loveday BR & CA Simon. 2016. Predicting the Dispersal Potential of an Invasive polychaete pest along a complex coastal biome. Integrative and Comparative Biology 56(4): 600 pp.
- David JHM, Cury P, Crawford RJM, Randall RM, Underhill LG & MA Meyer. 2003. Assessing conservation priorities in the Benguela ecosystem, South Africa: analysing predation by seals on threatened seabirds. Biological Conservation 114: 289–292.
- Davidson IC, Crook AC & DKA Barnes. 2004. Quantifying spatial patterns of intertidal biodiversity: is movement important? Marine Ecology 25: 15–34.
- Dawson J, Gihwala K, Hutchings K & BM Clark. 2021. Saldanha Bay sea-based Aquaculture Development Zone benthic monitoring survey report. Report no. 1937/3 prepared by Anchor Research and Monitoring (Pty) Ltd for the World Wide Fund for Nature 56 pp.
- Day JH. 1959. The biology of Langebaan Lagoon: a study of the effect of shelter from wave action.

 Transactions of the Royal Society of South Africa 35: 475–547.
- Day JH. 1967. [Errantia] A monograph on the Polychaeta of Southern Africa. Part 1. Errantia. British Museum (Natural History), London. pp. vi 1–458, xxix.
- Day JH. 1974. A guide to marine life on South African shores. A.A. Balkema, Cape Town.
- Day JH. 1981. The estuarine flora. In: Day JH (ed.) Estuarine Ecology with Particular reference to Southern Africa. Cape Town: Balkema, 77–99 pp.
- De Blauwe H. 2009. *Mosdiertjes van de Zuidelijke bocht van de Noordzee: Determinatiewerk voor België en Nederland*. Vlaams Instituut voor de Zee (VLIZ): Oostende. ISBN 978-90-812-9003-6. 445 pp.
- De Clerck O, Anderson RJ, Bolton JJ & D Robertson-Andersson. 2002. *Schimmelmannia elegans* (Gloiosiphoniaceae, Rhodophyta): South Africa's first introduced seaweed? Phycologia 41: 184–190.
- de Greef K, Griffiths CL & Z Zeeman. 2013. Deja vu? A second mytilid mussel, *Semimytilus algosus*, invades South Africa's west coast. African Journal of Marine Science 35(3): 307–313.
- Delphos International 2019. Feasibility Study for the Western Cape Integrated Liquefied Natural Gas Importation and Gas-to-Power Project produced for Green Cape Sector Development Agency by Delphos International.
- de Moor CL & DS Butterworth. 2015. Assessing the South African sardine resource: two stocks rather than one? African Journal of Marine Science 37(1): 41–51.
- de Ponte Machado M. 2007. Is predation on seabirds a new foraging behaviour for great white pelicans? History, foraging strategies and prey defensive responses. Final report of the BCLME (Benguela Current Large Marine Ecosystem) project on top predators as biological indicators of ecosystem change in the BCLME. Avian Demography Unit, Cape Town, 131–142 pp.
- Denny M & B Gaylord. 2002. The mechanics of wave-swept algae. Journal of Experimental Biology 205: 1355–1362.

- Denny MW & S Gaines. 2007. Encyclopedia of Tidepools and Rocky Shores. University of California Press, 705 pp.
- Department of Agriculture, Forestry and Fisheries (DAFF). 2016. Aquaculture Yearbook 2016 South Africa. Published by the Department of Agriculture, Forestry and Fisheries, Branch: Fisheries Management. ISBN: 978-0-621-46172-5.
- Department of Agriculture, Forestry and Fisheries (DAFF). 2018. Protocols for Environmental Monitoring of the Aquaculture Development Zone in Saldanha Bay, South Africa. A report for the Department of Agriculture, Forestry, and Fisheries produced by Dr T. Probyn. 44pp.
- Department of Environmental Affairs (DEA). 2012. South African Water Quality Guidelines for Coastal Marine Waters. Volume 2: Guidelines for Recreational Use, Cape Town.
- Department of Environmental Affairs (DEA). 2018. South African Water Quality Guidelines for Coastal Marine Waters Volume 1: Natural Environment and Mariculture Use, Cape Town.
- Department of Environmental Affairs & Development Planning (DEA&DP) 2014. Environmental Authorisation: The Proposed Construction of a Liquid Petroleum Gas Handling Facility and Associated Infrastructure on Farm Yzervarkensrug 127/13, Saldanha. EIA Reference Number: E12/2/4/2/F4/16/3001/12.
- Department of Environmental Affairs and Development Planning (DEA&DP) 2016. Integrating Environmental Management with Spatial Planning in Greater Saldanha Bay Western Cape.
- Department of Environmental Affairs and Development Planning (DEA&DP). 2017. Draft
 Environmental Management Framework for the Greater Saldanha Area. Completed as part
 of the Greater Saldanha Regional Implementation Framework (GS RSIF).
- Department of Environmental Affairs and Development Planning (DEA&DP). 2018. Greater Saldanha Regional Spatial Implementation Framework. Summary Report and Implementation Framework. June 2018.
- Department of Environmental Affairs and Development Planning (DEA&DP) 2019. Risk and Resilience Assessment of Natural Capital in the Greater Saldanha Bay Municipality: A Navigational Tool for Strategic-Level Decision-Making. Western Cape Department of Environmental Affairs and Development Planning, Cape Town. ISBN Number: 978-0-621-47955-3.
- Department of Forestry and Fisheries and the Environment (DFFE). 2020. Status of the South African marine fishery resources 2020. Cape Town: DFFE
- Department of Forestry and Fisheries and the Environment (DFFE). 2021. South African Shellfish Monitoring and Control Programme (Issue 8). Cape Town: DFFE
- Department of Water Affairs (DWA) 2013. Support to the Continuation of the Water Reconciliation Strategy for the Western Cape Water Supply System: Status Report October 2013. Prepared by Umvoto Africa (Pty) Ltd in association with WorleyParsons on behalf of the Directorate: National Water Resource Planning, South Africa.
- Department of Water Affairs & Forestry (DWAF). 1995a. South African Water Quality Guidelines for Coastal Marine Waters. Volume 1 Natural Environment. Pretoria.

- Department of Water Affairs & Forestry (DWAF). 1995b. South African Water Quality Guidelines for Coastal Marine Waters. Volume 2 Recreational Use. Pretoria.
- Department of Water Affairs & Forestry (DWAF). 1995c. South African Water Quality Guidelines for Coastal Marine Waters. Volume 3. Industrial use. Pretoria.
- Department of Water Affairs & Forestry (DWAF). 1995d. South African Water Quality Guidelines for Coastal Marine Waters. Volume 4. Mariculture. Pretoria.
- Department of Water Affairs & Forestry (DWAF). 1998. The National Water Act, No 36. Department of Water Affair and Forestry. Pretoria.
- DWAF 2000. 1:500 000 Hydrogeological map series of the republic of South Africa. Cape Town, 3317.
- Desideri D, Meli MA, Roselli C & L Feduzi. 2009. A biomonitoring study: 210Po and heavy metals in mussels. Journal of Radioanalytical and Nuclear Chemistry 279: 591–600.
- Dias MP, Granadeiro JP, Lecog M, Santos CD & JM Palmeirim. 2006. Distance to high-tide roosts constrains the use of foraging areas by dunlins: implications for the management of estuarine wetlands. Biological Conservation 131: 446–452.
- du Toit M. 2004. Avian Demography Unit, Dept of Statistical Sciences, University of Cape Town (UCT). http://web.uct.ac.za/depts/stats/adu/species/bankcormorant.htm; http://web.uct.ac.za/depts/stats/adu/species/capecormorant.htm; http://web.uct.ac.za/depts/stats/adu/species/crcormorant.htm and http://web.uct.ac.za/depts/stats/adu/species/wbcormorant.htm
- Duarte CM. 2002. The future of seagrass meadows. Environmental Conservation 29: 192–206.
- Eckman JE. 1990. A model of passive settlement by planktonic larvae onto bottoms of differing roughness. Limnology and Oceanography 35: 887–901.
- Ecosense Consulting Environmentalists. 2017. Basic Assessment Report for the Proposed Molapong Aquaculture Project. Report Prepared for Molapong in July 2017.
- Emery NC, Ewanchuk PJ & MD Bertness. 2001. Competition and saltmarsh plant zonation: Stress tolerators may be dominant competitors. *Ecology* 82: 2471–2485.
- Environmental Resources Management (ERM) 2015a. Independent Power Producers Programme: EIA for a Floating Power Plant, Port of Saldanha. Background Information Document. Report Prepared by Environmental Resources Management for the Department of Energy Republic of South Africa. October 2015, 10 pp.
- Environmental Resources Management (ERM) 2015b. Independent Power Producers Programme: EIA for a Floating Power Plant, Port of Saldanha. Draft Scoping Report. Report Prepared by Environmental Resources Management for the Department of Energy Republic of South Africa. Document Code 0320754, November 2015, 114 pp.
- Environmental Resources Management (ERM) 2015c. Environmental Impact Assessment Report for a Gas-fired Independent Power Plant to Support Saldanha Steel and Other Industries in Saldanha Bay, Western Cape. Draft Report version 2. Report prepared by Environmental Resources Management for Arcelor Mittal. Document Code 0315829, September 2016, 432 pp.

- Eno NC, Clark RA & WG Sanderson. 1997. *Non-native species in British waters: a review and directory*. Peterborough: Joint Nature Conservation Committee. 136 pp.
- EPA. 2003. After the storm. US Environmental Protection Agency. EPA 833-B-03-002. http://epa.gov/weatherchannel/storm water.html.
- Erasmus T & AF De Villiers. 1982. Ore dust pollution and body temperatures of intertidal animals. *Marine Pollution Bulletin* 13(1): 30–32.
- Erftemeijer PLA & RRR Lewis. 2006. Environmental impacts of dredging on seagrasses: a review. *Marine Pollution Bulletin* 52: 1553–1572.
- Falco GDE, Magni P, Terasvuori LMH & G Matteucci. 2004. Sediment grain size and organic carbon distribution in the Cabras Lagoon (Sardinia, Western Mediterranean). Chemistry and Ecology 20: 367–377.
- Faulkner KT, Robertson MP, Rouget M & JRU Wilson. 2017. Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa. PLoS ONE 12: e0173340.
- Fernández M & JC Castilla. 2000. Recruitment of *Homalaspis plana* in intertidal habitats of central Chile and implications for the current use of Management and Marine Protected Areas. Marine Ecology Progress Series 208: 157–170.
- Firth DC, Salie K, O'Neill B & LC Hoffman. 2019. Monitoring of trace metal accumulation in two South African farmed mussel species, *Mytilus galloprovincialis* and *Choromytilus meridionalis*.

 Marine Pollution Bulletin 141: 529 534.
- Flemming BW. 1977. Distribution of recent sediments in Saldanha Bay and Langebaan Lagoon. Transactions of the Royal Society of South Africa 42(3–4): 317–340.
- Flemming BW. 2015. Depositional processes in Saldanha Bay and Langebaan Lagoon (Western Cape, South Africa). National Research Institute for Oceanology (NRIO), Stellenbosch, CSIR Research Report 362 (revised edition), 233 pp.
- Flemming BW. 2016. Long-term impacts of harbour construction in Saldanha Bay (South Africa). Unpublished report, 8 pp.
- Flood N. 2013. Seasonal composite landsat TM/ETM+ Images using the medoid (a multi-dimensional median). Remote Sens.0 5, 6481–6500.
- Florence WK, Hayward PJ & MJ Gibbons. 2007. Taxonomy of shallow water Bryozoa from the west coast of South Africa. African Natural History 3: 1–58.
- Fofonoff PW, Ruiz GM, Steves B, Simkanin C & JT Carlton. 2018. National Exotic Marine and Estuarine Species Information System. http://invasions.si.edu/nemesis/. Access Date: 16/9/2019.
- Food and Agricultural Organization of the United Nations (FAO). 2015. Aquaculture operations in floating HDPE cages. A field handbook. Cardia F. & A. Lovatelli Fisheries and Aquaculture Technical Paper 593.
- Foxcroft LC, van Wilgen BW, Abrahams B, Esler KJ and Wannenburgh A. 2020. *Knowing-doing continuum or knowing-doing gap*? Information flow between researchers and managers of

- biological invasions in South Africa. In: van Wilgen BW, Measey J, Richardson DM, Wilson JR and Zengeya TA (eds.). Biological Invasions in South Africa. Springer. Cham. pp. 831–853.
- Fraser M, Fortier M, Foucher D, Roumier P-H, Brousseau P, Fournier M, Surette C & C Vaillancourt 2017. Exposure to Low Environmental Concentrations of Manganese, Lead, and Cadmium Alters the Serotonin System of Blue Mussels. Environmental Toxicology and Chemistry 37(1): 192–200.
- Fuentes HR. 1982. Feeding habitats of *Graus nigra* (Labridae) in coastal waters of Iquique in northern Chile. Japanese Journal of Ichthyology 29: 95–98.
- Furlong A. 2017. West Coast Phosphate Mine Stopped for Now. Article published in GroundUp on 15 September 2017. Available [Online]: https://www.groundup.org.za/article/west-coast-phosphate-mine-stopped-now (Accessed 16 September 2017).
- Game ET, Grantham HS, Hobday AJ, Pressey RL, Lombard AT, Beckley LE, Gjerde K, Bustamante R, Possingham HP & AJ Richardson. 2009. Pelagic protected areas: the missing dimension in ocean conservation. Trends in Ecology and Evolution 24: 360–369.
- Ganter B. 2000. Seagrass (*Zostera* spp.) as food for brent geese (*Branta bernicla*): an overview. Helgoland Marine Research 54: 63–70.
- Gaymer CF & JH Himmelman. 2008. A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Marine Ecology Progress Series 370: 143–153.
- GEOSS 2010. Geohydrological Prospecting Scoping Report for a phosphate prospecting permit application, Elandsfontein No 349, Malmesbury Magisterial District, West Coast. GEOSS project no 2010/07-623.
- GEOSS 2019. Geohydrological input into a Strategic Environmental Assessment for the Greater Saldanha Area, Western Cape GEOSS Report Number: 2019/05-14. GEOSS Geohydrological & Spatial Solutions International (Pty) Ltd. Stellenbosch, South Africa.
- GEOSS. 2021. Groundwater Monitoring for the Saldanha SFF. GEOSS Report Number: 2021/06-18. GEOSS South Africa (Pty) Ltd. Stellenbosch, South Africa.
- Geraldi NR, Smyth AR, Piehler MF & CH Peterson. 2014. Artificial substrates enhance non-native macroalga and N2 production. Biological Invasions 16: 1819–1831.
- Gericke J. 2008. Analysis of Four Decades of Changes to Sedimentary Features by means of Historical Aerial Photographs: Langebaan Lagoon and Saldanha Bay. Honours Thesis, University of Cape Town, Department of Environmental and Geographical Science.
- GIBB. 2013. Port of Saldanha: Proposed Expansion of Existing Iron Ore Terminal Background Information for Public Participation. GIBB (Pty) Ltd. Prepared for Transnet.
- Gibbs RJ. 1994. Metals in sediments along the Hudson River Estuary. Environmental International 20: 507–516.
- Gibson R, Hextall B & A Rogers. 2001. Photographic guide to the sea and shore life of Britain and northwest Europe. New York: Oxford University.

- Gihwala K, Hutchings K & BM Clark. 2021. Saldanha Bay sea-based Aquaculture Development Zone annual chemical survey. Report no. 1937/4 prepared by Anchor Research and Monitoring (Pty) Ltd for the World Wide Fund for Nature 29 pp.
- Glasson J, Thérivel R & A Chadwick. 1999. Introduction to Environmental Impact Assessment: Principles and Procedures, Process, Practice and Prospects. UCL Press, London.
- Gollasch S, Macdonald E, Belson S, Botnen H, Christensen JT, Hamer JP, Houvenaghel G, Jelmert A, Lucas I, Masson D, Mccollin T, Olenin S, Persson A, Wallentinus I, Wetsteyn LPMJ & T Wittling. 2002. Life in Ballast tanks. In: *Invasive Aquatic Species of Europe: Distribution, Impacts and Management*. Leppakoski E, Gollasch S, Olenin, S (Eds.), Academic Publishers, Netherlands 217–231 pp.
- Gordon DP & SF Mawatari. 1992. Atlas of Marine Fouling Bryozoa of New Zealand Ports and Harbours. New Zealand Oceanographic Institute, Miscellaneous Publications 107: 52 pp.
- Gosner KL. 1978. A field guide to the Atlantic seashore. The Peterson field guide series. Houghton-Mifflin. Boston.
- Government Gazette. 2019. National Environmental Management: Biodiversity Act, 2004 (Act No. 10 Of 2004) Draft Biodiversity Management Plan for The African Penguin. Government Gazette. No. 42775, 18 October 2019.
- Gowen RJ & IA Ezzi. 1992. Assessment and production of the potential for hypernutrification and eutrophication associated with cage culture of salmonids in Scottish coastal waters.

 Dunstaffnage Marine Laboratory, Oban
- Grant WS & MI Cherry. 1985. *Mytilus galloprovincialis* Lmk in southern Africa. *Journal of* Experimental Marine Biology and Ecology 90(2): 179–162.
- Grant WS, Cherry MI & AT Lombard. 1984. A cryptic species of *Mytilus* (Mollusca: Bivalvia) on the west coast of South Africa. South African Journal of Marine Science 2: 149–162.
- Green Etxabe A. 2013. The wood boring amphipod *Chelura terebrans*, University of Portsmouth 1–232 pp.
- Greenan TM, Griffiths CL & CA Santamaria. 2018. Molecular approaches uncover cryptic diversity in intertidal *Ligia* isopods (Crustacea, Isopoda, Ligiidae) across the southern Africa coastline. PeerJ 6:e4658 https://doi.org/10.7717/peerj.4658
- Grémillet D, Péron C, Kato A, Amélineau F, Ropert-Coudert Y, Ryan PG & L Pichegru. 2016. Starving seabirds: unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem. Marine Biology 163(2): 35.
- Griffiths CL. 1974. The Amphipoda of Southern Africa Part 4: The Gammaridea and Caprellidea of the Cape Province east of Cape Agulhas. Annals of the South African Museum 65(9): 251–336.
- Griffiths CL. 1975. The Amphipoda of southern Africa, Part 5. The Gammaridea and Caprellidea of the Cape Province east of Cape Agulhas. Annals of the South African Museum 67: 91–18
- Griffiths CL. 2018. First record of the maritime earwig *Anisolabis maritima* (Dermaptera: Anisolabididae) from South Africa. Bioinvasions Records 4:495–462.

- Griffiths CL, Hockey PAR, Van Erkom Schurink C & PJL Roux. 1992. Marine invasive aliens on South African shores: Implications for community structure and trophic functioning. South African Journal of Marine Science 12: 713–722.
- Griffiths CL, Roberts S, Branch M, Eckel K, Schubart CD & R Lemaitre. 2018. The porcelain crab *Porcellana Africana* Chace, 1956 (Decapoda: Porcellanidae) introduced into Saldanha Bay, South Africa. BioInvasions Records 7(2): 133-142.
- Griffiths CL, Robinson T & A Mead. 2011. The Alien and Cryptogenic Marine Crustaceans of South Africa. In: Galil BS, Clark PF & Carlton JT (eds). In the Wrong Place Alien Marine Crustaceans: Distribution, Biology and Impacts Invading Nature. Springer Series in Invasion Ecology 6.
- Griffiths CL, Robinson TB & A Mead. 2008. The status and distribution of marine alien species in South Africa. In: Rilov G & Crooks J (eds.). Marine Bioinvasions: Ecology, Conservation and Management Perspectives. Springer, Heidelberg 204, 393–408 pp.
- Griffiths CL, van Sittert L, Best PB, Brown AC, Clark BM, Cook PA, Crawford RJM, David JHM, Davies BR, Griffiths MH, Hutchings K, Jerardino A, Kruger N, Lamberth S, Leslie RW, Melville-Smith R, Tarr R & CD van Der Lingen. 2004. Impacts of human activities on marine animal life in the Benguela: A historical overview. Oceanography and Marine Biology: An Annual Review 42: 303–392.
- Grindley JR. 1977. The zooplankton of Langebaan Lagoon and Saldanha Bay. Transactions of the Royal Society of South Africa 42: 341–369.
- Guarnieri G, Terlizzi A, Bevilacqua S & S Fraschetti. 2009. Local vs. regional effects of substratum on early colonization stages of sessile assemblages: biofouling. Journal of Bioadhesion and Biofilm Research 25: 593–604.
- Guerra-Garcia, JM & CJ Garcia-Gomez. 2004. Polychaete assemblages and sediment pollution in a harbour with two opposing entrances. Helgoland Marine Research 58: 183–191.
- Guichard F & E Bourget. 1998. Topographic heterogeneity, hydrodynamics, and benthic community structure: a scale-dependent cascade. Marine Ecology Progress Series 171: 59–70.
- Hampton SL & CL Griffiths. 2007. Why *Carcinus maenas* cannot get a grip on South Africa's wave-exposed coastline. African Journal of Marine Science 29(1): 123–126.
- Hanisak MD. 1979. Growth patterns of Codium fragile tomentosoides in response to temperature, irradiance, salinity, and nitrogen source. Marine Biology 50: 319–332.
- Hanekom N & P Nel. 2002. Invasion of sandflats in Langebaan Lagoon, South Africa, by the alien mussel *Mytilus galloprovincialis*: size, composition and decline of the populations. African Zoology 37: 197–208.
- Hargrave BT, Holmer M & CP Newcombe. 2008b. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin. 56(5):810-24.
- Harris LG & AC Jones. 2005. Temperature, herbivory and epibiont acquisition as factors controlling the distribution and ecological role of an invasive seaweed. Biological Invasions 7: 913–924.

- Haupt TM, Griffiths CL, Robinson TB & AFG Tonin. 2010. Oysters as vectors of marine aliens, with notes on four introduced species associated with oyster farming in South Africa. African Zoology 45(1): 52–62.
- Hayward PJ & JS Ryland. 1999. *Cheilostomatous* Bryozoa. Part 2: Hippothoidea-Celleporoidea, Synopses of the British Fauna 14: 1–416.
- He H, Chen F, Li H, Xiang W, Li Y & Y Jiang. 2009. Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of *Alexandrium tamarense*. Harmful Algae 9(1): 98–104.
- Heck KL, Hays C & RJ Orth. 2003. A critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253: 123–136.
- Hedger RD, Næsje TF, Cowley PD, Thorstad EB, Attwood C, Økland F, Wilke CG & S Kerwath. 2010. Residency and migratory behaviour by adult *Pomatomus saltatrix* in a South African coastal embayment. Estuarine, Coastal and Shelf Science 89: 12–20.
- Heinecken C. 2019. Report on the baseline sample collection for the Saldanha Bay Aquaculture

 Development Zone, South Africa. Reported prepared by Capricorn Fisheries Monitoring cc.

 13 pp.
- Hellawell JM. 1986. Biological indicators of freshwater pollution and environmental management. London: Elsevier Applied Science Publishers.
- Hemmingra MA & CM Duarte. 2000. Seagrass Ecology. Cambridge: University Press.
- Henrico I & J Bezuidenhout. 2020. Determining the change in the bathymetry of Saldanha Bay due to the harbour construction in the seventies. South African Journal of Geomatics 9(2): 236-249
- Henschel JR, Cook PA & GM Branch. 1990. The colonization of artificial substrata by marine sessile organisms in False Bay. I. Community development. South African Journal of Marine Science 9: 289–297.
- Henzler CM & A Ingolfsson. 2008. The biogeography of the beachflea, *Orchestia gammarellus* (Crustacea, Amphipoda, Talitridae), in the North Atlantic with special reference to Iceland: a morphometric and genetic study. Zoologica Scripta 37: 57–70.
- Herman PMJ, Hemmingra MA, Nienhuis PH, Verschuure JM & EGJ Wessel. 1996. Wax and wane of eelgrass *Zostera marina* and water column silicon levels. Marine Ecology Progress Series. Oldendorf 14(1): 303–307.
- Hewitt CL, Gollasch S & D Minchin. 2009. The vessel as a vector biofouling ballast water and sediments. In: *Biological Invasions in Marine Ecosystems*, Rilov G & Crooks JA (eds.). Springer-Verlag, Berlin, 117–131 pp.
- Hir ML & C Hily. 2005. Macrofaunal diversity and habitat structure in intertidal boulder fields. Biodiversity and Conservation 14: 233–250.
- Hockey PAR & C van Erkom Schurink. 1992. The invasive biology of the mussel *Mytilus galloprovincialis* on the southern African coast. Transactions of the Royal Society of South Africa 48: 123–139.

- Hockey PAR, Dean WRJ & PG Ryan (eds.) 2005. Roberts Birds of Southern Africa, 7th edition. Trustees of the John Voelcker Bird Book Fund, Cape Town, 1296 pp.
- Hodgkiss IJ & KC Ho. 1997. Are changes in N:P ratios in coastal waters the key to increased red tide blooms? In: Asia-Pacific Conference on Science and Management of Coastal Environment. Springer, Netherlands, 141–147 pp.
- Holloway J & K Mengersen. 2018. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10.
- Horton M, D Parker, H Winker, SJ Lamberth, K Hutchings & SE Kerwath 2019. Age, growth and perrecruit stock assessment of southern mullet *Chelon richardsonii* in Saldanha Bay and Langebaan Lagoon, South Africa, African Journal of Marine Science, 41:3: 313-324
- Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R & G Billen. 2011. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9(1): 18–26.
- Hutchings K & BM Clark. 2011. Saldanha Reverse Osmosis Desalination Plant Benthic Macrofauna and Sediment Baseline Survey Report. Report to CSIR and Transnet. Anchor Environmental Consultants Report 391/1, 38 pp.
- Hughes JE, Deegan LA, Wyda JC, Weaver MJ & A Wright. 2002. The effect of eelgrass habitat loss on estuarine fish communities of Southern New England. Estuaries 25: 235–249.
- Hughes RG & OAL Paramor. 2004. On the loss of salt marshes in south-east England and methods for their restoration. Journal of Applied Ecology 41: 440–448.
- Hughes RN. 1979. South African populations of Littorina rudis. Zoological Journal of the Linnean Society 65: 119–126.
- Hutchings K & SJ Lamberth. 2002a. Bycatch in the gillnet and beach-seine fisheries in the Western Cape, South Africa, with implications for management. South African Journal of Marine Science 24: 227–241.
- Hutchings K & SJ Lamberth. 2002b. Catch and effort estimates for the gillnet and beach-seine fisheries in the Western Cape, South Africa. South African Journal of Marine Science 24: 205–225.
- Hutchings K, Porter S, Clark BM & K Sink. 2011. Strategic Environmental Assessment: Identification of potential marine aquaculture development zones for fin fish cage culture. Report prepared for Directorate Sustainable Aquaculture Management: Aquaculture Animal Health and Environmental Interactions Department of Agriculture, Forestry and Fisheries.
- International Maritime Organisation (IMO). 2015. IMO at ballast water management conference. Available [Online]: https://www.imo.org/en/MediaCentre/Pages/WhatsNew-469.aspx. Accessed on 14 October 2021.
- Institute for Water Studies. 2021. Groundwater monitoring of the Hopefield and Langebaan Road wellfields March 2021. Institute for Water Studies, University of the Western Cape, Bellville, Cape Town.
- IUCN. 2009. Marine Menace: Alien invasive species in the marine environment. http://wwwvlizbe/imisdocs/publications/153100pdf

- Jackson LF & S McGibbon. 1991. Human activities and factors affecting the distribution of macrobenthic fauna in Saldanha Bay. South African Journal of Aquatic Science 17(1/2): 89–102.
- Jarman ML. 1986. Conservation priorities in lowland regions of the fynbos biome. South African national scientific Programme Report No 87. CSIR, Pretoria, 55 pp.
- Jensen A & B Mogensen. 2000. Effects, ecology and economy. Environmental aspects of dredging Guide No. 6. International Association of Dredging Companies (IADC) and Central Dredging Association (CEDA), 119 pp.
- Kado R. 2003. Invasion of Japanese shores by the NE Pacific barnacle *Balanus glandula* and its ecological and biogeographical impact. Marine Ecology Progress Series 249: 199–206.
- Källén J, Muller H, Franken ML, Crisp A, Stroh C, Pillay D & C Lawrence. 2012. Seagrass-epifauna relationships in a temperate South African estuary: Interplay between patch-size, within-patch location and algal fouling. Estuarine, Coastal and Shelf Science 113: 213–220.
- Keanly C & TB Robinson. 2020. Encapsulation as a biosecurity tool for managing fouling on recreational vessels. Aquatic Invasions 15(1): 81–97.
- Keightley J, von der Heyden S & S Jackson. 2015. Introduced Pacific oysters *Crassostrea gigas* in South Africa: demographic change, genetic diversity and body condition. African Journal of Marine Science 37: 89–98.
- Kemper J, Underhill LG, Crawford RJM & SP Kirkman. 2007. Revision of the conservation status of seabirds and seals breeding in the Benguela Ecosystem. In: Kirkman SP (ed.) Final Report of the Benguela Current Large Marine Ecosystem (BCLME), 325–342 pp.
- Kensley B & ML Penrith. 1970. New record of *Mytilidae* from the Northern Southwest African coast. Annals of the South African Museum 57(2): 15–24.
- Kerwath SE, Thorstad EB, Næsje TF, Attwood CG, Cowley PD, Økland F & C Wilke. 2009. Crossing Invisible Boundaries: The effectiveness of the Langebaan Lagoon marine protected area as a harvest refuge for a migratory fish species in South Africa. Conservation Biology 23 (3): 653–661.
- Kerwath S & C Wilke. 2013. Snoek *Thrysites atun*. In: In: Mann BQ (Ed) Southern African Marine Linefish Species Profiles. Special Publication Oceanographic Research Institute, Durban 9: 69-70.
- Kikuchi T & JM Perez. 1977. Consumer ecology of seagrass beds. In: McRoy CP, Helferich C (eds) Seagrass Ecosystems: A Scientific Perspective. New York: Marcel Dekker, 147–186 pp.
- Kirchman D, Graham S, Reish D & R Mitchell. 1982. Bacteria induce settlement and metamorphosis of *Janua* (*Dexiospira*) *brasiliensis* Grube (Polychaeta: Spirorbidae). Journal of Experimental Marine Biology and Ecology 56: 153–163.
- Kirkman SP, Oosthuizen WH, Meÿer MA, Kotze PGH, Roux J-P, Underhill LG. 2007. Making sense of censuses and dealing with missing data: trends in pup counts of Cape fur seal *Arctocephalus pusillus* for the period 1972–2004. African Journal of Marine Science 29: 161–176.

- Kirkman SP, Yemane D, Oosthuizen WH, Meÿer MA, Kotze PGH, Skrypzeck H, Vaz Velho F & LG Underhill. 2013. Spatio-temporal shifts of the dynamic Cape fur seal population in southern Africa, based on aerial censuses (1972–2009). Marine Mammal Science 29: 497–524.
- Kirkman SP, Costa DP, Harrison AL, Kotze PGH, Oosthuizen WH, Weise MJ, Botha JA & JPY Arnould. 2019. Dive behaviour and foraging effort of female Cape fur seals *Arctocephalus pusillus* pusillus. Royal Society Open Science. 6(10): 191369
- Kljaković-Gašpić Z, Herceg-Romanić S, Kožul D & J Veža. 2010. Biomonitoring of organochlorine compounds and trace metals along the Eastern Adriatic coast (Croatia) using *Mytilus galloprovincialis*. Marine Pollution Bulletin 60(10): 1879–1889.
- Knight-Jones P, Knight-Jones EW & T Kawahara. 1975. A review of the genus *Janua*, including *Dexiospira* (Polychaeta: Spirorbidae). Zoological Journal of the Linnean Society 56: 91–129.
- Knowles R. 1982. Denitrification. Microbiological Reviews 46(1): 43–70.
- Knudsen FR, Schreck CB, Knapp SM, Enger PS & O Sand. 1997. Infrasound produces flight and avoidance response in Pacific juvenile salmonids. *Journal of Fish Biology* 51: 824–829.
- Konings A. 2001. Malawi Cichlids in their Natural Habitat. Cichlid Press.
- Kostylev VE, Erlandsson J, Ming MY & AW Gray. 2005. The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecology Complex 2: 272–286.
- Krug M. 1999. Circulation through the Mouth of Langebaan Lagoon and Implications (Doctoral dissertation, University of Cape Town).
- Kruger N. 2002. Long term changes in the benthic macrofauna of Saldanha Bay. M.Sc. Thesis, University of Cape Town, 96 pp.
- Kruger N, Branch GM, Griffiths CL & JG Field. 2005. Changes in the epibenthos of Saldanha Bay, South Africa, between the 1960s and 2001: An analysis based on dredge samples. *African Journal of Marine Science* 27(2): 471–477.
- Krüger HR & N Peinemann. 1996. Coastal plain halophytes and their relation to soil ionic composition. Vegetation 122: 143–150.
- Kuhne H & G Becker. 1964. Der holz-flohkrebs *Chelura terebrans* Philippi (Amphipoda, Cheluridae), Beihefte Zeitschrift Angewandte Zoologie 1: 1–141.
- Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, et al. 2015. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. BioScience 65: 55–63.
- La Farré M, Pérez S & L Kantiani. 2008. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. *Trends in Analytical Chemistry* 27(11): 991–1007.
- Laird MC & BM Clark. 2016. Marine Impact Assessment for the Construction of a Dedicated Ship and Rig Repair Facility at Berth 205 and a Jetty at the Existing Mossgas Quay Under Project Phakisa, Saldanha Bay. Report no. 1678/1 prepared by Anchor Environmental Consultants for CCA Environmental, 98 pp.

- Laird MC & CL Griffiths. 2008. Present distribution and abundance of the introduced barnacle *Balanus glandula* Darwin in South Africa. African Journal of Marine Science 30(1): 93–100.
- Lamarck JB. 1818. Histoire naturelle des animaux sans vertebres. Paris 5: 1-612.
- Laugksch RC & NJ Adams. 1993. Trends in pelagic fish populations of the Saldanha Bay region, Southern Benguela upwelling system, 1980-1990: A predator's perspective. South African Journal of Marine Science 13: 295–307.
- Le Roux J. 2002. Avian Demography Unit, Dept of Statistical Sciences, University of Cape Town. http://web.uct.ac.za/depts/stats/adu/species/sp324_00.htm.
- Leipe T, Tauber F, Vallius H, Virtasalo J, Uscinowicz S, Kowalski N, Hille S, Lindgren S & T Myllyvirta. 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Marine Letters 31:175–188.
- Lewis JR. 1964. The Ecology of Rocky Shores. English Universities Press, London.
- Lewis S, Grémillet D, Daunt F, Ryan PG, Crawford RJM & S Wanless. 2006. Using behavioural variables to identify proximate causes of population change in a seabird. Oecologia 147: 606–614.
- Lindberg C, Griffiths CL & RJ Anderson. 2020. Colonisation of South African kelp-bed canopies by the alien mussel *Mytilus galloprovincialis*: extent and implications of a novel bioinvasion.

 African Journal of Marine Science 42(2): 167–176.
- Lindstrom SC & PW Gabrielson. 1989. Taxonomic and distributional notes on northeast Pacific Antithamnionaceae (Ceramiales: Rhodophyta). Japanese Journal of Phycology 37: 221–235.
- Loewenthal D. 2007. The Population Dynamics and Conservation of the African Black Oystercatcher Haematopus moquini. Thesis submitted for the Degree of Doctor of Philosophy at the Percy FitzPatrick Institute of African Ornithology. Department of Zoology, University of Cape Town. September 2007.
- Londoño-Cruz E & M Tokeshi. 2007. Testing scale variance in species-area and abundance-area relationships in a local assemblage: an example from a subtropical boulder shore. Population Ecology 49: 275–285.
- Long ER, MacDonald DD, Smith SL & FD Calder. 1995. Incidence of adverse biological effects within ranges of concentrations in marine and estuarine sediments. Environmental Management 19: 81–97.
- Lopez M, Pagán JI, López Úbeda I, Aragonés L, Tenza-Abril AJ & J Garcia-Barba. 2017. Factors influencing the retreat of the coastline. International Journal for Computational Methods in Engineering Science and Mechanics 5: 741-749.
- Ludynia K, Roux JP, Jones R, Kemper J & LG Underhill. 2010. Surviving off junk: Low-energy prey dominates the diet of African penguins *Spheniscus demersus* at Mercury Island, Namibia, between 1996 and 2009. African Journal of Marine Science 32: 563–572.
- Ludynia K, Waller LJ, Sherley RB, Abadi F, Galada Y, Geldenhuys D, Crawford RJM, Shannon LJ & A Jarre. 2014. Processes influencing the population dynamics and conservation of African penguins on Dyer Island, South Africa. African Journal of Marine Science 36(2): 253–267.

- Luger S, Van Ballegooyen R & PMS Monteiro. 1999. A Modelling-driven Environmental Baseline Assessment for the Proposed New Hood Point Outfall in East London: Hydrodynamic and Water Quality Modelling Study. CSIR Report ENV-S-C 99109B. CSIR Environmental, Stellenbosch, South Africa.
- Luhlaza. 2021. Report to Saldanha Bay Local Municipality on the Results of the Groundwater Monitoring Investigation for August 2021 for Langebaan and Hopefield Well Fields, Western Cape. Luhlaza Report Number: LC015-21.R02. Luhlaza Advisory and Consulting (Pty) Ltd. Cape Town, South Africa.
- Mabin CA, Wilson JRU & TB Robinson. 2015. The Chilean black urchin, *Tetrapygus niger* (Molina, 1782) in South Africa: gone but not forgotten. BioInvasions Records 4: 261–264.
- Mackie JA, Keough MJ, Norman JA & L Christidis. 2001. Mitochondrial evidence of geographical isolation within *Bugula dentata Lamouroux*. In: Wyse-Jackson PN, Buttler CJ & Spencer JME (eds.). Bryozoan Studies, Proceedings of 12th International Bryozoology Association Conference, Balkema, Lisse, Netherlands: 199–206 pp.
- Madsen FJ. 1956. Reports of the Lund University Chile Expedition 1948–49. No. 24. Asteroidea, with a survey of the Asteroidea of the Chilean shelf. Lund Universitets Årsskrift, 53 pp.
- Maggs JQ & BQ Mann. 2013. Elf (*Pomatomus saltatrix*) In: Mann BQ (Ed). Sothern African marine Linefish Species Profiles. Special publication, Oceanographic Research institute Durban: 143–144.
- Maggs CA & MH Hommersand. 1993. Seaweeds of the British Isles. Volume 1: Rhodophyta. Part 3A: Ceramiales. London, HMSO, for Natural History Museum.
- Makhado AB, Crawford RJM & LG Underhill. 2006. Impact of predation by Cape fur seals *Arctocephalus* pusillus pusillus on Cape Gannets *Morus capensis* at Malgas Island, Western Cape, South Africa. African Journal of Marine Science 28: 681–687.
- Makhado AB, Meÿer MA, Crawford RJM, Underhill LG & C Wilke. 2009. The efficacy of culling seals seen preying on seabirds as a means of reducing seabird mortality. African Journal of Ecology 47: 335–340.
- Malinowski KC & Ramus J. 1973. Growth of the green alga *Codium fragile* in a Connecticut estuary. Journal of Phycology 9: 102–110.
- Maneveldt GW, Eager RC & A Bassier. 2009. Effects of long-term exclusion of the limpet *Cymbula oculus* (Born) on the distribution of intertidal organisms on a rocky shore. African Journal of Marine Science 31: 171–179.
- Manuel RL. 1981. British Anthozoa. Academic Press, London, 241 pp.
- Marangoni C. 1998. The potential for the introduction of alien phytoplankton by shipping ballast water: Observations in Saldanha Bay. M.Sc. Thesis for the Faculty of Science, University of the Witwatersrand, Johanesburg.
- McBride G & G Payne. 2009. The Hazen Percentile Calculator. National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand.

- McClintock JB, Angus RA & FE McClintock. 2007. Abundance, diversity and fidelity of macroinvertebrates sheltering beneath rocks during tidal emersion in an intertidal cobble field: Does the intermediate disturbance hypothesis hold for less exposed shores with smaller rocks? Journal of Experimental Marine Biology and Ecology 352: 351–360.
- McCoy ED & SS Bell. 1991. Habitat Structure: The Evolution and Diversification of a Complex Topic. In: Bell SS, McCoy ED & Mushinsky HR (eds), Habitat structure and the physical arrangement of objects in space. Chapman & Hall, New York, 3-27 pp.
- McDermott JJ. 2009. Hypersymbioses in the pinnotherid crabs (Decapoda: Brachyura: Pinnotheridae): a review. Journal of Natural History 43(13–14): 785–805.
- McGuinness KA. 1984. Species-area relations of communities on intertidal boulders: testing the null hypothesis. Journal of Biogeography 11: 439–456.
- McGuinness KA & AJ Underwood. 1986. Habitat structure and the nature of communities on intertidal boulders. Journal of Experimental Marine Biology & Ecology 104: 97–123.
- McGuinness KA. 1987. Disturbance and organisms on boulders II. Causes of patterns in diversity and abundance. Oecologia 71: 420–430.
- McKibben JR & AH Bass. 1998. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. Journal of Acoustical Society of America 104: 3520–3533.
- McKinnon JG, Gribben PE, Davis AR, Jolley DF & JT Wright. 2009. Differences in soft-sediment macrobenthic assemblages invaded by *Caulerpa taxifolia* compared to uninvaded habitats, Marine Ecology Progress Series 380: 59–71.
- McQuaid CD & GM Branch. 1984. Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Marine Ecology Progress Series 19: 145–151.
- McQuaid CD & GM Branch. 1985. Trophic structure of rocky intertidal communities: response to wave action and implications for energy flow. Marine Ecology Progress Series 22: 153–161.
- McQuaid CD, Branch GM & AA Crowe. 1985. Biotic and abiotic influences on rocky intertidal biomass and richness in the southern Benguela region. South African Journal of Zoology 20: 115–122.
- McQuaid KA & CL Griffiths. 2014. Alien reef-building polychaete drives long-term changes in invertebrate biomass and diversity in a small, urban estuary. Estuarine, Coastal and Shelf Science 138: 101–106.
- Mead A, Carlton JT, Griffiths CL & M Rius. 2011a. Introduced and cryptogenic marine and estuarine species of South Africa. Journal of Natural History 45: 2463–2524.
- Mead A, Carlton JT, Griffiths CL & M Rius. 2011b. Revealing the scale of marine bioinvasions in developing regions: a South African re-assessment. Biological Invasions 13: 1991–2008.
- Mead A, Griffiths CL, Branch GM, McQuaid CD, Blamey LK, Bolton JJ, Anderson RJ, Dufois F, Rouault M, Froneman PW, Whitfield AK, Harris LR, Nel R, Pillay D & JB Adams. 2013. Human-mediated drivers of change impacts on coastal ecosystems and marine biota of South Africa. African Journal of Marine Science 35(3): 403–425.

- Meager JJ, Schlacher TA & M Green. 2011. Topographic complexity and landscape temperature patterns create a dynamic habitat structure on a rocky intertidal shore. Marine Ecology Progress Series 428: 1–12.
- Membrane Technology. 2013. Transnet uses RO desalination plant from Veolia Water. Membrane Technology News, April 2013 (4): 6–7 pp.
- Menge BA & GM Branch. 2001. Rocky Intertidal Communities. In: Burtness MD, Gaines S & Hay ME (eds.) Marine Community Ecology. Sinauer Associates, Sunderland, 221–251 pp.
- Millard N. 1952. Observations and experiments on fouling organisms in Table Bay Harbour, South Africa. Transactions of the Royal Society of South Africa 33(4): 415–445.
- Millard NAH. 1975. Monographs on the Hydroida of southern Africa. Annals of the South African Museum 68: 1–513.
- Miller KM & TH Carefoot. 1989. The role of spatial and size refuges in the interaction between juvenile barnacles and grazing limpets. Journal of Experimental Marine Biology and Ecology 134: 157–174.
- Milne Edwards H. 1834. Histoire Naturelle des Crustaces, Paris. 1, 1834, XXXV + 468 pp.
- Moldan A. 1978. A Study of the Effects of dredging on the benthic macrofauna in Saldanha Bay. South African Journal of Science 74: 106–108.
- Monniot C, Monniot F, Griffiths CL & M Schleyer. 2001. South African ascidians. Annals of the South African Museum 108: 1–141.
- Monteiro PMS & GB Brundrit. 1990. Interannual chlorophyll variability in South Africa's Saldanha Bay system, 1974-1979. South African Journal of Marine Science 9: 281–288.
- Monteiro PMS & JL Largier. 1999. Thermal stratification in Saldanha Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela Upwelling System. Estuarine and Coastal Shelf Science 49: 877–890.
- Monteiro PMS, Anderson RJ & S Woodbourne. 1997. ¹⁵N as a tool to demonstrate the contribution of fish-waste-derived nitrogen to an *Ulva* bloom in Saldanha Bay, South Africa. South African Journal of marine Science 18: 1–10.
- Monteiro PMS, Mcgibbon S & JL Henry. 1990. A decade of change in Saldanha Bay: natural or anthropogenic? South African Journal of Science 86: 454–456.
- Monteiro PMS, Anderson RJ & S Woodbourne. 1997. ¹⁵N as a tool to demonstrate the contribution of fish-waste-derived nitrogen to an Ulva bloom in Saldanha Bay, South Africa. South African Journal of marine Science 18: 1-10.
- Monteiro PMS, Pascall A & S Brown. 1999. The Biogeochemical Status of Near-Surface Sediments in Saldanha Bay in 1999. CSIR Report ENV-S-C 99093A.
- Monteiro PMS, Warwick PA, Pascall A & M Franck. 2000. Saldanha Bay Water Quality Monitoring Programme. Parts 1 & 2. CSIR.
- Morales C & T Antezana. 1983. Diet selection of the Chilean stone crab *Homalaspis plana*. Marine Biology 77: 79–83.

- Mostert B., Hutchings K., Gihwala K., Dawson J & Clark B.M. 2020a. Saldanha Bay sea-based Aquaculture Development Zone baseline benthic survey report. Report no. 1895/5 prepared by Anchor Research and Monitoring (Pty) Ltd for the Department of Environment Forestry and Fisheries 45 pp.
- Mostert B, Hutchings K & BM Clark. 2020b. Saldanha Bay sea-based Aquaculture Development Zone annual benthic redox survey including the once off survey of Small Bay. Report no. 1895/4 prepared by Anchor Research and Monitoring (Pty) Ltd for the Department of Environment Forestry and Fisheries 37 pp.
- Navarrete SA & T Manzur. 2008. Individual- and population-level responses of a keystone predator to geographic variation in prey. Ecology 89: 2005–2018.
- Navarro N. 2000. Planktonic ecosystem impacts of salmon cage aquaculture in a Scottish sea loch. ICES Cooperative Research Report 240, Denmark. [Online]: http://www.ices.dk/sites/pub/Publication%20Reports/Cooperative%20Research%20Report%20(CRR)/crr263/CRR263.pdf (accessed 2018-11-07).
- Næsje TJ, Attwood CG, Kerwath S, Cowley PD, Keulder F & C Arendse. 2008. Patterns and volumes of commercial and recreational harvest of white stumpnose in Saldanha Bay: an assessment of the fishery. Oral presentation at the South African Marine Science Symposium; 29-June-3rd July 2008, University of Cape Town, Cape Town.
- Nel R, Coetzee PS & G Van Niekerk. 1996. The evaluation of two treatments to reduce mud worm (*Polydora hoplura* Claparede) infestation in commercially reared oysters (*Crassostrea gigas* Thunberg). Aquaculture 141: 31–9.
- Nel J. 2018. Hydrogeological report for Langebaan Road Aquifer: Support document for Water Use License application. University of the Western Cape.
- Nel J. 2019. Hopefield Wellfield: Geophysical Survey, Borehole Locations, Construction and Yield. University of the Western Cape.
- Newell RC, Seiderer LJ & DR Hitchcock. 1998. The impact of dredging works in coastal waters: A review of the sensitivity to disturbance and subsequent recovery of biological resources on the seabed. Oceanography and Marine Biology: An Annual Review 36: 127–78.
- Newman WA. 1982. A review of the extant taxa of the "Group of *Balanus concavus*" (Cirripedia, Thoracica) and a proposal for genus-group ranks. Crustaceana 43: 25–36.
- Nikolaou A, Kostopoulou M, Lofrano G, Meric S, Petsas A & M Vagi. 2009. Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trends in Analytical Chemistry 28: 653–664.
- Nishihara GN & R Terada. 2010. Species richness of marine macrophytes is correlated to a wave exposure gradient. Phycological Research 58: 280–292.
- Noe GB & J Zedler. 2001. Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment. Journal of Vegetation Science 12: 61–74.
- Nondoda SP. 2012. Macrophyte distribution and responses to drought in the St. Lucia Estuary MSc. thesis Nelson Mandela Metropolitan University (NMMU), South Africa.

- NSOVO Environmental Consulting. 2017. Notive of Basic Assessment and Water Use License Application Processes for the Proposed Upgrade of Storm Water and Environmental Systems in the Port of Saldanha within the Jurisdiction of Saldanha Bay Local Municipality in Western Cape Province. Background Information Document, September 2017.
- Nybakken JW. 2001. Marine Biology: An Ecological Approach. Fifth Ed. ed. Addison Wesley Longman, Inc. San Francisco 579 pp.
- Occhipinti Ambrogi A & JL D'Hondt. 1981. *Distribution of bryozoans in brackish waters of Italy*. In: Larwood, Gilbert P & Nielsen C (eds.). Recent and Fossil Bryozoa. Olsen and Olsen. Fredensborg.
- Ocean Biogeographic Information System (ORBIS) 2011. www.iobis.org. Accessed 28 July 2011.
- O'Donnell MJ & MW Denny. 2008. Hydrodynamic forces and surface topography: centimeter-scale spatial variation in wave forces. Limnology and Oceanography 53: 579–588.
- O'Donoghue CH & D de Waterville. 1935. A collection of Bryozoa from South African. Journal of the Linnean Society (London) 39: 203–218.
- Okes NC, Hockey PA, Pichegru L, van der Lingen CD, Crawford RJM & D Grémillet. 2009. Competition for shifting resources in the southern Benguela upwelling: seabirds versus purse-seine fisheries. Biological Conservation 142: 2361–2368.
- Olivier D, Heinecken L & S Jackson. 2013. Mussel and oyster culture in Saldanha Bay, South Africa: Potential for sustainable growth, development and employment creation. Food Security 5: 251–267.
- Orth RJ & KA Moore. 1983. Chesapeake Bay: An unprecedented decline in submerged aquatic vegetation. *Science* 222(4619): 51–53.
- Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M & SL Williams. 2006. A global crisis for seagrass ecosystems. BioScience 56: 987–996.
- OSPAR. 2010. Quality Status Report 2010: Status and Trend of marine chemical pollution. Accessed at OSPAR.org on 13 June 2012.
- Page HM, Dugan JE, Culver CS & JC Hoesterey. 2006. Exotic invertebrate species on offshore oil platforms. Marine Ecology Progress Series 325: 101–107.
- Paine RT, Castilla JC & J Cancino. 1985. Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand, and Washington State. American Naturalist 125: 679–691.
- Pan D, Bouchard A, Legendre P & G Domon. 1998. Influence of edaphic factors on the spatial structure of inland halophytic communities: A case study in China. Journal of Vegetation Science 9: 797–804.
- Parker D, Kerwath S, Naesje T, Hutchings K, Clark B, Winker H, & C Attwood. 2017. When plenty is not enough: An assessment of the white stumpnose fishery of Saldanha Bay. African Journal of Marine Science 39:153–166.

- Parsons NJ, GousIII TJ, Schaefer AM & RET Vanstreels. 2016. Health evaluation of African penguins (*Spheniscus demersus*) in southern Africa. Onderstepoort Journal of Veterinary Research 83(1): 1–13.
- Pavlov DF, Bezuidenhout J, Frontasyeva MV & ZI Goryainova. 2015. Differences in trace element content between non-indigenous farmed and invasive bivalve mollusks of the South African coast. American Journal of Analytical Chemistry 6: 1–12.
- Pekel JF, Cottam A, Gorelick N & AS Belward. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540: 418–422.
- Persson LE. 1999. Growth and reproduction in two brackish water populations of *Orchestia gammarellus* (Amphipoda: Talitridae) in the Baltic Sea. Journal of Crustacean Biology 19: 53–59.
- Perry JE & RB Atkinson. 2009. York River Tidal Marshes. Journal of Coastal Research 57: 43–52.
- Peters K & TB Robinson. 2017. First record of the marine alien amphipod *Caprella mutica* (Schurin, 1935) in South Africa. BioInvasions Records 6(1): 61–66.
- Peters K & TB Robinson. 2018. From Chile to the South African west coast: first reports of the Chilean stone crab *Homalaspis plana* (H. Milne Edwards, 1834) and the South American sunstar *Heliaster helianthus* (Lamarck, 1816) outside their natural ranges. Bioinvasions Records 7(4): 421–426.
- Peters K, Griffiths C & TB Robinson. 2014. Patterns and drivers of marine bioinvasions in eight Western Cape harbours, South Africa. African Journal of Marine Science 36(1): 49–57.
- Peters K, Sink K & Robinson TB. 2019. Aliens cruising in: Explaining alien fouling macro-invertebrate species numbers on recreational yachts. Ocean & Coastal Management 182: p.104986.
- Pfaff MC, Branch GM, Wieters EA, Branch RA & BR Broitman. 2011. Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Marine Ecology Progress Series 425: 141–152.
- Phillips DJH & PS Rainbow. 1993. Biomonitoring of Trace Aquatic Contaminants. Applied Science Publishers, Barking.
- Phillips DJH. 1980. Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution. London: Applied Science Publishers.
- Phillips DJH. 1995. The chemistries and environmental fates of trace metals and organochlorines in aquatic ecosystems. Marine Pollution Bulletin 31(4-12): 193–200.
- Pichegru L, Grémillet D, Ryan PG & RJM Crawford. 2010. Marine no-take zone rapidly benefits endangered penguin. Biology Letters 6: 498–501.
- Pichegru L, Ryan PG, Le Bohec C, van der Lingen CD, Navarro R, Petersen S, Lewis S, van der Westhuizen J & D Grémillet. 2009. Overlap between vulnerable top predators and fisheries in the Benguela upwelling system: Implications for Marine Protected Areas. Marine Ecology Progress Series 391: 199–208.
- Pichegru L. 2012. Increasing breeding success of an endangered penguin: Artificial nests or culling predatory gulls? Bird Conservation International, 2013. Cambridge University Press.

- Pichegru L., Ryan PG, van der Lingen CD, Coetzee J, Ropert-Coudert Y & D Grémillet. 2007. Foraging behaviour and energetics of Cape gannets *Morus capensis* feeding on live prey and fishery discards in the Benguela upwelling system. Marine Ecology Progress Series 350: 127–136.
- Picker M & CL Griffiths. 2011. Alien and Invasive Animals: A South African Perspective. Random House Struik, Cape Town 240 pp.
- Pillay D, Branch GM, Dawson J & D Henry. 2011. Contrasting effects of ecosystem engineering by the cordgrass *Spartina maritima* and the sandprawn *Callianassa kraussi* in a marine-dominated lagoon. Estuarine, Coastal and Shelf Science 91: 169–176.
- Pillay D, Branch GM, Griffiths CL, Williams C & A Prinsloo. 2010. Ecosystem change in South African marine reserve 1960-2009: Role of seagrass loss and anthropogenic disturbance. Marine Ecology Progress Series 415: 35–48.
- Pilsbry HA. 1916. The sessile barnacles (Cirripedia) contained in the collections of the U.S. National Museum; including a Monograph of the American species. Bulletin of the United States National Museum, Washington 93: 1–366.
- Pitombo FB. 2004. Phylogenetic analysis of the Balanidae (Cirripedia, Balanomorpha). Zoologica Scripta 33(3): 261–276.
- Poggenpoel CE. 1996. The exploitation of fish during the Holocene in the south-western Cape, South Africa. M. A. Thesis, University of Cape Town: xxii+225pp.
- Poluzzi A & B Sabelli. 1985. Polymorphic zooids in deltaic species populations of *Conopeum seurati* (Canu, 1928) (Bryozoa, Cheilostomata). Marine Ecology 6: 265–284.
- Pope HR, Alexander ME & Robinson TB. 2016. Filtration, feeding behaviour and their implications for future spread: A comparison of an invasive and native barnacle in South Africa. Journal of Experimental Marine Biology and Ecology 479: 54–59.
- Popper AN & MC Hastings. 2009. The effects of anthropogenic sources of sound on fishes. Journal of Fish Biology 75: 455-489.
- PRDW. 2017. Initial dispersion modelling for proposed finfish farming in Saldanha Bay specialist marine modelling study. Specialist study S2001-78-RP-CE-001-R3, prepared for the Department: Agriculture, Forestry and Fisheries (DAFF) by PRDW Consulting & Port Engineers & Lwandle Technologies. 177 pp.
- Price JS, Ewing K, Woo M-K & KA Kershaw. 1988. Vegetation patterns in James Bay coastal marshes. II. Effects of hydrology on salinity and vegetation. Canadian Journal of Botany 66: 2586–2594.
- Pulfrich 2017 Concept for a proposed sea-based aquaculture development zone in Saldanha Bay, South Africa Marine Ecology Specialist Study. Report prepared by PISCES Environmental Services (Pty) Ltd for SRK Consulting. 141pp.
- Puce S, Bavestrello G, Azzini F & C Cerrano. 2003. On the occurrence of *Coryneeximia* Allman (Cnidaria, Corynidae) in the Mediterranean Sea. Italian Journal of Zoology 70(3): 249–252.
- Purser J & AN Radford. 2011. Acoustic noise induces attention shifts and reduces foraging performance in three-spine sticklebacks (*Gasterosteus aculeatus*). PLoS ONE 6(2): e17478.

- Raffaelli D & SJ Hawkins. 1996. Intertidal Ecology. London: Chapman and Hall, 356p.
- Rainbow PS. 1995. Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin 31: 183–192.
- Rainbow PS. 2002. Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution 120(3): 497–507.
- Ramus J. 1971. Codium: the invader. Discovery 6: 59-68.
- Rathbun MJ. 1894. Scientific results of explorations by the US Fish Commission steamer Albatross. XXIV Descriptions of new genera and species of crabs from the west coast of North America and the Sandwich Islands. Proceedings of the United States National Museum (1893) 16(933): 223–260.
- Read G & C Glasby. 2017. *Neanthes succinea* (Leuckart, 1847). In: Read G; Fauchald K (ed.) 2017, World Polychaeta database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=130391 [accessed 30 September 2017].
- Rhoads DC & DK Young. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Journal of Marine Research 28: 150–178.
- Richardson DM, Pyšek P & JT Carlton. 2011. A compendium of essential concepts and terminology in invasion ecology. In: Richardson DM (ed.) Fifty years of invasion ecology. The legacy of Charles Elton. Oxford: Wiley-Blackwell, 409–420 pp.
- Richardson SD, Plewa MJ, Wagner ED, Schoeny R & DM DeMarini. 2007. Occurrence, genotoxicity and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research 636(1-3): 178–242.
- Rius M, Clusella-Trullas S, McQuaid CD, Navarro RA, Griffiths CL & CA Matthee *et al.* 2014. Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecology and Biogeography 23: 76–88.
- Roberts DL & HP Siegfried. 2014. The Geology of the Saldanha, Vredenburg and Velddrif Environs; Geological Explanation Sheets 3317BB & 3318AA, 3217DB and 3218CA &CC Scale 1:50 000, Council of Geoscience, Pretoria.
- Robinson TB & CL Griffiths. 2002. Invasion of Langebaan Lagoon, South Africa, by *Mytilus galloprovincialis*—effects on natural communities. African Zoology 37: 151–158.
- Robinson TB & Swart C. 2015. Distribution and impact of the alien anemone *Sagartia ornata* in the West Coast National Park. Koedoe 57(1): 8 http://dx.doi.org/10.4102/koedoe.v57i1.1246
- Robinson TB, Alexander ME, Simon CA, Griffiths CL, Peters K, Sibanda S, Miza S, Groenewald B, Majiedt P & KJ Sink. 2016. Lost in translation? Standardising the terminology used in marine invasion biology and updating South African alien species lists. African Journal of Marine Science 38(1): 129–140.
- Robinson TB, Branch GM, Griffiths CL, Govender A & PAR Hockey. 2007b. Changes in South African rocky intertidal invertebrate community structure associated with the invasion of the mussel *Mytilus galloprovincialis*. Marine Ecology Progress Series 340: 163–171.

- Robinson TB, Griffiths C, McQuaid C & M Rius. 2005. Marine alien species of South Africa status and impacts. African Journal of Marine Science 27: 297–306.
- Robinson TB, Griffiths CL & N Kruger. 2004. Distribution and status of marine invasive species in and bordering the West Coast National Park. Koedoe 47: 79–87.
- Robinson TB, Griffiths CL, Branch GM & A Govender. 2007a. The invasion and subsequent die-off of *Mytilus galloprovincialis* in Langebaan Lagoon, South Africa: effects on natural communities. Marine Biology 152: 225–232.
- Robinson TB, Pope HR, Hawken L & C Binneman. 2015. Predation driven biotic resistance fails to restrict the spread of a sessile rocky shore invader. Marine Ecology Progress Series 522: 169–179.
- Robinson TB, Peters K & B Brooker. 2020. Coastal Invasions: The South African Context. In: van Wilgen B, Measey J, Richardson D, Wilson J, Zengeya T (eds) Biological Invasions in South Africa. Invading Nature Springer Series in Invasion Ecology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-32394-3_9
- Robles C. 1982. Disturbance and predation in an assemblage of herbivorous *Diptera* and algae on rocky shores. Oceologia 54: 23–31.
- Rogel JA, Silla RO & Ariza FA. 2001. Edaphic characterization and sediment ionic composition influencing plant zonation in a semiarid Mediterranean salt marsh. Geoderma 99 81–98.
- Roman M-L. 1977. Les oniscoides halophiles de Madagascar (Isopoda, Oniscoidea), Beaufortia 26: 107–151.
- Roycroft D, Kelly TC & LJ Lewis LJ. 2004. Birds, seals and the suspension culture of mussels in Bantry Bay, a non-seaduck area in Southwest Ireland. Estuarine, Coastal and Shelf Science 61: 703–712.
- Rouse S. 2011. "Conopeum seurati". Bryozoa of the British Isles. Accessed 16/9/2019.
- Ruiz JM. 2001. Effects of fish farm loadings on seagrass (*Posidonia oceanica*) distribution, growth and photosynthesis. Marine Pollution Bulletin 42(9): 749–760.
- Ruiz GM, Carlton JT, Grosholz ED & AN Hines. 1997. Global invasion of marine and estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. American Zoology 37: 621–632.
- Ryan PG. 2012. Medium-term changes in coastal bird communities in the Western Cape, South Africa. Austral Ecology 38: 251–259.
- Ryland JS, De Blauwe H, Lord R & JA Mackie. 2009. Recent discoveries of alien *Watersipora* (Bryozoa) in Western Europe, with redescriptions of species. Zootaxa 2093: 43–59.
- Sadchatheeswaran S, Branch GM & TB Robinson. 2015. Changes in habitat complexity resulting from sequential invasions of a rocky shore: implications for community structure. Biological Invasions 17(6): 1799–1816.
- Sadchatheeswaran S, Branch GM, Moloney CL & TB Robinson. 2018. Impacts of alien 'ecosystem engineers' overwhelm interannual and seasonal shifts in rocky-shore community

- composition on Marcus Island, South Africa. African Journal of Marine Science, 40(2): 137–147.
- Salas F, Marcos C, Neto JM, Patri´cio J, Pe´ rez-Ruzafa A & JC Marques. 2006. User-friendly guide for using benthic ecological indicators in coastal and marine quality assessment. Ocean & Coastal Management 49: 308–331.
- Saldanha Bay Municipality (SBM). 2016. Saldanha Bay Municipality Integrated Development Plan 2012-2017. Revision 3, 2015/2016. Available [Online] http://www.sbm.gov.za/pages/IDP/IDP_Review_2015_2016.pdf [10 September 2016].
- Saldanha Bay Municipality (SBM). 2011. *Integrated Development Plan 2006–2011*. Saldanha Bay Municipality, South Africa.
- Saldanha Bay Municipality (SBM). 2014. Langebaan Stormwater Master Plan: Basic Assessment Report. Saldanha Bay Municipality, Saldanha.
- Saldanha Bay Local Municipality (SBLM). 2019. Second Generation Coastal Management Programme 2019-2024.
- Samaai T & MJ Gibbons. 2005. Demospongiae taxonomy and biodiversity of the Benguela region on the west coast of South Africa. African Natural History 1: 1–96.
- Sandison EE. 1950. Appearance of Elminius modestus Darwin in South Africa. Nature 165: 79–80.
- Schaffelke B & D Deane. 2005. Desiccation tolerance of the introduced marine green alga *Codium* fragile ssp. tomentosoides clues for likely transport vectors? Biological Invasions 7: 557–565.
- Scheibling RE & SX Anthony. 2001. Feeding, growth and reproduction of sea urchins (Strongylocentrotus droebachiensis) on single and mixed diets of kelp (Laminaria spp.) and the invasive alga Codium fragile ssp. tomentosoides. Marine Biology 139: 139–146.
- Scheibling RE & P Gagnon. 2006. Competitive interactions between the invasive green alga *Codium* fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Marine Ecological Progress Series 325: 1–14.
- Schils T, Clerck OD, Leliaert F, Bolton JJ & E Coppejans. 2001. The change in macroalgal assemblages through the Saldanha Bay/Langebaan Lagoon ecosystem (South Africa). Botanica Marina 44: 295–305.
- Schuchert P. 2001 Survey of the family Corynidae (Cnidaria, Hydrozoa). Revue Suisse De Zoologie 108 (4): 739–878.
- Schuchert P. 2005. Species boundaries in the hydrozoan genus *Coryne*. Molecular Phylogenetics and Evolution 36: 194–199.
- Schuchert P. 2017. *Moerisia maeotica* (Ostroumoff, 1896). In: Schuchert P (2015), World Hydrozoa database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=247957 [accessed 30 September 2017].
- Schultz GA. 1977. Terrestrial isopod crustaceans (Oniscoidea) from St. Catherines Island, Georgia, Georgia Journal of Science 35: 151–158.

- Schultz A. 2010. A revision of the taxonomy of the lesser guitarfish (Rhinobatos annulatus) and the blunt-nose guitarfish (*Rhinobatos blochii*). University of Cape Town, Zoology Honours Thesis.
- Sedlak DL & U von Gunten. 2011. The Chlorine Dilemma. Science 331(6013): 42–43.
- Serrano O, Lavert PS, Duarte CM, Kendrick GA, Calafat A, York PH, Steve A & PI Macreadie. 2016. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? Biogeosciences 13: 4915–4926.
- Shannon LV & GH Stander. 1977. Physical and chemical characteristics of water in Saldanha Bay and Langebaan Lagoon. Transactions of the Royal Society of South Africa 42: 441–459.
- Shannon LV. 1966. Hydrology of the South and West Coasts of South Africa. Investigational Report, Sea Fisheries Research Institute, South Africa 58: 1–52.
- Sherley RB, Crawford RJM, de Blocq AD *et al.* 2020. The conservation status and population decline of the African penguin deconstructed in space and time. Ecology and Evolution 10:8506–8516.
- Siebert T & GM Branch. 2005. Interactions between *Zostera capensis, Callianassa kraussi* and *Upogebia africana*: deductions from field surveys in Langebaan Lagoon, South Africa. South African Journal of Marine Science 27: 357–373.
- Siebert T & GM Branch. 2006. Ecosystem engineers: Interactions between eelgrass *Zostera capensis* and the sandprawn *Calianassa kraussi* and their indirect effects on the mudprawn *Upogebia africana*. Journal of Experimental Marine Biology and Ecology 338(2): 253–270.
- Siebert T & GM Branch. 2007. Influences of biological interactions on community structure within seagrass beds and sandprawn-dominated sandflats. Journal of Experimental Marine Biology and Ecology 340: 11–24.
- Siegfried WR. 1977. Wading Bird Studies at Langebaan Lagoon. Interim Report submitted March 1977.
- Simon CA. 2011. *Polydora* and *Dipolydora* (Polychaeta: Spionidae) associated with molluscs on the South Coast of South Africa, with descriptions of two new species. African Invertebrates 52: 39–50.
- Simon CA. 2015. Observations on the composition and larval developmental modes of polydorid pests of farmed oysters (*Crassostrea gigas*) and abalone (*Haliotis midae*) in South Africa. Invertebrate Reproduction & Development 59: 124–130.
- Simon CA, Ludford A & S Wynne. 2006. Spionid polychaetes infesting cultured abalone *Haliotis midae* in South Africa. African Journal of Marine Science 28(1): 167–171.
- Simon CA, Thornhill DJ, Oyarzun F & KM Halanych. 2009. Genetic similarity between *Boccardia* proboscidae from Western North America and cultured abalone, *Haliotis midae*, in South Africa. Aquaculture 294: 18–24.
- Simon-Blecher N, Granevitze Z & Y Achituv. 2008. *Balanus glandula*: from North-West America to the west coast of South Africa. *African Journal of Marine Science* 30(1): 85–92.
- Simons RH. 1977. The algal flora of Saldanha Bay. *Transactions of the Royal Society South Africa* 42: 461-482.

- Skein L, Alexander M & TB Robinson. 2018. Contrasting invasion patterns in intertidal and subtidal mussel communities. African Zoology 53(1):47–52.
- Skinner LF & R Coutinho. 2005. Effect of microhabitat distribution and substrate roughness on barnacle *Tetraclita stalactifera* (Lamarck 1818) settlement. Brazilian Archives of Biology & Technology 48: 109–113.
- Slabberkorn H, Bouton N, Opzeeland I, Aukje C, ten Cate Carel & N Popper. Article in Press. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution 1243: 9.
- SLR Consulting (Pty) Ltd. (SLR) 2016. Proposed oil and gas offshore service complex at the Saldanha Bay Industrial Development Zone. Available [Online] at http://www.ccaenvironmental.co.za/general/proposed-oil-and-gas-offshore-service-complex-at-the-saldanha-bay-idz. 20 September 2016.
- SLR Consulting (Pty) Ltd. (SLR) 2019. Draft Environmental Impact Report for the proposed storage of hazardous substances at the Saldanha Bay IDZ. Available [Online]: https://s3-eu-west-1.amazonaws.com/s3live.slrconsulting.com/files/site/IDZ02OS-Executive-Summary.pdf
- Smart RM & JW Barko. 1980. Nitrogen nutrition and salinity tolerance of *Distichlis spicata* and *Spartina alterniflora*. Ecology 61, 630–638.
- Smith K. 2017. Personal communication about unpublished research.
- Sousa WP. 1979a. Disturbance in marine intertidal boulder fields: the non-equilibrium maintenance of species diversity. Ecology 60: 1225–1239.
- Sousa WP. 1979b. Experimental investigations of disturbance and ecological succession in a rocky intertidal algal community. Ecological Monographs 49: 227–254.
- Sousa WP. 1984. Intertidal mosaics: patch size, propagule availability, and spatially variable patterns of succession. *Ecology* 65: 1918–1935.
- South African Deep-Sea Trawling Industry Association (SADSTIA). 2019. SADSTIA annual report 2019. Available [Online]: https://www.sadstia.co.za/assets/uploads/SADSTIA-AR-2019.pdf Accessed on 14 October 2021.
- Sparks C, Odendaal J, Toefy R & R Snyman 2018. Metal concentrations in *Mytilus galloprovincialis* along the west coast of the Cape Peninsula, Cape Town, South Africa. Pollution Research 37 (4): 1-22.
- SRK Consulting. 2009. Saldanha Air Quality Permit Basic Assessment: Air Quality Specialist Baseline Study and Impact Assessment. SRK Project Number 399449.
- SRK Consulting. 2013. Re-commissioning of Premier Fishing's Southern Seas Fishmeal Plant at Saldanha. SRK Project Number 431676/10.
- Statistics South Africa 2014. Census 2011. Available at http://www.statssa.gov.za/census 2011/default.asp Accessed 15 August 2014.
- Staniford D. 2002a. A big fish in a small pond: the global environmental and public health threat of sea cage fish farming. Sustainability of the Salmon Industry in Chile and the World

- Workshop organized by the Terram Foundation and Universidad de los Lagos in Puerto Montt, Chile.
- Staniford D. 2002b. Sea cage fish farming: an evaluation of environmental and public health aspects (the five fundamental flaws of sea cage fish farming). Unpublished paper presented to the European parliament's Committee on Fisheries Public hearing on 'Aquaculture in the European Union: present situation.
- Stebbing TRR. 1910. General Catalogue of South African Crustacea (Part V. of S.A. Crustacea, for the marine investigations in South Africa). Annals of the South African Museum 6(4): 281–599.
- Steffani CN & GM Branch. 2003a. Spatial comparisons of populations of an indigenous limpet Scutellastra argenvillei and the alien mussel Mytilus galloprovincialis along a gradient of wave energy. African Journal of Marine Science 25: 195–212.
- Stegenga H, Bolton JJ & RJ Anderson. 1997. Seaweeds of the South African west coast. Contributions from the Bolus Herbarium 18: 3–637.
- Stenton-Dozey JME, Probyn T & A Busby. 2001. Impact of mussel (*Mytilus galloprovincialis*) raft-culture on benthic macrofauna, in situ oxygen uptake and nutrient fluxes in Saldanha Bay, South Africa. Canadian Journal of Fisheries and Aquatic Sciences 58: 1021–1031.
- Stevcic Z. 1988. Autecological investigations of the porcelain crab *Porcellana platycheles* (Pennant) (Decapoda, Anomura) in the Rovinj area (Northern Adriatic). Crustaceana 55: 242–252.
- Stephenson TA & A Stephenson. 1972. Life between tidemarks on rocky shores. Publishers WH Freeman and co., 425 pp.
- Summers C. 2012. "Lead and cadmium in seabirds of South Africa". All Theses. 1445. https://tigerprints.clemson.edu/all_theses/1445.
- Summers JK, Wade TL, Engle VW & ZA Malaeb. 1996a. Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries 19: 581–594.
- Summers RW. 1977. Distribution, abundance and energy relationships of waders (Aves: Charadrii) at Langebaan Lagoon. Transactions of the Royal Society of South Africa 42(3–4): 483–495.
- Swart C, Visser V & TB Robinson. 2018. Patterns and traits associated with invasions by predatory marine crabs. NeoBiota 39: 79–102.
- Sunda WG. 1989. Trace Metal Interactions with Marine Phytoplankton. Biological Oceanography 6(5-6): 411–442.
- Takada Y. 1999. Influence of shade and number of boulder layers on mobile organisms on a warm temperate boulder shore. Marine Ecology Progress Series 189: 171–179.
- Tamiminia H, Salehi B, Mahdianpari, M, Quackenbush L, Adeli S & B Brisco B. 2020. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. *ISPRS J. Photogrammetry and Remote Sensing* 164: 152–170.
- Tarjuelo I, Posada D, Crandall K, Pascual M & X Turon. 2001. Cryptic species of *Clavelina* (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the northwestern Mediterranean. Marine Biology 139: 1432–1793.

- Thérivel R, Wilson E, Thompson S, Heaney D & D Pritchard. 1994. Strategic Environmental Assessment. Earthscan Publications, London.
- Thompson WW. 1913. The Sea fisheries of the Cape Colony, from Van Riebeeck's days to the eve of the Union. Cape Town; Maskew Miller 163 pp.
- Tokeshi M. 1989. Feeding ecology of a size-structured predator population, the South American sunstar *Heliaster helianthus*. Marine Biology 100: 495–505.
- Transnet National Ports Authority (TNPA) 2019. National Ports Plan 2019 update.
- Tunley KL, Attwood CG, Moloney CL & L Fairhurst. 2009. Variation in population structure and life history parameters of steentjies *Spondyliosoma emarginatum*: effects of exploitation and biogeography. African Journal of Marine Science 31: 133–143.
- Turpie JK. 1995. Prioritizing South African estuaries for conservation: A practical example using waterbirds. Biological Conservation 74: 175–185.
- Turpie JK & PAR Hockey. 1993. Comparative diurnal and nocturnal foraging behaviour and energy intake of premigratory Grey Plovers *Pluvialis squatarola* and Whim-brels *Numenius phaeopus* in South Africa. Ibis 135: 156–165.
- Turpie JK & VC Love. 2000. Avifauna and human disturbance on and around Thesen Island, Knysna estuary: Implications for the island's marina development and management plan. Report to Chris Mulder & Associates.
- Tyrrell T & M Lucas. 2002. Geochemical evidence of denitrification in the Benguela upwelling system. Continental Shelf Research 22: 2497–2511.
- Underhill LG. 1987. Waders (Charadrii) and other waterbirds at Langebaan Lagoon, South Africa, 1975-1986. Ostrich 58(4): 145–155.
- Valiela I, Costa J, Foreman K, Teal JM, Howers B & D Aubrey. 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biochemistry 10: 177–197.
- van Ballegooyen RC, Mabille E, Brown S, Newman B & S Taljaard. 2012. Transnet Reverse Osmosis desalination plant, Saldanha Bay: Physico-chemical environmental baseline. CSIR Report, CSIR/NRE/ECO/ER/2012/0033/B, 146–19 pp.
- Van der Linden S. 2014. Salt Marsh Distribution and Structure at Langebaan Lagoon. Submitted as a partial fulfilment of the requirements for BOT450. Department of Botany, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth, South Africa, 6031.
- van der Merwe IJ, Ferreira SLA & HL Zietsman. 2005. Growth Potential of towns in the Western Cape. Centre for Geographical Analysis, Stellenbosch University.
- van Erkom Schurink C & CL Griffiths. 1991. A comparison of reproductive cycles and reproductive output in four southern African mussel species. Marine Ecology Progress Series 76: 123–134 https://doi.org/10.3354/meps076123.
- van Katwijk MM, Vergeer LHT, Schmitz GHW & JGM Roelofs. 1997. Ammonium toxicity in eelgrass *Zostera marina*. Marine Ecology Progress Series 157: 159–173.
- Vaquer-Sunyer R & CM Duarte. 2008. Thresholds of hypoxia for marine biodiversity. *Proceedings of the National Academy of Science* 105(40): 15452–15457.

- Viljoen R, Silomntu M, Reuther S & Jones S. 2010. Transnet Port Terminal Bulk Terminal Saldanha:

 Draft Environmental Management Programme for Air Quality Permit Amendment
 Application.
- Visser D, Goes M & P Rosewarne. 2007. Environmental Impact Assessment: Port Of Saldanha Proposed Reverse Osmosis Water Desalination Plant Groundwater Resources Impact Assessment. SRK Consulting Report.
- Vieira LM, Jones MS & PD Taylor. 2014. The identity of the invasive fouling bryozoan *Watersipora* subtorquata (d'Orbigny) and some other congeneric species. Zootaxa 3857: 151–182.
- Voellmy IK, Purser J, Simpson SD & AN Radford. 2014. Increased Noise Levels Have Different Impacts on the Anti-Predator Behaviour of Two Sympatric Fish Species. PLoS ONE 9(7): e102946.
- von der Heyden S, Lukey P, Celliers L, Prochazka K & Lombard AT. 2016. Science to policy Reflections on the South African reality. South African Journal of Science 112(11–12): 1–6.
- Warwick RM. 1993. Environmental impact studies on marine communities: Pragmatical considerations. Australian Journal of Ecology 18: 63–80.
- Warwick RM & Clarke KR 1993. Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Marine Biology 92:221–231
- Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT & SL Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106: 12377–12381.
- Weaver JW & L Fraser. 1998. Langebaan Road Aquifer Unit Drilling and Testing of New Wellfield. Technical Report ENV/S-C98042. Division of Water, Environment and Forestry, CSIR, Stellenbosch, South Africa.
- Weeks SJ, Boyd AJ, Monteiro PMS & GB Brundrit. 1991b. The currents and circulation in Saldanha Bay after 1975 deduced from historical measurements of drogues. South African Journal of Marine Science 11: 525–535.
- Weeks SJ, Monteiro PMS, Nelson G & RM Cooper. 1991a. A note on wind-driven replacement flow of the bottom layer in Saldanha Bay, South Africa: implications for pollution. South African Journal of Marine Science 11: 579–583.
- Weller F, Cecchini LA, Shannon L, Sherley RB, Crawford RJM, Altwegg R, Scott L, Stewart T & A Jarre. 2014. A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa. Ecological Modelling 277: 38–56.
- Weller F, Sherley RB, Waller LJ, Ludynia K, Geldenhuys D, Shannon LJ & A Jarre. 2016. System dynamics modelling of the Endangered African penguin populations on Dyer and Robben islands, South Africa. Ecological Modelling 327:44–56.
- WRC 2012. A Groundwater Planning Toolkit for the Main Karoo Basin: Identifying and quantifying groundwater development options incorporating the concept of wellfield yields and aquifer firm yields. WRC Report No. 1763/1/11, Pretoria, South Africa.

- Whitfield AK, Beckley LE, Bennett BA, Branch GM, Kok HM, Potter IC & RP van der Elst. 1989. Composition, species richness and similarity of ichthyofaunas in eelgrass Zostera capensis beds of southern Africa. South African Journal of Marine Science 8: 251–259.
- Whittington PA, Crawford RJM, Martin AP, Randall RM, Brown M, Ryan PG, Dyer BM, Harrison KHB, Huisamen J, Makhado AB, Upfold L, Waller LJ & M Witteveen. 2016. Recent Trends of the Kelp Gull (*Larus dominicanus*) in South Africa. Waterbirds 39(1): 99–113.
- Whittington PA, Randall BM, Wolfaardt AC, Crawford RJM, Klages NTW, Bartlett PA, Chesselet YJ & R Jones. 2005a. Patterns of movements of the African penguin in South Africa and Namibia. African Journal of Marine Science 27(1): 215–229.
- Whittington PA, Randall RM, Wolfaardt AC, Klages NTW, Randall BM, Bartlett PA, Chesselet YJ & R Jones. 2005b. Patterns of immigration to and emigration from breeding colonies by African penguins. African Journal of Marine Science 27(1): 205–213.
- Wickens PA, Japp DW, Shelton PA, Kriel F, Goosen PC, Rose B, Augustyn CJ, Bross CAR, Penney AJ & RG Krohn. 1992. Seals and fisheries in South Africa competition and conflict. South African Journal of Marine Science 12:773–789.
- Winston JE. 1995. Ectoproct diversity of the Indian River coastal lagoon. Bulletin of Marine Science 57: 84–93.
- Witteveen M, Brown M & PG Ryan. 2017. Anthropogenic debris in the nests of kelp gulls in South Africa. Marine Pollution Bulletin 114: 699–704.
- Williams AJ, Steele WK, Cooper J & RJM Crawford. 1990. Distribution, population size and conservation of Hartlaub's Gull *Larus hartlaubii*. Ostrich 61: 66–76.
- Williams LG. 2015. Genetic structure of pest polydorids (Annelida: Spionidae) infesting *Crassostrea* gigas in southern Africa: are pests being moved with oysters? MSc thesis, Stellenbosch University, South Africa.
- Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ & DM Richardson. 2009. Biogeographic concepts define invasion biology. Trends in Ecology and Evolution 24: p. 586.
- Wollaston EM. 1968. Morphology and taxonomy of southern Australian genera of *Crouanieae* Schmitz (Ceramiaceae: Rhodophyta). Australian Journal of Botany 16: 217–417.
- Woodin SA. 1976. Adult-larval interactions in dense faunal assemblages: patterns of abundance. Journal of Marine Research 34: 25–41.
- Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM & S Monserrat. 2019. Forcing factors affecting sea level changes at the coast. Surveys in Geophysics 40: 1351–1397.
- Woolsey S & M Wilkinson. 2007. Localized field effects of drainage water from abandoned coal mines on intertidal rocky shore seaweeds at St Monans, Scotland. Journal of the Marine Biological Association of the United Kingdom 87(03): 659–665.
- Wright AG, Laird MC & BM Clark. 2018b. Near Field Modelling and Assessment of Impacts for the Mykonos Desalination Plant, Club Mykonos, Langebaan. Specialist Report no. 1785/2

- prepared by Anchor Environmental Consultants (Pty) Ltd for SRK Consulting (South Africa) (Pty) Ltd. 96 pp.
- Wright AG, Mostert B & BM Clark. 2018a. Dispersion Modelling, Monitoring, and Assessment of Impacts of Reverse Osmosis Discharge into Saldanha Bay in Fulfilment of Sea Harvest Corporation (Pty) Ltd Coastal Waters Discharge Permit Conditions. Specialist Report no. 1798/3 prepared by Anchor Environmental Consultants (Pty) Ltd for Sea Harvest Corporation (Pty) Ltd. 92 pp.
- Wright AG, Hutchings K, Gihwala K & BM Clark. 2020. Sea Harvest Corporation (Pty) Ltd Saldanha Bay Environmental Monitoring: Annual Survey & Quarter 2. Specialist Report no. 1879/4 prepared by Anchor Environmental Consultants (Pty) Ltd for Sea Harvest Corporation(Pty) Ltd. 49pp.
- Wright AG, Hutchings K, Gihwala K & Clark BM. 2021. Sea Harvest Corporation (Pty) Ltd Saldanha Bay Environmental Monitoring: Second Annual Survey & Quarter 5 Monitoring Results.

 Specialist Report no. 1879/6 prepared by Anchor Environmental Consultants (Pty) Ltd for Sea Harvest Corporation (Pty) Ltd. 51 pp.
- WSP Africa Coastal Engineers. 2010. Development of a methodology for defining and adopting coastal development set-back lines. Volume 1. Main report. Report prepared for Department of Environmental Affairs and Developing Planning, Western Cape Government, 81 pp.
- Würsig B, Greene CR & TA Jefferson. 2000. Development of an air bubble curtain to reduce underwater noise of percussive piling. Marine Environmental Research 49: 79–93.
- Wyatt ASJ, Hewitt CL, Walker DI & TJ Ward. 2005. Marine introductions in the Shark BayWorld Heritage Property, Western Australia: A preliminary assessment. Diversity and Distribution 11: 33–44.
- Wynberg RP & GM Branch. 1991. An assessment of bait-collecting for *Callianassa kraussi* Stebbing in Langebaan Lagoon, Western Cape, and of associated avian predation. South African Journal of Marine Science 11: 141–152.
- ZAA. 2016. Specialist Study on the Potential Impact of the Proposed Project Phakisa Rig Repair Project in the Port of Saldanha on Hydrodynamics and Water Quality. Report prepared by ZAA Engineering Projects and Naval Architects for CCA Environmental. 37 pp.
- Zardi GI, Nicastro KR, McQuaid CD & M Gektidis. 2009. Effects of endolithic parasitism on invasive and indigenous mussels in a variable physical environment. PLoS One 4:e6560.
- Zedler JB, Williams P & J Boland. 1986. Catastrophic events reveal the dynamic nature of salt-marsh vegetation in southern California. Estuaries 9: 75–80.
- ZLH Projects & Naval Architects. 2009. Pre-feasibility Study Extension to Mossgas Quay Preliminary Development of Alternatives Report. P&NA 1264/RPT/002 Rev C.
- Zmarzly DL. 1992. Taxonomic review of pea crabs in the genus Pinnixa (Decapoda: Brachyura: Pinnotheridae) occurring on the California Shelf, with descriptions of two new species. Journal of Crustacean Biology 12: 677–713.
- Zsilavecz G. 2007. Nudibranchs of the Cape Peninsula and False Bay. Southern Underwater Research Group Press.

Zullo VA. 1992. Revision of the balanid barnacle genus *Concavus* Newman, 1982, with the description of a new Subfamily, two new genera, and eight new species. The Paleontological Society 27: 1–46.

16 APPENDIX 1

The Chapter contains supplementary information for the Rocky Intertidal, Bird and Seals, and Alien and Invasive Species Chapters (Table 16.1 – Table 16.3).

Table 16.1 Percentage cover of each species found on the rocky shores of Saldanha Bay and Langebaan Lagoon in 2021. DS = Dive School; J = Jetty; IO = Iron Ore Terminal; L = Lynch Point; M = Marcus Island; NB = North Bay; SE = Schaapen Island East; SW = Schaapen Island West. Total percentage cover for each functional group is shown in bold.

Percentage cover	DS	J	10	L	M	NB	SE	SW
SUBSTRATE	84.5	82.9	74.1	41.6	37.6	68.0	69.4	55.2
Rock	77.71	80.76	74.13	40.00	37.61	67.98	61.49	44.84
Sand	6.61	1.56	0.00	0.00	0.00	0.00	7.95	10.39
Gravel	0.23	0.62	0.00	1.56	0.00	0.00	0.00	0.00
GRAZERS	2.87	4.04	2.50	9.53	5.20	5.54	1.83	4.05
Acanthochiton garnoti	0.09	0.00	0.04	0.00	0.00	0.00	0.00	0.00
Afrolittorina knysnaensis	0.00	0.00	0.52	1.38	0.66	2.04	0.00	0.00
Callochiton dentatus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chaetopleura papilio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chiton nigrovirescens	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cymbula compressor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cymbula granatina	0.00	0.03	0.11	0.00	0.00	0.38	0.23	0.17
Cymbula miniata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cymbula oculus	0.47	0.35	0.00	1	0.00	0.22	0.31	0.00
Dendrofissurella scutellum	0	0.00	0	0	0	0	0	0.00
Fissurella mutabilis	0.00	0.01	0.07	0	0.02	0	0.13	0.00
Gibbula spp.	0.00	0	0	0	0	0	0.00	0
Gibbula zonata	0	0	0.00	0	0	0	0	0.00
Haliotis midae	0	0	0	0	0	0	0.00	0
Helcion dunkeri	0	0	0	0	0	0	0	0
Helcion pectunculus	0.02	0	0	0.22	0	0	0	0
Helcion pruinosus	0	0	0	0	0	0	0	0
Ischnochiton oniscus	0.00	0	0	0	0	0	0	0
Radsia nigrovirescens	0	0	0	0	0	0	0	0
Scutellastra argenvillei	0.18	0	0	0	0	0	0.13	0
Scutellastra barbara	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00
Scutellastra cochlear	1.26	3.01	0.72	2.19	0.24	0.06	0.45	0.86
Scutellastra granularis	0.22	0.16	0.02	0.00	0.61	0.00	0	0.00
Scutellastra tabularis	0.56	0.30	0.19	0.62	0.07	0.14	0.33	1.09
Siphonaria capensis	0	0	0	0.36	0.00	0.27	0.00	0.00
Siphonaria serrata	0	0	0.00	0.00	0.00	0	0	0
Parechinus angulosus	0	0	0.00	2.86	0.71	0.30	0	0
Parvulastra exigua	0.00	0	0.28	0.89	2.41	1.54	0	0.05
Onchidella maculata	0.00	0	0	0.00	0	0.00	0	0
Oxystele sinensis	0.00	0	0.05	0.15	0.04	0.29	0.02	1.39
Oxystele tigrina	0.06	0	0.04	0.04	0.00	0	0.08	0.07
Oxystele antoni	0.00	0	0	0	0	0	0.00	0
Tricolia capensis	0	0.00	0	0	0	0	0	0.00
PREDATORS	1.45	1.23	1.54	1.10	1.01	1.55	0.82	3.57
Actinia equina	0.08	0.08	0	0	0	0.00	0.06	0.25
Anthopleura michaelseni	0	0	0	0	0	0	0	0.75

Percentage cover	DS	J	10	L	М	NB	SE	SW
Anthostella stephensoni	0	0	0	0	0.00	0	0	0.00
Anthothoe stimpsonii	0	0.00	1	0.03	0	0.46	0.12	0.24
Bunodactis reynaudi	0	0	0.16	0.00	0.24	0.07	0.00	0.42
Bunodosoma capense	0	0	0.10	0.30	0.02	0.29	0	0.31
Burnupena papyracea	0	0	0	0	0	0.00	0	0.00
Burnupena spp.	0.71	0.94	0.40	0.42	0.57	0.18	0.41	0.89
Callopatiria granifera	0.00	0	0	0	0	0	0	0.00
Clionella sinuata	0.00	0.01	0	0.00	0	0.00	0	0.00
Conus mozambicus	0	0	0	0	0	0	0	0.00
Corynactis annulata	0	0	0	0	0	0	0	0.33
Cyclograpus punctatus	0.00	0	0.02	0.17	0	0.00	0	0.00
Doris verrucosa	0	0	0	0	0	0	0	0.00
Doriopsis granulosa	0	0	0	0	0	0	0	0.00
Dromidia spp.	0	0	0	0	0	0	0	0.02
Flatworm	0	0	0	0	0	0	0	0.00
Fusinus sp.	0.00	0	0	0	0	0	0	0.00
Henricia ornata	0	0	0	0.02	0	0.00	0.02	0.20
Hermit crab	0	0	0	0	0	0	0	0.00
Hymenosoma orbiculare	0	0	0	0	0	0	0	0.01
Marthasterias glacialis	0	0	0	0	0	0	0	0.02
Nucella dubia	0	0	0	0	0	0	0	0.00
Nucella squamosa	0	0	0	0	0	0	0	0.00
Nudibranch	0.02	0	0.02	0.11	0.01	0.03	0	0.00
Ophiuroidea	0	0	0.03	0.00	0.00	0	0.00	0.00
Paguristes gamianus	0	0	0	0	0.00	0	0	0.00
Philine aperta	0	0	0	0	0.00	0	0	0.00
Platydromia spongiosa	0	0	0	0	0	0	0.01	0.01
Pseudactinia flagellifera	0	0	0	0	0	0	0	0.00
Pseudactinia sp.	0	0	0	0	0	0	0	0.00
Trochia cingulata	0	0	0	0	0	0	0	0.00
Volvarina capensis	0	0	0	0	0	0	0	0.00
FILTER FEEDERS	2.72	3.92	2.55	16.17	23.19	9.08	2.62	4.11
Amphibalanus amphitrite amphitrite	0	0.00	0	0	0	0	0	0
Aulacomya atra	0.67	0.21	0.62	1.61	3.02	0.88	0	0.34
Austromegabalanus cylindricus	0	0	0.00	0.00	0.00	0.00	0	0
Balanus glandula	0.05	1.66	0.22	5.24	5.96	5.61	0.00	0.00
Choromytilus meridionalis	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Chthamalus dentatus	0	0	0	0	0	0	0	0
Colonial ascidian	0	0	0	0	0	0	0	0
Crepidula porcellana	0	0.02	0.00	0.02	0.00	0.31	0.32	0.32
Dendropoma corallinaceum	0.46	0.82	0.15	0.07	0.35	0.00	0.11	0.03
Dodecaceria capensis	0	0	0	0.00	0	0.00	0	0
Encrusting Bryozoa	0	0	0	0	0	0	0	2
Fanworm	0	0.02	0.20	0	0.00	0.00	0.00	0
Gunnarea gaimardi	0	0	0	0	0	0	0	0
Hemiocnus insolens	0	0	0	0	0	0	0	0
Hydroids	0	0	0	0	1.65	0	0	0
Mytilus galloprovincialis	0	0	0	0.00	0	0.00	0	0
Notomegabalanus algicola	0.81	0.56	0.53	8.70	12.05	2.01	0	0
Octomeris angulosa	0.00	0.00	0	0.00	0.00	0.00	0	0

Percentage cover	DS	J	10	L	М	NB	SE	SW
Pentacta doliolum	0	0	0	0	0	0	0	0
Perforatus perforatus	0	0	0.13	0	0.15	0	0	0
Pyura herdmani	0.04	0.00	0.00	0.00	0	0	0	0
Pyura stolonifera	0	0	0.00	0	0	0	0	0
Roweia frauenfeldi frauenfeldi	0.00	0.07	0.00	0.03	0	0	0	0
Sandy tube worm	0	0.00	0	0	0	0	0	0
Spirorbis spp.	0.00	0	0.14	0.00	0	0.13	1.12	0.06
Sponge	0.12	0	0.11	0	0.00	0.09	0.74	0.90
Tetraclita rufotincta	0	0	0.00	0	0	0	0	0
Tetraclita serrata	0.48	0	0	0.35	0.00	0	0	0
Thyone aurea	0	0	0	0.00	0.00	0.00	0	0.00
Tubeworm	0	0	0	0.00	0.00	0.00	0	0.00
CRUSTOSE	6.22	4.90	14.10	18.87	21.27	9.71	18.38	7.46
Alcyonium fauri (Soft Coral)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coralline (crustose)	1	2	1	15.59	6.40	4.46	2.05	4.62
Coralline (upright)	0	0.00	0.00	1.38	1.24	0.33	0.18	0.07
Diatoms	2.72	0.00	12.41	1.43	0.35	4.92	9.55	1.08
Hildenbrandia spp.	2.51	2.54	0.51	0.39	13	0.00	6.59	2
Ralfsia verrucosa	0.22	0.47	0.43	0.07	0	0.00	0.01	0
EPHEMERALS	1.58	1.27	2.48	3.85	5.88	1.93	2.50	10.82
Bryopsis myosurioides	0	0	0.40	0	0.00	0	0.05	0
Callithamnion collabens	0	0	0	0.00	0	0.00	0	0
Centroceras clavulatum	0	0.00	0	0	0	0.00	0	0
Ceramium spp	0.00	0.00	0.04	0.42	0.10	0.10	0.00	0.41
Cladophora spp.	0.00	0.87	0.00	0.07	0.97	0.00	0.00	2.30
Ectocarpus	0	0.00	0	0.00	0	0	0.00	0
Green turf	1	0	0	0.00	0.00	0.12	0.00	0.00
Porphyra capensis	0.00	0	0	0.00	0.00	0.00	0.00	0.00
Pachymenia chornia	0.06	0.02	0.00	0.02	0.02	0.26	0.14	0.07
Pachymenia orbitosa	0	0	0.00	0.22	1	0.26	1	1
Ulva spp.	0.77	0.37	1.88	3.12	3.38	1.19	1.76	7.15
CORTICATED	0.63	1.68	2.58	7.23	4.65	3.56	4.40	14.32
Ahnfeltiopsis complicata	0	0	0	0	0	0	0.00	0
Ahnfeltiopsis glomerata	0	0	0.15	0	0.02	0	0.59	0.00
Ahnfeltiopsis polyclada	0.00	0.37	0.00	0	0	0	0.00	0.00
Botryocarpa prolifera	0	0	0	0	0	0.00	0	0
Botryocladia paucivesicaria	0	0	0	0	0	0	0	0
Botryoglossum platycarpum	0	0	0	0	0	0	0	0
Callithamnion collabens	0	0	0.00	0	0.00	0	0	0
Carpoblepharis flaccida	0	0	0.00	0	0.11	0	0	0
Caulacanthus ustulatus	0	0.00	0.00	0.00	0.00	0.00	0.00	0
Chaetomorpha robusta	0	0	0.00	0	0	0.00	0.11	0.00
Champia compressa	0	0	0.00	0.00	0.03	0.00	0	0
Champia lumbricalis	0	0	0	0	1	2	0	0
Chondria capensis	0	0	0	0	0	0	0	0
Chordariopsis capensis	0	0	0.00	0.00	0.00	0.00	0	0
Cochlear Garden	0	0	0.09	0.00	0.00	0.00	0	0
Codium fragile fragile	0	0.00	0	0	0	0	0	0.00
Codium lucasii	0	0	0	0	0	0	0	0
Codium stephensiae	0	0	0	0	0	0	0	0,38

Percentage cover	DS	J	10	L	M	NB	SE	SW
Colpomenia sinuosa	0.00	0.00	0	0	0	0	0	0
Exallosorus harveyanus	0	0	0	0	0.02	0	0	0
Gelidium pristoides	0	0	0.00	0.00	0	0.00	0.00	0.00
Gelidium pteridifolium	0	0	0.00	0.00	0	0.00	0.00	0.00
Gelidium vittatum	0	0	0	0	0	0	0	0
Gigartina bracteata	0.20	0.56	0.48	0.79	0.77	0.17	2.22	2.22
Gigartina polycarpa	0	0	1	0	0	0	0	2
Grateloupia longifolia	0	0	0	0	0.00	0	0	0
Gymnogongrus dilatatus	0	0	0	0	0	0	0	0
Halopteris funicularis	0.00	0	0.00	0	0	0	0.00	0.00
Hypnea ecklonii	0.00	0	0	1	0	0	0	0.26
Hypnea spicifera	0	0	0	0	0	0	0	4
Laurencia glomerata	0	0	0	0	0	0	0	0
Leathesia marina	0	0	0	0	0	0	0	0
Mazzaella capensis	0.00	0	0	0.00	0.00	0	0.12	0
Neuroglossum binderianum	0	0	0	0	0	0	0	1
Nothogenia erinacea	0	0.00	0.34	0	0	0.00	0.00	0
Nothogenia ovalis	0	0	0	0	0	0	0	1
Phyllymenia belangeri	0	0	0	0	0	0	0	0
Phyllymenia capensis	0	0	0	0	0	0	0	0
Plocamium corallorhiza	0	0	0	0	0	0	0	0
Plocamium spp.	0	0	0	0	0	0	0	0
Polyopes constrictus	0.00	0	0.00	0	0.00	0.00	0.00	0.00
Portieria hornemanii	0	0	0.20	1	1	0	0.36	0.03
Pterosiphonia cloiophylla	0	0	0	0	0	0	0	0
Red turf	0	0	0	0	0	0.00	0	0
Rhodophyllis reptans	0.00	0.00	0.00	0.00	0	0	0.00	0.00
Rhodymenia pseudopalmata	0	0	0	2	0	0	0	0
Rhodymenia spp.	0	0.00	0	0.00	0	0.00	0.00	0.00
Sarcothalia radula	0	0	0	0	0	0	0	0
Sarcothalia scutellata	0	0	0	0	0	0	0	0
Sarcothalia stiriata	0	0	0	0.00	0.0	0	0.00	0.00
Schizymenia apoda	0	0	0	0	0.00	0.00	0.00	1.22
Splachnidium rugosum	0	0	0.00	2	1	1	0	3
Tayloriella tenebrosa	0	0	0	0	0	0	0.00	0.00
Tsengia lanceolata	0	0	0	0	0	0	0	0
KELP	0	0	0.00	0	0	0	0	0
Ecklonia maxima	0	0	0.00	0	0	0	0	0
Laminaria pallida	0	0	0.11	1.69	1.19	0.66	0.00	0.45

Table 16.2 List of non-passerine waterbird species occurring in Langebaan Lagoon (Note that this species list excludes rare vagrants, exotic species and terrestrial species) (Source: CWAC data, Animal Demography Unit at the University of Cape Town).

Common name	Scientific name	Average count	Maximum count
African Oystercatcher	Haematopus moquini	17	163
African Darter	Anhinga rufa	2	3
African Fish-Eagle	Haliaeetus vocifer	1	2
African Marsh-Harrier	Circus ranivorus	2	9
African Purple Gallinule	Porphyrio madagascariensis	2	2
African Rail	Rallus caerulescens	2	3
African Sacred Ibis	Threskiornis aethiopicus	112	720
African Snipe	Gallinago nigripennis	4	19
African Spoonbill	Platalea alba	23	137
Antarctic Tern	Sterna vittata	2	2
Arctic Tern	Sterna paradisaea	35	35
Bank Cormorant	Phalacrocorax neglectus	11	29
Bar-tailed Godwit	Limosa lapponica	225	3000
Black Crake	Zapornia flavirostra	2	2
Black-crowned Night-Heron	Nycticorax nycticorax	3	6
Black-headed Heron	Ardea melanocephala	3	29
Blacksmith Lapwing	Vanellus armatus	18	78
Black-tailed Godwit	Limosa limosa	1	1
Black-winged Stilt	Himantopus himantopus	37	180
Cape Cormorant	Phalacrocorax capensis	90	2289
Cape Shoveler	Anas smithii	9	45
Cape Teal	Anas capensis	16	90
Caspian Tern	Hydropogne caspia	8	53
Cattle Egret	Bubulcus ibis	8	45
Chestnut-banded Plover	Charadrius pallidus	57	581
Common Greenshank	Tringa nebularia	112	1175
Common Moorhen	Gallinula chloropus	2	5
Common Redshank	Tringa totanus	14	76
Common Ringed Plover	Charadrius hiaticula	100	548
Common Sandpiper	Actitis hypoleucos	4	34
Common Tern	Sterna hirundo	509	9658
Common Whimbrel	Numenius phaeopus	161	2000
Crowned Cormorant	Microcarbo coronatus	32	167
Crowned Plover	Vanellus coronatus	4	8
Curlew Sandpiper	Calidris ferruginea	3242	25347
Egyptian Goose	Alopochen aegyptiaca	15	433

Eurasian Curlew Numenius arquata 82 1373 Giant kingfisher Megoceryle maximus 1 1 Glossy Ibis Plegadis folicinellus 28 89 Goliath Heron Ardea goliath 3 3 Great Crested Grebe Podiceps cristatus 2 2 Great White Egret Egretta alba 1 3 Great White Pelican Peleconus onocrotolus 27 262 Greater Flamingo Phoenicopterus roseus 853 8774 Greater Sand Plover Charadrius Isechenoultii 7 35 Grey Heron Ardea cinerea 8 83 Grey Pheron Ardea cinerea 8 83 Grey Pheron Ardea cinerea 8 83 Grey Pheron Ardea cinerea 8 83 Grey Phoren Pluvidis squatorola 707 8228 Grey Pheron Ardea cinerea 8 83 Grey Pheron Ardea cinerea 8 83 Grey Pheron <t< th=""><th>Common name</th><th>Scientific name</th><th>Average count</th><th>Maximum count</th></t<>	Common name	Scientific name	Average count	Maximum count
Glossy Ibis Plegadis falcinellus 28 89 Goliath Heron Ardea gollath 3 3 Great Crested Grebe Podiceps cristatus 2 2 Great White Egret Egretta alba 1 3 Great White Pelican Pelecanus onocrotalus 27 262 Greater Flamingo Phoenicopterus roseus 853 8724 Greater Sand Plover Charadrius leschenoultii 7 253 Grey Heron Ardea cinerea 8 83 Grey plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus dartlaubii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126	Eurasian Curlew	Numenius arquata	82	1373
Goliath Heron Ardea goliath 3 3 Great Crested Grebe Podiceps cristatus 2 2 Great White Egret Egretta alba 1 3 Greater White Pelican Pelecanus onocrotalus 27 262 Greater Sand Plover Charodrius Iseschenaultii 7 35 Greater Sand Plover Charodrius Iseschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey Plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus hortlaubii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Flamingo Phoeniconaias minor 203	Giant kingfisher	Megaceryle maximus	1	1
Great Crested Grebe Podiceps cristatus 2 2 Great White Egret Egretta alba 1 3 Great White Pelican Pelecanus onocrotalus 27 262 Greater Flamingo Phoenicopterus roseus 853 8724 Greater Sand Plover Chorodrius Iseschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey Plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus hortlaubii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Egret Egretta garzetta 24 126 Little Erre Egretta garzetta 24 126	Glossy Ibis	Plegadis falcinellus	28	89
Great White Egret Egretta alba 1 3 Great White Pelican Pelecanus onocratalus 27 262 Greater Flamingo Phoenicopterus roseus 853 8724 Greater Sand Plover Charadrius leschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey Plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus fartiaubii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Egret Egretta garzetta 24 126 Little Egret Tachybaptus ruficollis 1 1 Little Egret Egretta garzetta 24 126 Little Egret Tactybaptus ruficollis 1 1	Goliath Heron	Ardea goliath	3	3
Great White Pelican Pelecanus onocrotalus 27 262 Greater Flamingo Phoenicopterus roseus 853 8724 Greater Sand Plover Charadrius leschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey Plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus dominicanus 111 1140 Klelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126	Great Crested Grebe	Podiceps cristatus	2	2
Greater Flamingo Phoenicopterus roseus 853 8724 Greater Sand Plover Charadrius leschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus daminicanus 111 1140 Kelp Gull Larus daminicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5	Great White Egret	Egretta alba	1	3
Greater Sand Plover Charadrius leschenaultii 7 35 Grey Heron Ardea cinerea 8 83 Grey plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus dominiconus 111 1140 Kelp Gull Larus dominiconus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5	Great White Pelican	Pelecanus onocrotalus	27	262
Grey Heron Ardea cinerea 8 83 Grey plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus hartlubbii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pled Avocet	Greater Flamingo	Phoenicopterus roseus	853	8724
Grey plover Pluvialis squatarola 707 8228 Grey-headed Gull Larus cirrocephalus 6 19 Hartlaub's Gull Larus hartlaubii 224 1881 Kelp Gull Larus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Owl Asio capensis 2 5 Osprey Pandion haliaetus 2 5 Osprey Pandion haliaetus 2 5 Pied Kingfisher	Greater Sand Plover	Charadrius leschenaultii	7	35
Grey-headed Gull Lorus cirrocephalus 6 19 Hartlaub's Gull Lorus hartlaubii 224 1881 Kelp Gull Lorus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 1 Little Grebe Tachybaptus ruficollis 1 1 1 1 1 1 1 1 2 6 6 4 6 858 8 1 1 1 2 5 1	Grey Heron	Ardea cinerea	8	83
Hartlaub's Gull Lorus hartlaubii 224 1881 Kelp Gull Lorus dominicanus 111 1140 Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Grebe Tachybaptus ruficollis 1 1 1 Little Grebe Tachybaptus ruficollis 1 1 1 1 1 1 1 1 2 6 6 4 6 4 6 6 6 6 6 6 6	Grey plover	Pluvialis squatarola	707	8228
Kelp Gull Larus dominicanus Littlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris alba 600 4950 Sanderling Calidris alba 600 4950 Sandewich Tern Thalasseus sandvicensis 34 1474	Grey-headed Gull	Larus cirrocephalus	6	19
Kittlitz's Plover Charadrius pecuarius 53 545 Lesser Flamingo Phoeniconaias minor 203 1606 Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 52 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris alba 600 4950 Sanderling Calidris alba 600 A950 Sandewich Tern Thalasseus sandvicensis	Hartlaub's Gull	Larus hartlaubii	224	1881
Lesser FlamingoPhoeniconaias minor2031606Lesser Sand PloverCharadrius mongolus719Little EgretEgretta garzetta24126Little GrebeTachybaptus ruficollis11Little StintCalidris minuta146858Little TernSternula albifrons964Malachite KingfisherAlcedo cristata12Marsh OwlAsio capensis25Marsh SandpiperTringa stagnatills1055OspreyPandion haliaetus25Pied AvocetRecurvirostra avosetta52521Pied KingfisherCeryle rudis516Pink-backed PelicanPelecanus rufescens2626Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Kelp Gull	Larus dominicanus	111	1140
Lesser Sand Plover Charadrius mongolus 7 19 Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 Fied Avocet Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 2 2 77 Red Cormorant Microcarbo africanus 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris pugnax 25 Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Kittlitz's Plover	Charadrius pecuarius	53	545
Little Egret Egretta garzetta 24 126 Little Grebe Tachybaptus ruficollis 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 25 237 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Lesser Flamingo	Phoeniconaias minor	203	1606
Little Grebe Tachybaptus ruficollis 1 1 Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Lesser Sand Plover	Charadrius mongolus	7	19
Little Stint Calidris minuta 146 858 Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 55 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 Red Cormorant Microcarbo africanus 25 Ruff Calidris pugnax 25 237 Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Little Egret	Egretta garzetta	24	126
Little Tern Sternula albifrons 9 64 Malachite Kingfisher Alcedo cristata 1 2 Marsh Owl Asio capensis 2 5 Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 25 237 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Little Grebe	Tachybaptus ruficollis	1	1
Malachite KingfisherAlcedo cristata12Marsh OwlAsio capensis25Marsh SandpiperTringa stagnatilis1055OspreyPandion haliaetus25Pied AvocetRecurvirostra avosetta52521Pied KingfisherCeryle rudis516Pink-backed PelicanPelecanus rufescens2626Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Little Stint	Calidris minuta	146	858
Marsh OwlAsio capensis25Marsh SandpiperTringa stagnatilis1055OspreyPandion haliaetus25Pied AvocetRecurvirostra avosetta52521Pied KingfisherCeryle rudis516Pink-backed PelicanPelecanus rufescens2626Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Little Tern	Sternula albifrons	9	64
Marsh Sandpiper Tringa stagnatilis 10 55 Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris pugnax 25 237 Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Malachite Kingfisher	Alcedo cristata	1	2
Osprey Pandion haliaetus 2 5 Pied Avocet Recurvirostra avosetta 52 521 Pied Kingfisher Ceryle rudis 5 16 Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris pugnax 25 237 Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34	Marsh Owl	Asio capensis	2	5
Pied AvocetRecurvirostra avosetta52521Pied KingfisherCeryle rudis516Pink-backed PelicanPelecanus rufescens2626Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Marsh Sandpiper	Tringa stagnatilis	10	55
Pied KingfisherCeryle rudis516Pink-backed PelicanPelecanus rufescens2626Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Osprey	Pandion haliaetus	2	5
Pink-backed Pelican Pelecanus rufescens 26 26 Purple Heron Ardea purpurea 1 3 Red Knot Calidris canutus 963 6219 Red-billed Teal (Duck) Anas erythrorhyncha 5 22 Red-knobbed Coot Fulica cristata 45 277 Reed Cormorant Microcarbo africanus 22 277 Ruddy Turnstone Arenaria interpres 536 4587 Ruff Calidris pugnax 25 237 Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34	Pied Avocet	Recurvirostra avosetta	52	521
Purple HeronArdea purpurea13Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Pied Kingfisher	Ceryle rudis	5	16
Red KnotCalidris canutus9636219Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Pink-backed Pelican	Pelecanus rufescens	26	26
Red-billed Teal (Duck)Anas erythrorhyncha522Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Purple Heron	Ardea purpurea	1	3
Red-knobbed CootFulica cristata45277Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Red Knot	Calidris canutus	963	6219
Reed CormorantMicrocarbo africanus22277Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Red-billed Teal (Duck)	Anas erythrorhyncha	5	22
Ruddy TurnstoneArenaria interpres5364587RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Red-knobbed Coot	Fulica cristata	45	277
RuffCalidris pugnax25237SanderlingCalidris alba6004950Sandwich TernThalasseus sandvicensis341474	Reed Cormorant	Microcarbo africanus	22	277
Sanderling Calidris alba 600 4950 Sandwich Tern Thalasseus sandvicensis 34 1474	Ruddy Turnstone	Arenaria interpres	536	4587
Sandwich Tern Thalasseus sandvicensis 34 1474	Ruff	Calidris pugnax	25	237
	Sanderling	Calidris alba	600	4950
South African Shelduck Tadorna cana 15 131	Sandwich Tern	Thalasseus sandvicensis	34	1474
	South African Shelduck	Tadorna cana	15	131

Common name	Scientific name	Average count	Maximum count
Southern Pochard	Netta erythrophthalma	4	4
Spur-winged Goose	Plectropterus gambensis	7	71
Swift Tern	Thalasseus bergii	36	1538
Terek Sandpiper	Xenus cinereus	42	266
Three-banded Plover	Charadrius tricollaris	6	38
Water Thick-knee	Burhinus vermiculatus	2	3
White-breasted Cormorant	Phalacrocorax lucidus	12	89
White-fronted Plover	Charadrius marginatus	84	473
White-winged Tern	Chlidonias leucopterus	4	17
Wood Sandpiper	Tringa glareola	4	12
Yellow-billed Duck	Anas undulata	51	335
Yellow-billed Egret	Ardea intermedia	4	31

List of alien, invasive, naturalised and cryptogenic species that are likely to occur on the West Coast of South Africa or have been confirmed to occur in Saldanha Bay and Langebaan Lagoon. Region of origin and likely vector for introduction (SB = ship boring, SF = ship fouling, BW = ballast water, BS = solid ballast, OR = oil rigs, M = mariculture, F = Fisheries activities, I = intentional release) are listed. Data extracted from Mead et al. (2011a & b) and Robinson et al. 2014, and recent published and unpublished research.

Taxon	Occurrence in Saldanha/Langeb aan	Status	Origin	Vector	Reference
PROTOCTISTA					
Mirofolliculina Iimnoriae	Likely	Alien	Unknown	SB	Mead et al. 2011
DINOFLAGELLATA					
Alexandrium minutum	Likely	Alien	Europe	BW	Mead et al. 2011
Alexandrium tamarense-complex	Likely	Alien	N Atlantic/N Pacific	BW	Mead et al. 2011
Dinophysis acuminata	Likely	Alien	Europe	BW	Mead et al. 2011
PORIFERA					
Suberites ficus	Likely	Invasive	Europe	SF	Samaai & Gibbons 2005
<u>CNIDARIA</u>					
ANTHOZOA					
Metridium senile	Likely	Alien	N Atlantic/N Pacific	SF/OR	Mead et al. 2011
Sagartia ornata	Confirmed	Naturalised	Europe	SF/BW	Robinson & Swart 2015
<u>ECHINODERMATA</u>					
ASTEROIDEA					
Heliaster helianthus	Confirmed	Alien	South American Pacific	SF/BW	Peters & Robinson 2018
<u>HYDROZOA</u>					
Coryne eximia	Confirmed	Invasive	N Atlantic/N Pacific	SF/BW	Mead <i>et al.</i> 2011
Gonothyraea loveni	Likely	Alien	North Atlantic	SF/BW	Mead et al. 2011
Laomedea calceolifera	Likely	Alien	North Atlantic	SF/BW	Mead et al. 2011
Obelia bidentata	Likely	Naturalised	Unknown	SF/BW	Mead <i>et al.</i> 2011
Obelia dichotoma	Likely	Naturalised	Unknown	SF/BW	Mead <i>et al.</i> 2011
Obelia geniculata	Likely	Naturalised	Unknown	SF/BW	Mead et al. 2011
Pachycordyle navis	Likely	Alien	Europe	SF/BW	Mead <i>et al.</i> 2011
Pinauay larynx	Likely	Naturalised	North Atlantic	SF/BW	Mead <i>et al.</i> 2011
Pinauay ralphi	Likely	Alien	North Atlantic	SF/BW	Mead et al. 2011

Taxon	Occurrence in Saldanha/Langeb aan	Status	Origin	Vector	Reference		
ANNELIDA	ANNELIDA						
POLYCHAETA							
Boccardia proboscidea	Confirmed	Invasive	Eastern Pacific	M	David & Simon 2014, CAS unpublished data		
Capitella sp.	Likely	Cryptogenic	Unknown	SF/BW	Mead et al. 2011		
Dodecaceria fewkesi	Likely	Naturalised	North American Pacific	SF/BW	Peters et al. 2014		
Ficopomatus enigmaticus	Likely	Invasive	Australia	SF	McQuaid & Griffiths 2014		
Janua pagenstecheri	Likely	Alien	Europe	SF/BW	Mead <i>et al.</i> 2011		
Neodexiospira brasiliensis	Confirmed	Invasive	Indo-Pacific	SF/BW	Mead <i>et al.</i> 2011		
Simplicaria pseudomilitaris	Likely	Alien	Unknown	SF/BW	Mead et al. 2011		
Polydora hoplura	Confirmed	Invasive	Europe	SF/BW	Simon 2011, David & Simon 2014		
Hydroides elegans	Likely	Cryptogenic	Unknown	SF/BW	Robinson et al. 2016		
<u>CRUSTACEA</u>							
CIRRIPEDIA							
Amphibalanus amphitrite amphitrite	Confirmed (AEC 2014)	Cryptogenic	Unknown	SF/BW	Mead et al. 2011		
Amphibalanus venustus	Likely	Invasive	North Atlantic	SF	Mead et al. 2011		
Balanus glandula	Confirmed	Invasive	North American Pacific	SF/BW	Robinson et al. 2015		
Perforatus perforatus	Confirmed	Alien	North American Pacific	SF/BW	Biccard & Griffiths (Pers. Comm. 2017)		
COPEPOD							
Acartia (Odontacartia) spinicauda	Likely	Alien	Western North Pacific	BW	Mead et al. 2011		
ISOPODA							
Dynamene bidentata	Likely	Invasive	Europe	SF/BW	Mead et al. 2011		
Ligia exotica	Likely	Cryptogenic	Unknown	SB	Mead et al. 2011		
Limnoria quadripunctata	Likely	Alien	Unknown	SB	Mead et al. 2011		
Limnoria tripunctata	Likely	Alien	Unknown	SB	Mead et al. 2011		
Paracerceis sculpta	Likely	Alien	Northeast Pacific	SF/BW	Mead et al. 2011		
Synidotea hirtipes	Confirmed	Cryptogenic	Indian Ocean	SF/BW	Mead et al. 2011		

Taxon	Occurrence in Saldanha/Langeb aan	Status	Origin	Vector	Reference
Synidotea variegata	Confirmed	Cryptogenic	Indo-Pacific	SF/BW	Mead et al. 2011
AMPHIPODA					
Caprella equilibra	Likely	Cryptogenic	Unknown	SF/BW	Mead et al. 2011
Caprella mutica	Likely	Alien	North-east Asia	SF	Peters & Robinson 2017
Caprella penantis	Likely	Cryptogenic	Unknown	SF/BW	Mead et al. 2011
Chelura terebrans	Confirmed	Invasive	Pacific Ocean	SF/SB	Mead et al. 2011
Cerapus tubularis	Confirmed	Invasive	North American Atlantic	BS	Mead <i>et al.</i> 2011
Cymadusa filosa	Likely	Cryptogenic	Unknown	BS	Mead et al. 2011
Erichthonius brasiliensis	Likely	Invasive	North Atlantic	SF/BW	Mead <i>et al.</i> 2011
Ericthonius difformis	Likely	Alien	Unknown, northern hemisphere	SF	Peters et al. 2014
Ischyrocerus anguipes	Likely	Invasive	North Atlantic	SF/BW	Mead <i>et al.</i> 2011
Jassa marmorata	Likely	Naturalised	North Atlantic	SF/BW	Conlan 1990, Mead <i>et al.</i> 2011
Jassa morinoi	Likely	Invasive	Eastern North Pacific	SF/BW	Conlan 1990, Mead <i>et al.</i> 2011
Jassa slatteryi	Confirmed	Invasive	North Pacific	SF/BW	Conlan 1990, Mead <i>et al.</i> 2011
Paracaprella pusilla	Likely	Cryptogenic	Unknown	SF/BW	Mead et al. 2011
Orchestia gammarella	Confirmed	Invasive	Europe	BS	Mead <i>et al.</i> 2011
DECAPODA					
Carcinus maenas	Confirmed (G. Branch pers. comm.)	Invasive	Europe	SF/BW/ OR	Robinson et al. 2005
Homalaspis plana	Confirmed	Alien	South American Pacific	SF/BW	Peters & Robinson 2018
Rathbunixa occidentalis (formerly Pinnixa occidentalis)	Confirmed (Anchor 2011)	Invasive	North American Pacific	BW	Clark & Griffiths 2012
Porcellana africana (Incorrectly identified as Porcellana platycheles)	Confirmed	Invasive	North East Atlantc	BW	Griffiths et al. 2018
Xantho incicus	Likely	Alien	France	M	Haupt <i>et al.</i> 2010

Taxon	Occurrence in Saldanha/Langeb aan	Status	Origin	Vector	Reference
INSECTA					
COLEOPTERA					
Cafius xantholoma	Likely	Invasive	Europe	BS	Mead et al. 2011
MOLLUSCA					
GASTROPODA					
Catriona columbiana	Likely	Alien	North Pacific	SF/BW	Mead et al. 2011
Littorina saxatilis	Confirmed	Invasive	Europe	BS	Mead et al. 2011
Tritonia nilsodhneri	Likely	To be confirmed	Europe	SF/BW	Zsilavecz 2007
Kaloplocamus ramosus	Likely	To be confirmed	Unknown	SF/BW	Zsilavecz 2007
Thecacera pennigera	Likely	Cryptogenic	Unknown	SF/BW	Mead et al. 2011
Anteaeolidiella indica	Confirmed	Cryptogenic	Unknown	SF/BW	Mead et al. 2011
BIVALVIA					
Bankia carinata	Likely	Cryptogenic	Unknown	SB	Mead et al. 2011
Bankia martensi	Likely	Cryptogenic	Unknown	SB	Mead et al. 2011
Crassostera gigas	Confirmed	Invasive	Japan	М	Haupt <i>et al.</i> 2010, Keightley <i>et al.</i> 2015
Dicyathifer manni	Likely	Cryptogenic	Unknown	SB	Mead et al. 2011
Lyrodus pedicellatus	Likely	Alien	Unknown	SB	Mead et al. 2011
Mytilus galloprovincialis	Confirmed	Invasive	Europe	SF/BW	Robinson et al. 2005
Semimytilus algosus	Confirmed	Invasive	South Pacific	SF/BW	de Greef et al. 2013
Teredo navalis	Likely	Invasive	Europe	SB	Mead et al. 2011
Teredo somersi	Likely	Cryptogenic	Unknown	SB	Mead et al. 2011
BRACHIOPODA					
Discinisca tenuis	Confirmed	Invasive	Namibia	M	Haupt et al. 2010, Peters et al. 2014
<u>BRYOZOA</u>					
Bugula flabellata	Likely	Invasive	Unknown	SF	Florence et al. 2007
Bugula neritina	Likely	Invasive	Unknown	SF	Florence et al. 2007
Conopeum seurati	Confirmed	Invasive	Europe	SF	McQuaid & Griffiths 2014
Cryptosula pallasiana	Confirmed	Invasive	Europe	SF	Mead et al. 2011
Watersipora subtorquata	Confirmed	Invasive	Caribbean	SF	Florence et al. 2007, Mead et al. 2011
<u>CHORDATA</u>					
ASCIDIACEA					

Taxon	Occurrence in Saldanha/Langeb aan	Status	Origin	Vector	Reference		
Ascidia sydneiensis	Likely	Invasive	Pacific Ocean	SF	Mead et al. 2011, Rius et al. 2014		
Ascidiella aspersa	Likely	Invasive	Europe	SF	Mead <i>et al.</i> 2011, Peters <i>et al.</i> 2014, Rius <i>et al.</i> 2014		
Botryllus schlosseri	Likely	Invasive	Unknown	SF	Mead <i>et al.</i> 2011, Peters <i>et al.</i> 2014, Rius <i>et al.</i> 2014		
Ciona robusta (formally known as Ciona intestinalis)	Confirmed (Picker & Griffiths 2011)	Invasive	Unknown	SF	Mead <i>et al.</i> 2011, Rius <i>et al.</i> 2014, Brunetti <i>et al.</i> 2015		
Clavelina lepadiformis	Confirmed (Picker & Griffiths 2011)	Invasive	Europe	SF	Mead et al. 2011, Rius et al. 2014		
Cnemidocarpa humilis	Likely	Invasive	Unknown	SF	Mead et al. 2011		
Corella eumyota	Confirmed	Cryptogenic	Unknown	SF	Mead et al. 2011		
Diplosoma listerianum	Confirmed	Invasive	Europe	SF	Mead et al. 2011, Rius et al. 2014		
Microcosmus squamiger	Likely	Invasive	Australia	SF	Mead et al. 2011, Rius et al. 2014		
Trididemnum cerebriforme	Confirmed	Cryptogenic	Unknown	SF	Mead et al. 2011		
<u>PISCES</u>							
Cyprinus carpio	Likely	Invasive	Central Asia to Europe	I	Mead et al. 2011		
RHODOPHYTA							
Antithamnionella spirographidis	Confirmed	Invasive	North Pacific	SF/BW	Mead et al. 2011		
Antithamnionella ternifolia	Likely	Cryptogenic	Australia	SF/BW	Mead et al. 2011		
Asparagopsis armata	Likely	Invasive	Australia	Unknow n	Bolton et al. 2011		
Schimmelmannia elegans	Likely	Alien	Tristan da Cunha	BW	De Clerck et al. 2002		
<u>CHLOROPHYTA</u>	CHLOROPHYTA						
Codium fragile fragile	Confirmed	Invasive	Japan	SF/BW	Mead et al. 2011		

National Port Operations

